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Perception andmemory have distinct spatial
tuning properties in human visual cortex

Serra E. Favila 1,5 , Brice A. Kuhl 2,3 & Jonathan Winawer 1,4

Reactivation of earlier perceptual activity is thought to underlie long-term
memory recall. Despite evidence for this view, it is unclear whethermnemonic
activity exhibits the same tuning properties as feedforwardperceptual activity.
Here, we leverage population receptive field models to parameterize fMRI
activity in human visual cortex during spatial memory retrieval. Though reti-
notopic organization is present during both perception and memory, large
systematic differences in tuning are also evident. Whereas there is a three-fold
decline in spatial precision from early to late visual areas during perception,
this pattern is not observed during memory retrieval. This difference cannot
be explained by reduced signal-to-noise or poor performance on memory
trials. Instead, by simulating top-down activity in a network model of cortex,
we demonstrate that this property is well explained by the hierarchical
structure of the visual system. Together, modeling and empirical results sug-
gest that computational constraints imposed by visual system architecture
limit the fidelity of memory reactivation in sensory cortex.

Episodic memory retrieval allows humans to bring to mind the details
of a previous experience. This process is hypothesized to involve
regenerating sensory activity that was evoked during the initial
event1–4. For example, remembering a friend’s facemight invoke neural
activity that was present when seeing that face. There is considerable
evidence from human neuroimaging demonstrating that the same
visual cortical areas active during perception are also active during
imagery and long-termmemory retrieval5–14. These studies have found
thatmnemonic activity in early visual areas like V1 reflects the low-level
visual features of remembered stimuli, such as spatial location and
orientation5,12,15–17. Likewise, category-selective activity in high-level
visual areas like FFA and PPA is observed when participants remember
or imagine faces and houses6,7,10. The strength and pattern of visual
cortex activity has been associated with retrieval success in memory
tasks11,18–20, suggesting that cortical reactivation is relevant for
behavior.

These studies, and others performed in animal models21, have
established similarities between the neural substrates of visual per-
ception and visualmemory. However, relatively less attention has been
paid to identifying and explaining differences between activity

patterns evoked during perception and memory. Which properties of
stimulus-driven activity are reproduced in visual cortex during mem-
ory retrieval and which are not? The extreme possibility—that all
neurons in the visual system produce identical responses when per-
ceiving and remembering a given stimulus—can likely be rejected. Early
studies demonstrated that sensory responses were reduced during
memory retrieval relative to perception7,8, and perception and mem-
ory give rise to distinct subjective experiences. A second, and more
plausible, proposal is that visual memory functions as a weak version
of feedforward perception, with memory activity in visual cortex
organized in the same fundamental way as perceptual activity22, but
with reduced signal-to-noise23,24 caused by weak or imperfect inputs
from the memory system. This hypothesis is consistent with informal
comparisons between perception and memory BOLD amplitudes and
data suggesting that visual imageryproduces similar behavioral effects
to weak physical stimuli in many tasks25–28. A third possibility is that
memory reactivation differs from stimulus-driven activation in pre-
dictable and systematic ways beyond signal-to-noise. Such differences
could arise due to a change in the neural populations recruited, a
change in those populations’ response properties, or a systematic loss
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of information during sensory encoding. Critically, any systematic
differences between visual cortical response properties during per-
ception and memory should be observable under conditions of high
memory fidelity, whenmemory strength and accuracy are maximized.

One way to adjudicate between these possibilities is to make use
of encoding models from visual neuroscience that quantitatively
parameterize the relationship between stimulus properties and the
BOLD response. In the spatial domain, population receptive field (pRF)
models define a 2D receptivefield that transforms stimulus positionon
the retina to a voxel’s BOLD response29,30. These models are based on
well-understood physiological properties of the primate visual system
and account for a large amount of variance in the BOLD signal
observed in human visual cortex during perception31. Using these
models to quantify memory-evoked activity in the visual system offers

the opportunity to precisely model the properties of memory reacti-
vation in visual cortex and their relationship to the properties of visual
activation. In particular, the fact that pRF models describe neural
activity in terms of stimulus properties may aid in interpreting differ-
ences between perception andmemory activity patterns by projecting
these differences onto a small number of interpretable physical
dimensions. Such approaches have already proved effective in
answering some questions about the nature of visual workingmemory
representations. Numerous studies have used encoding models to
show that visual cortex encodes stimuli maintained in working mem-
ory in a similar format to perception32–35. However, these studies have
emphasized similarity between working memory and perception and
have not reported systematic differences between the two.
Moreover, there are good theoretical reasons to suspect that results
from working memory studies may not generalize to episodic mem-
ory. Namely, while working memory is thought to depend on the
maintenance of perceptual activity that was evoked seconds ago,
episodic memory retrieval requires the total reinstantiation of per-
ceptual activity that was evoked minutes, hours, or days ago. These
different cognitive operations may impose different constraints on
stimulus representations.

In this work, we use pRFmodels to characterize the spatial tuning
properties of mnemonic activity in human visual cortex during epi-
sodic memory recall. We first trained human participants to associate
spatially localized stimuli with colored fixation dot cues. We then
measured stimulus-evoked and memory-evoked activity in visual cor-
tex using fMRI. Separately, we fit pRF models to independent fMRI
data, allowing us to estimate receptive field locations within multiple
visual areas for each participant. Using pRF-based analyses, we quan-
tify the location, amplitude, and precision of neural activity within
these visual field maps during perception and memory retrieval. We
find fundamental differences in the amplitude and precision of per-
ceptual and mnemonic activity that span the visual hierarchy and that
cannot be explained by low signal-to-noise or memory failure. Finally,
we explore the cortical computations that could account for our
observations by simulating neural responses using a stimulus-referred
pRF model and a hierarchical model of neocortex. We find that basic
patterns in our empirical results can be accounted for by reversing the
flowof information between perception andmemory retrievalwithin a
hierarchical model of cortex.

Results
Behavior
Prior to being scanned, participants (N = 9) completed a behavioral
training session. During this session, participants learned to associate
four colored fixation dot cues with four stimuli. The four stimuli were
unique radial frequency patterns presented at 45, 135, 225, or 315
degrees of polar angle and 2 degrees of eccentricity (Fig. 1a, b). Parti-
cipants alternatedbetween study and testblocks (Fig. 1c).During study
blocks, participants were presented with the associations. During test
blocks, participants were presented with the fixation dot cues and had
to detect the associated stimulus pattern and polar angle location
among similar lures (Fig. 1a, c; see Methods). All participants com-
pleted a minimum of four test blocks (mean = 4.33, range = 4–5), and
continued the task until they reached 95% accuracy. Participants’
overall performance improved over the course of training session
(Fig. 1d). In particular, participants showed improvements in the ability
to reject similar lures from the first to the last test block (Fig. 1e).

After participants completed the behavioral training session, we
collected fMRI data while participants viewed and recalled the stimuli
(Fig. 2a). During fMRI perception runs, participants fixated on the
central fixation dot cues and viewed the four stimuli in their learned
spatial locations. Participants performed a one-back task to encourage
covert attention to the stimuli. Participants were highly accurate at
detecting repeated stimuli (mean = 86.9%, range = 79.4%–93.2%).

Fig. 1 | Stimuli and behavioral training. a The four radial frequency patterns and
polar angle locations used in the fMRI experiment are outlined in blue. The inter-
vening patterns and locations were used as lures during the behavioral training
session. b In a behavioral training session immediately prior to the scan, partici-
pants learned that each of the four colored fixation dot cues was associated with a
unique radial frequency pattern that appeared at a unique location in the visual
field. c During training, participants alternated between study and test blocks.
During study blocks, participants were presented with the associations while
maintaining central fixation. During test blocks, participants were presented with
the cues followed by test probes while maintaining central fixation. On each test
trial, participants gave yes/no responses towhether the test probewaspresented at
the target polar angle and whether it was the target pattern. d Accuracy of pattern
and polar angle responses improved over the course of the training session. Lines
indicate mean accuracy across participants. The shaded region indicates 95%
confidence interval. eMemory performance becamemore precise from the first to
the last test block.During thefirst block, false alarmswere high for stimuli similar to
the target. These instances decreased by the last test block. Dots indicate prob-
ability of a 'yes' response for all trials in that bin in either the first or last block. The x
axis is organized such that zero corresponds to the target (yes = correct) and
increasing values correspond to lures more dissimilar to the target
(yes = incorrect).
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During fMRI memory runs, participants fixated on the central fixation
dot cues and recalled the associated stimuli in their spatial locations.
On each trial, participants made a judgment about the vividness of
their memory. Participants reported that they experienced vivid
memory on an average of 89.8% of trials (range: 72.4%–99.5%), weak
memory on 8.9% of trials (0.5%–25.0%), and no memory on 0.5% of
trials (0.0%–2.6%). Participants failed to respond on an average of
0.75% trials (0.0%–3.6%). We intentionally avoided asking participants
to report the content of their memories while being scanned. We did
this to avoid confounding the properties of the remembered stimulus
with the motor response used to report these properties (hand or eye
movement).

Memory reactivation is spatially organized
We used a GLM to estimate the BOLD response evoked by seeing and
remembering each of the four spatially localized stimuli (Fig. 2a; see
Methods). Separately, each participant completed a retinotopic map-
ping session.Wefit pRFmodels to thesedata to estimate pRF locations
(x, y) and sizes (σ) in multiple visual areas (Fig. 2b). To more easily
compare perception- and memory-evoked activity across visual areas,
we transformed the evoked responses from cortical surface coordi-
nates into visual field coordinates using the pRF parameters. For each
participant, ROI, and stimulus, we plotted the amplitude of the evoked
response at the visual field position (x, y) estimated by the pRF model
(Fig. 3a). We then interpolated these values over 2D space, rotated all
stimulus responses to the upper visual meridian, z-scored the values,
and averaged across stimuli and participants (see Methods). These
plots are useful for comparison across regions because they show the
organization of the BOLD response in a common space that is undis-
torted by the size and magnification differences present in cortex.

We generated these visual field plots for V1, V2, and V3 as an initial
way to visualize the evoked responses during perception andmemory.
Readily apparent is the fact that stimulus-evoked responses during
perception were robust and spatially specific (Fig. 3b, top). The spatial

spread of perceptual responses increased from V1 to V3, consistent
with estimates of increasing receptive field size in these regions30,31.
While thememory responses wereweaker andmore diffuse, they were
also spatially organized, with peak activity in the same location as the
perception responses (Fig. 3b, bottom).

Next, we quantified these initial observations. Because our sti-
mulus locations were isoeccentric, we collapsed our evoked
responses to one spatial dimension: polar angle. To do this, we
restricted our ROIs to surface vertices with pRF locations near the
stimulus eccentricity, and then binned the responses according to
their polar angle distance from the stimuli. We averaged the
responses in each bin within a participant and then across partici-
pants. This produced polar angle response functions that mapped
evoked BOLD response as a function of polar angle distance from
the stimulus (see Methods; Fig. 4a). We generated these polar angle
response functions for V1–V3 and for three mid-level visual areas
from the ventral, lateral, and dorsal streams: hV4, LO, and V3ab
(Fig. 4b). To capture the pattern of positive and negative BOLD
responses we observed, we fit the average data in each ROI with a
difference of two von Mises distributions, where both the positive
and the negative von Mises were centered at the same location (see
Methods). Visualizing the data and the von Mises fits (Fig. 4b), it’s
clear that both perception and memory fits show a peak at 0∘, or the
true location of the stimulus, in every region.

To formally test this, we calculated bootstrapped confidence
intervals for the location parameter of the von Mises distributions by
resampling participants with replacement (see Methods). We then
compared the accuracy and reliability of location parameters between
perception and memory (Fig. 4c, left). As expected, location para-
meters derived from perception data were highly accurate. 95% con-
fidence intervals for perception location parameters overlapped 0∘ of
polar angle, or the true stimulus location, in all ROIs. These confidence
intervals spanned only 7.0∘ on average (range: 3.9∘–9.5∘), demonstrat-
ing that there was low variability in location accuracy across

Perception
3 s

3 s

3–6 s

3 s

Retinotopy

GLMdenoise pRF model

fMRI Session 1 fMRI Session 2

Memory

3 s

3–6 s

24 s

24 s

24 s

2%

-2%

LVM

UVM

RHM

βperception βmemory (x, y, σ)

a b

Fig. 2 | fMRI task design and measurements. a Following training, participants
participated in two taskswhile being scanned. During perception runs, participants
viewed the colored fixation dot cues and associated stimuli while maintaining
centralfixation. Participants performedaone-back task on the stimuli to encourage
covert attention to each stimulus. During memory runs, participants viewed only
the cues and recalled the associated stimuli while maintaining central fixation.
Participants made a judgment about the vividness of their memory (vivid, weak, no
memory) on each trial. We used the perception and memory fMRI time series to
perform a GLM analysis that estimated the response evoked by perceiving and

remembering each stimulus for each vertex on the cortical surface. Responses in
visual cortex for an example participant and stimulus are shown at bottom. b In a
separate fMRI session on a different day, participants participated in a retinotopic
mapping session. During retinotopy runs, participants viewed bar apertures
embedded with faces, scenes, and objects drifting across the visual field while they
maintained central fixation. Participants performed a color change detection task
on the fixation dot. We used the retinotopy fMRI time series to solve a pRF model
that estimated the receptive field parameters for each vertex on the cortical sur-
face. A polar angle map is plotted for an example participant at bottom.
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participants in every ROI. Critically, memory parameters were also
highly accurate, with confidence intervals overlapping 0∘ in every ROI
(Fig. 4c, left). Thus, in every visual area measured, the spatial locations
of the remembered stimuli could be accurately estimated from mne-
monic activity. Memory confidence intervals spanned 17.6∘ on average
(range = 11.0∘–21.3∘), indicating that location estimates were somewhat
less reliable during memory during perception. However, even the
widest memory confidence interval spanned far less than the 90∘

separating each stimulus location, demonstrating that there was no
confusability between stimuli present in distributed memory activity.
Because both perception and memory location parameters were
highly accurate, and because differences in reliability were relatively
small, there was no statistically reliable difference between perception
and memory in the estimated location of peak activity (main effect of
perception/memory: β =0.14, 95% CI = [−6.72, 6.14]; Fig. 4c, left).
Similarly, there was no reliable difference across ROIs (main effect of
ROI: β =0.075, 95% CI = [−2.22, 2.65]) and no reliable change in the
relationship between perception and memory across ROIs (percep-
tion/memory x ROI interaction: β = 0.54, 95% CI = [−1.94, 2.60]). These
results provide evidence that memory-triggered activity in human
visual cortex is spatially organizedwithin known visual fieldmaps, as it
is during visual perception. These findings support prior reports of
retinotopic activity duringmemory and imagery5,9,15, but providemore
quantitative estimates of this effect.

Amplitude and precision differ between perceptual and mne-
monic activity
Aspects of perception and memory responses other than the peak
location differed considerably. First, the strongest memory responses
were lower in amplitude than the strongest perception responses
(Fig. 4b). To quantify this observation, we derived a population mea-
sure of response amplitude (maximum response–minimum response)
from the difference of von Mises functions fit to our data (see Meth-
ods). This measure indicated the relative strength of the BOLD
response in vertices that were maximally responsive to stimulus. As
described in the prior section, these vertices almost always corre-
sponded to the polar angle location of the stimulus (0∘ of polar angle
distance). We computed bootstrapped confidence intervals for this
amplitude measure, following the prior analysis. We then compared
these estimates between perception and memory. First, response
amplitudes for perception data were higher than for the memory data
(main effect of perception/memory: β =0.95, 95% CI = [0.80, 1.13];
Fig. 4c, middle). The average amplitude during perception was 0.92
units of BOLD % signal change, and the average amplitude during
memory was 0.26 units of BOLD % signal change. Amplitude con-
fidence intervals for perception and memory did not overlap in any
ROI, indicating that these differences were highly reliable in each
region. Critically, the fact that perception amplitudes were larger than
memory amplitudes overall does not imply that memory responses

Fig. 3 | Perception and memory activity in visual field coordinates. a For every
participant, ROI, and stimulus, we plotted the perception- or memory-evoked
response (β) in the visual field position estimated by the pRFmodel (x, y) and then
interpolated over 2D space. Hotter colors indicate larger BOLD responses in that
part of the visual field. We then rotated the interpolated images by the polar angle
location of the stimulus so that they aligned on the upper verticalmeridian. Finally,
we z-scored the images and then averaged over stimuli and participants to produce
on average image per ROI and task. An example participant's V1 data during the

perception task is shown in the two middle panels, and the group average V1 data
during perception is shown at right. b Plots of perception-evoked and memory-
evoked activity, averaged across all participants (N = 9), from V1, V2, and V3. These
plots reproduce known features of spatial processing during perception, such as
increasing receptive field size from V1--V3. They also qualitatively demonstrate that
perceptual activity is not perfectly reproduced during memory retrieval but that
some retinotopic organization is preserved.
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were at baseline. In fact, 95% confidence intervals for memory ampli-
tudes did not overlap with zero in any region (Fig. 4c, middle),
demonstrating thatmemory responseswere above baseline in all areas
measured. These results demonstrate that the amplitude of spatially
organized activity in visual cortex is attenuated, but present, during
memory retrieval.

During both perception and memory, we observed lower
response amplitudes in later areas (main effect of ROI: β = −0.023, 95%
CI = [−0.035, −0.008]; Fig. 4c, middle). However, there was a larger
decrease in amplitude from early to late areas during perception than
during memory (perception/memory x ROI interaction: β = −0.12, 95%
CI = [−0.16 −0.082]). This resulted in perception and memory ampli-
tudes that were more similar to each other in later visual areas than in
early visual areas. For example, while perception amplitudes were 0.86
units of % signal change larger than memory amplitudes in V1, they
were only 0.37 units of % signal change larger in V3ab. This pattern of
data indicates that the extent to which memory amplitudes recapitu-
late perception amplitudes varies across the visual system.

Memory responses were also wider, or less precise, than percep-
tion responses (Fig. 4b). We operationalized the precision of percep-
tion and memory responses by computing the full width at half
maximum (FWHM) of the difference of vonMises fit to our data and by
generating confidence intervals for this measure. Note that FWHM is
not sensitive to the overall scale of the response function: a difference
of vonMises rescaled by a factor of 0.5 will have an unchanged FWHM.
On average, FWHM during perception was significantly smaller than
during memory (main effect of perception/memory: β = −75.2, 95%
CI = [−138.5, −33.1]; Fig. 4c, right). However, these differences were not

equivalent across ROIs (perception/memoryxROI interaction:β = 18.8,
95% CI = [5.78, 35.5]). During perception, FWHM increased moving up
the visual hierarchy (main effect of ROI: β = 13.3, 95% CI = [10.3, 20.6]),
indicating increased width or decreased precision in later visual areas
compared to early visual areas (Fig. 4c, right). For example, V1 had the
narrowest (most precise) response during perception, with an average
FWHM of 38.0∘ (95% CI: [32.0∘, 45.0∘]), while V3ab had the widest
responses during perception, with a FWHM of 97.0∘ (95% CI: [78.0∘,
132.5∘]). This increasing pattern follows previously described increases
in population receptive field size in these regions30,31. Note that a
separate question, not addressed here, is the precision with which the
stimulus can be decoded from a representation, which is not neces-
sarily related to receptive field size.

Strikingly, however, thispatternof increasing FWHMfromearly to
late visual areas was abolished duringmemory retrieval (main effect of
ROI: β = −5.49, 95%CI = [−18.7, 8.41]; Fig. 4c, right). In fact, numerically,
V1 had the largest FWHM of all ROIs during memory retrieval at 131.0∘

(95% CI: [66.9∘, 225.0∘]), a reversal of its rank during perception, with
V2, V3, and hV4 FWHMs getting increasingly smaller. Though
decreasing FWHM from early to late areas was not statistically reliable
in this sample, the clear absence of a perception-like pattern during
memory retrieval is notable. This observation suggests that funda-
mental aspects of spatial processing commonly observed during per-
ception do not generalize to memory-evoked responses.

Similar to our findings for amplitude, the interaction between
perception/memory and ROI yielded the most divergent perception
and memory responses in the earliest visual areas (Fig. 4c, right). V1
responses during memory were 3.45 times wider than V1 responses

perception
memory

a

b

 bin by polar angle
distance & average

c
Location

x

Amplitude FWHM

N = 1
stim = 45º

average across
subjects & fit

Eccentricity-
restricted 
data

N = 9
stim = all

N = 1
stim = all

β1 f(θ | μ, κ1) -
 β2 f(θ | μ, κ2)

perception | V1

Fig. 4 | Perception andmemory have shared and distinct activation features in
visual cortex. aWecreated 1Dpolar angle response functions by restricting data to
vertices with eccentricities near the stimulus and then binning the vertices
according to polar angle distance from the stimulus. We computed the median
evoked BOLD % signal change within these bins for each participant, ROI, task. We
then performed a normedmean across participants. A difference of two vonMises
distributions was fit to the group average response. The von Mises distributions
over θ = [−180∘, 180∘] shared a location parameter (μ) but could differ in their
concentration (κ1, κ2) and scale (β1, β2). An example participant's V1 data during the
perception task is shown in the two left panels, and the group average V1 data
duringperception is shownat rightwithfit vonMises.bGrouppolar angle response
functions are plotted separately for perception andmemory. Dots represent group
average BOLD% signal change at different polar angle distances from the stimulus.
Responses in parts of cortex that have pRFs near the stimulus position are plotted

at x = 0. Lines represent the fit of the difference of two von Mises distributions to
the average data, and shading represents the 95% confidence interval around this
fit. While the peak location of the response is shared across perception and
memory, there are clear differences in the amplitude and width of the responses.
c Location, amplitude and FWHM of the difference of von Mises fits to the group
data (N = 9) areplotted toquantify the responses.Dots representfit parameters and
lines represent bootstrapped 68% confidence intervals (thick lines) and boot-
strapped 95% confidence intervals (thin lines) generated from resampling partici-
pants with replacement. In all ROIs, the peak location of the response is equivalent
duringperception andmemory (at 0∘, the stimulus location),while the amplitudeof
the response is reliably lower during memory than during perception. The FWHM
of the response increases across ROIs during perception but not during memory,
resulting in highly divergent FWHM for perception and memory in early
visual areas.

Article https://doi.org/10.1038/s41467-022-33161-8

Nature Communications |         (2022) 13:5864 5



during perception. In V2 and V3,memory FWHMexceeded perception
FWHMby an average of 1.98 times and 1.67 times, respectively. In hV4,
LO, and V3ab, memory responses were 0.84–1.04 times wider during
memory than during perception. This increase in similarity between
perceptual and mnemonic responses in later areas raises the inter-
esting possibility that later stages of visual processing serve as a bot-
tleneck on mnemonic activity precision. Finally, we note that changes
in FWHM can also be understood as distance-dependent changes in
the strength of the BOLD response. Consider the change between
perception FWHMandmemory FWHM in V1. Among vertices with pRF
centers that were near the stimulus (polar angle distance = 0∘), BOLD
responseswere larger during perception thanmemory, as described in
the previous section on amplitude. However, for voxels farther away
from the stimulus, BOLD responses were actually larger during mem-
ory than perception (Fig. 4b). This pattern argues against the notion
that memory-evoked responses are merely low amplitude copies of
perceptual responses. Instead, our results provide evidence for reli-
able and striking differences in the precision of perception and
memory activity across different levels of the visual system. These
findings suggest that there are fundamentally different constraints on
the properties of feedforward perceptual activity and top-down
mnemonic activity in human visual cortex.

We’ve focused on polar angle responses for several reasons. First,
our stimuli varied along this dimension. Second, polar angle estimates
are more reliable than eccentricity estimates in human visual cortex,
especially in hV4, LO, and V3ab36. Nonetheless, we also plotted
eccentricity responses and observed qualitatively similar patterns to
those in the polar angle domain (Supplementary Fig. 1). During per-
ception, eccentricity tuning became increasingly wide in later areas.
During memory, eccentricity tuning was much wider overall, with the
biggest differences between perception and memory in the earliest
areas. Similar to our polar angle analyses, V1 vertices with pRFs far
away from the stimulus eccentricity actually had numerically higher
responses during memory than during perception. Though these data
are noisier thanour polar angle data andwere not the original target of
our investigation (stimulus eccentricity was not experimentally
manipulated), the results provide some preliminary evidence that our
polar angle results generalize to other stimulus properties.

Differences between perception andmemory responses are not
explained by inter-participant variability
The properties of group data are not always reflected in individuals,
who sometimes deviate qualitatively from the average37. Could our
observation of different amplitude and FWHM during perception and
memory be explained by greater inter-participant variability during
the memory task than during the perception task? For example, is it
possible that memory responses were as precise as perception
responses when considered in individual participants, but that the
group average memory response was wide due to different peak
locations in different participants? To answer this question, we
examined individual participant data to confirm that the findings
present in the group average data were present in individuals. Instead
of averaging the BOLD responses across participants prior to fitting
the difference of von Mises functions, we fit each participant sepa-
rately after removing baseline offsets (Supplementary Fig. 2a, b; see
Methods). This yielded location, amplitude, and FWHM measures (as
described in the prior section) for each participant, ROI, and task
(Supplementary Fig. 2c). When we examine individual participant
estimates, we see good agreement with our group average results. In
V1, 7/9 individual participants had larger FWHM during memory than
during perception. Averaging across all nine individual participants, V1
FWHM was larger during memory than during perception by a factor
of 2.5 times. Similarly, in V2 and V3, 9/9 and 7/9 participants had larger
FWHM duringmemory than perception, with an average factor of 2.14
times and 1.51 times, respectively. In contrast, in hV4, LO, andV3ab, 5/9

participants had larger FWHM values duringmemory than perception,
with an average factor of between 1.02 and 1.20 times. These findings
corroborate our analysis of the group fits in the prior section (Fig. 4).

To further validate our group-level findings, we ran repeated
measures ANOVAs on individual participant parameters. We con-
firmed that FWHMwas larger during memory than during perception
(main effect of perception/memory: F1,8 = 16.8, p = 0.003) and that this
effect interacted with ROI such that the biggest difference between
perception and memory FWHM was in early areas (perception/mem-
ory x ROI interaction: F1,8 = 33.3, p < 0.001). Likewise, we confirmed
that amplitudes were larger during perception than during memory
(main effect of perception/memory: F1,8 = 175.5, p < 0.001), and that
this effect also interacted with ROI in the same way (perception/
memory x ROI interaction: F1,8 = 66.5, p <0.001). There was no reliable
difference in peak locations during perception and memory (main
effect of perception/memory: F1,8 = 0.053, p =0.820). All of these
effects were preserved when ROI was coded categorically rather than
numerically according to visual hierarchy position and when correct-
ing formarginal violations of sphericity (seeMethods). In summary,we
find no evidence that inter-participant variability can explain our
results. The effects we report in the prior section can be readily
observed at the individual participant level.

Differences between perception andmemory responses are not
explained by trial-to-trial noise
Another consideration in interpreting our results is whether the dif-
ferences we observed between perception and memory could be
caused by differences in trial-to-trial noise between the two tasks. For
example, is it possible that perception and memory responses were
actually equivalent other than noise level, but that greater trial-to-trial
noise caused memory responses to appear to have systematically dif-
ferent tuning? In particular, we sought to understand whether differ-
ences in memory responses could be explained by two types of noise:
measurement noise, caused by low amplitude fMRI signals, and
memory noise, caused by task failures during thememory task. To this
end, we simulated the effect of four different noise sources on our
data: (1) reduced fMRI signal-to-noise (measurement noise); (2)
retrieval task lapses (memory noise); (3) associative memory errors
(memory noise); (4) angular memory errors (memory noise). If per-
ception andmemory have the same fundamental response properties,
but thememory task is subject tomore noise, then adding noise to the
perception data should yield responses that look like what we
observed during memory.

To investigate this possibility, we started with perception data
(mean and variance of each vertex’s activity during perception) and
tested whether we could generate responses that looked like memory
data by adding noise from one of the four noise sources. To simulate
reduced fMRI signal-to-noise, we introduced additive noise to each
vertex’s perception response (Fig. 5a, left; see Methods). To simulate
retrieval task lapses, we created some trials where the mean response
was zero (Fig. 5b, left). To simulate associative memory errors, we
replaced someperception responses with responses corresponding to
one of the other studied stimuli (Fig. 5c, left). To simulate angular
memory error, we added angular noise to the peak location of the
perception responses (Fig. 5d, left). For each of these types of simu-
lation, we considered multiple levels of noise. To be conservative, we
simulated responses that were highly correlated across a region of
interest (see Methods), which ensured that vertex-level noise would
carry forward to our population measures. To assess our simulation
results, we analyzed all simulated datasets with the same procedures
used for the real data and then plotted the resulting von Mises fits
(Supplementary Fig. 3) and parameters (Supplementary Fig. 4). We
then counted the proportion of times the von Mises parameters
derived from a simulation fell within the 95% confidence interval of the
actual memory data (Fig. 5a–d, right).
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We began with the SNR simulation. First, using bootstrapped
parameter estimates, we confirmed that the estimated signal-to-noise
ratio (see Methods) for perception parameter estimates was higher
than for memory parameter estimates in every ROI. Perception SNR
was between 1.2 and 1.6 times higher than memory SNR in each ROI,
and between 2.2 and 4.3 times higher in vertices closest to the stimulus
location. To evaluate the impact of this difference on our results, we

simulated new perception data that precisely matched the empirical
SNR of our memory data for every surface vertex. We also simulated
data with even lower SNR (higher noise) thanwhatweobserved during
memory. As expected, simulating perception data with reduced SNR
increased variance in the location, amplitude, and FWHM of the von
Mises fits (Supplementary Figs. 3a and 4a). However, no level of SNR
produced response profiles that matched the memory data well. In
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Fig. 5 | Differences between perception and memory are not explained by
noise. a Left: We simulated the effect of low SNR by introducing additive noise to
our perception data and testing whether this produced responses similar to what
we observed during memory. Right: The proportion of simulations that produce
location and FWHMparameterswithin the 95% confidence intervals of thememory
data are plotted for decreasing signal-to-noise ratios (SNR) and for each ROI. SNR
values include the empirical SNR of the perception data (p), the empirical SNR of
thememorydata (m), and 1/2, 1/4, and 1/8 of the empirical SNR of thememory data.
b Left: We simulated the effect of retrieval task lapses by generating perception
datasets where a subset of trials had amean BOLD response of zero. Right: Data are
plotted as in a, with increasingly large numbers of lapsed trials on the x axis. c Left:
We simulated the effect of associative memory errors by substituting some per-
ception responses with responses that corresponded to one of the other three

studied stimuli. Errors of this type were always a multiple of 90∘, which was the
distance between studied stimuli. Right: Data are plotted as in a, with increasingly
large numbers of associative errors on the x axis. d Left: We simulated the effect of
angular memory errors by adding angular noise to the peak location of the per-
ception responses. Angular memory errors were produced by drawing a new peak
location value fromanormal distribution centered at the true stimulus location and
with somewidth, σ. Right: Data areplotted in a,with increasing large σ values on the
x axis. In all panels, high noise levels are required to generate FWHM parameters
within the confidence intervals of the memory data in V1-V3. In addition, in all
panels, high noise levels produced poormatches tomemory FWHM in hV4, LO and
V3ab, as well as unreliable locationparameters in all ROIs. See Supplementary Fig. 3
for visualization of fitted von Mises for each simulation and Supplementary Fig. 4
for the full distribution of FWHM estimates for each simulation.
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V1—the region where we observed the largest difference in FWHM
between perception andmemory—0% of the FWHM parameters in the
memory SNR simulation approximated the actual memory data
(Fig. 5a, right). In the noisiest simulation we performed (1/8 of the
memory SNR), this figure was still only 10% (Fig. 5a, right). Similar
results occurred for V2 and V3. These simulations demonstrate that
low SNR cannot explain the pattern ofmemory responses we observed
in early visual cortex.

Our SNR simulations also demonstrate that there are funda-
mental tradeoffs between capturing memory FWHM in early visual
cortex and in capturing other aspects of the data. First, at high levels
of noise (low levels of SNR), any modest increase in ability to cap-
ture V1-V3 FWHM was accompanied by a decrease in ability to
capture FWHM in later visual areas (Fig. 5a, right, and Supplemen-
tary Figs. 3a and 4a). In these later regions, FWHM was empirically
equivalent during perception and memory, and artificially adding
noise to the perception data eliminates this equivalence. Second,
high noise simulations generated more variability in the location
parameters than was actually observed in the memory data in all
ROIs (Fig. 5a, right).

We observed a similar pattern of results in the retrieval task lapse
simulations. Very high lapse rates were required to generate any
FWHM parameters that were sufficiently wide to match the memory
data in V1 (Supplementary Figs. 3b and 4b). Only when simulating
lapses in 50% of all trials, did this number exceed 0% (Fig. 5b, right).
This frequency of task lapse is out of linewith participants’ actual lapse
rate of 1.3% (self-reported no memory trials plus no response trials).
Similar to the SNR simulation, any improvement in ability to capture
the V1 FWHM data with increased lapses was offset by a decline in
ability to capture FWHM in late visual areas (Fig. 5b, right), where
responses became much wider than what was observed empirically
duringmemory. Again, as in the SNR simulation, high rates of retrieval
task lapse were associated with location parameters that were far
noisier than what we observed during memory (Fig. 5b, right). These
simulations demonstrate that retrieval task lapses are unlikely to
explain the pattern of memory responses we observed in early visual
cortex.

Next, we considered the associative error simulation. Very high
associative error rates were required to generate any FWHM para-
meters that were sufficiently wide to match the memory data in V1
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Fig. 6 | pRF forward model captures perception but not memory responses. a We used our pRF model to generate the predicted BOLD response to each of our
experimental stimuli. Themodel assumesaDifferenceofGaussianspRF shape,with afixedpositive tonegativeGaussian size ratio (1:2) and amplitude ratio (2:1). Themodel
also incorporates a compressive nonlinearity. b Polar angle response functions predicted by the pRF model (green dashed lines) are plotted alongside the response
functions generated from the data (dark and light orange, reproduced from Fig. 4b). The model predictions are closer to the perception data than thememory data in all
visual areas. c Predicted versus observed amplitude (left) and FWHM (right), plotted separately for perception and memory. Each dot represents an ROI. Lines represent
the line of best fit across the dots. The shaded region is the 68% confidence interval generated from bootstrapping across participants, and the thin lines indicate the 95%
confidence intervals. Perfect predictions will lie on the dashed gray lines. For both the amplitude and FWHM, the perception data lie relatively close to the pRF model
predictions, whereas the memory data do not.
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(Supplementary Fig. 3c and 4c). Only when simulating associative
errors in >50% of all trials, did this number exceed 0% (Fig. 5c, right).
Participants made zero associative memory errors (Fig. 1e) in the final
round of training prior to the scan, making this level of poor perfor-
mance unlikely. Further, similar to the prior simulations, a large
number of associative errors decreased our ability to approximate
memory FWHM in late areas and generate accurate memory location
estimates (Fig. 5c, right). These simulations show that associative
memory errors are unlikely to explain our data.

Finally, we considered the angular memory error simulation.
Compared to the other simulations, this simulation produced a
better match to memory FWHM in V1 when assuming high levels of
noise (Supplementary Figs. 3d and 4d). In the best performing
simulation, 53% of the V1 FWHM parameters approximated the
memory data (Fig. 5d, right). However, the magnitude of memory
error in this simulation was implausibly high. The standard devia-
tion of memory errors around the true value was 60∘, meaning that
simulatedmemories were within the correct quadrant <60% of time.
Given that participants were trained to discriminate remembered
locations up to 15∘ (see Methods), errors of this magnitude and
frequency are exceedingly unlikely. Similar to the previous simula-
tions, improvements in the ability to capture V1 memory FWHM
with high levels of angular error were associated with large
decreases in the ability to capture other aspects of thememory data
(Fig. 5d, right). Like previous simulations, these simulations show
that angular memory error is an unlikely explanation for our
observed results.

Collectively, these simulations demonstrate that our results are
unlikely to be caused by reduced SNR or various forms of memory
failure. In each of the four simulations, the amount of noise required to
make even modest gains in our ability to account for the V1 memory
FWHMwas implausibly large. Further, in all four cases, increases in the
ability to account for V1 FWHMwere accompanied by decreases in the
ability to account for FWHM in higher visual areas and to recover
location parameters that were as reliable as our actual data.

pRF models accurately predict perception but not memory
responses
Next, we evaluated how well perception and memory responses mat-
ched the predictions of a pRF model. To do this, we used each parti-
cipant’s pRFmodel to generate predicted cortical responses to each of
the four experimental stimuli (Fig. 6a). The pRF model we used to
generate predictions had a compressive nonlinearity31 and difference
of Gaussians (DoG) pRF shape38 with a fixed positive to negative
Gaussian ratio (see Methods). The predictions from the model were
analyzed with the same procedure as the data, yielding von Mises fits
to the predicted data (Fig. 6b). Model predictions from simpler pRF
models are shown in Supplementary Fig. 5a.

Qualitatively, the pRF model predictions agree with the percep-
tion data but not thememorydata (Fig. 6b). Several specific features of
the perception data are well captured by the model. First, the model
predicts the highest amplitude response at cortical sites with pRFs
near the stimulus location (peak at 0∘). Second, the model predicts
increasingly wide response profiles from the early to late visual areas.
Third, it predicts higher amplitudes in early compared to late areas.
Finally, the model predicts negative responses in the surround loca-
tions of V1–V3 but not higher visual areas. This is notable given that all
voxel pRFs were implemented with a negative surround of the same
size and amplitude relative to the center Gaussian. This suggests that
voxel-level parameters and population-level responses can diverge39.
Though not the focus of this analysis, we note that the model predic-
tions arenot perfect. Themodel predicts slightly lower amplitudes and
larger FWHM than is observed in the perception data (Fig. 6b). These
discrepancies may be due to differences between the stimuli used in
the main experiment and those used in the pRF experiment,

differences in the task, or the fixed ratio between the positive and
negative Gaussians in the pRF.

Critically, the model accurately captures the properties of mem-
ory responses that are shared with perception responses (the peak
location), but not the distinct properties (amplitude and FWHM;
Fig. 6b). These failures are especially clear when comparing the pre-
dicted amplitude and FWHM from the pRF model with the observed
amplitudes and FWHMs for perception and memory. While there is a
positive slope between the predicted amplitudes and both the per-
ception amplitudes (β =0.84, 95% CI: [0.56, 1.15]) and memory ampli-
tudes (β =0.17, 95% CI: [0.056, 0.32]), the slopes differ substantially
(Fig. 6c). The perception amplitudes have a slope closer to 1, indicating
good agreement with the model predictions, while the memory data
have a slope closer to 0, indicating weak agreement. Similarly, the
predicted FWHM is significantly and positively related to the percep-
tion FWHM (β = 0.50, 95% CI: [0.36, 0.76]), but weakly and negatively
related to thememory FWHM(β = −0.20, 95%CI: [−0.67, 0.26]; Fig. 6c).
Thus, the pRFmodel predicts the pattern of increasing amplitude and
FWHM that we observed across ROIs during perception but does not
predict the patterns we observed during memory retrieval. In order to
rule out the possibility that this finding is specific to the particular pRF
model we used, we performed the same analysis on two simpler,
previouslypublished, pRFmodels (a CSSmodel and a linearmodel; see
Methods). We find that these models are also dramatically better at
capturing across-ROI patterns in FWHM and amplitude for the per-
ception data than for the memory data (Supplementary Fig. 5b).

In addition to assessing how well our pRFmodel captured across-
ROI changes in FWHM and amplitude, we directly quantified the
goodness-of-fit between the pRF model predictions and our experi-
mental data in each ROI. To do this, we computed the R2 between the
predicted and observed polar angle response functions, separately for
each ROI and task. Goodness-of-fit was very high for the perception
data in every ROI (range: 0.65–0.93). In contrast, goodness-of-fit was
poor for thememory data. R2 values were negative in every ROI during
memory (range: −11.9 to −1.84), indicating that the pRFmodel failed to
capture the mean response (Supplementary Fig. 6, top). This is largely
driven by the fact that the mean predicted amplitude from the pRF
model wasmuch higher than themean amplitude of thememory data.
We wondered to what extent this failure could be corrected by
rescaling the pRF predictions to be lower in amplitude. After rescaling
the pRFpredictionswith the single scale factor that best approximated
the perception data or the memory data, we re-evaluated R2. While
rescaling improved R2 for the memory data in every ROI, R2 for the
memory data still fell below R2 for the perception data in most ROIs,
with the largest failure in V1 (Supplementary Fig. 6, bottom). These
analyses demonstrate that our pRF model is a good predictor of the
perceptual responses we measured, but a poor predictor of the mne-
monic responses we measured.

Together, these results support our interpretation of the data in
Fig. 4 tomean thatmemory andperception have distinct spatial tuning
properties. The critical advantage of using pRF models is that they
explicitly incorporate known properties of feedforward spatial pro-
cessing in visual cortex. Becauseour pRFmodel fails to account for the
memory responses we observed, we can conclude that memory reac-
tivation violates the assumptions of feedforward processes that
accurately characterize perceptual activation. A plausible explanation
for this failure is that memory retrieval involves a fundamentally dif-
ferent origin and cascade of information through visual cortex, a
possibility we explore in the next section.

Perception and memory responses can be simulated with a
bidirectional hierarchical model
Cortical activity during perception arises from a primarily feedforward
process that originates with the retina and that accumulates additional
spatial pooling in each cortical area, resulting in increasingly large
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receptive fields30,40. In contrast, memory reinstatement is hypothe-
sized to depend on the hippocampus41,42, a region bidirectionally
connected to high-level visual areas in ventral temporal cortex via the
medial temporal lobe cortex43–45. Reinstated cortical activity is then
thought to propagate backwards through visual cortex46–49, driven by
the hippocampus and/or its cortical connections. Here, we explored
whether a simplehierarchicalmodelwith spatial pooling could capture
the qualitative pattern of results we observed. We were specifically
interested in whether a single model could account for changing pat-
terns of precision and amplitude between perception and memory
retrieval. We asked whether manipulating the direction of information
flow within the model would be sufficient to account for these quali-
tative differences without changing any components of the model
structure or parameter values.

Importantly, we did not fit our model to our data. Nor did we
attempt to generate a model that would predict the exact FWHM
and amplitude values we report. Instead, we sought to identify a
class of models where most parameter choices yielded the quali-
tative pattern of data we observed during both perception and
memory. To do this, we first constructed the general form for a
feedforward-only hierarchical model of spatial processing in neo-
cortex. Given that feedforward convolutional networks are wide-
spread in visual neuroscience and computer vision50, we expected
even a highly simplified model to produce spatial responses quali-
tatively similar to our experimental observations from the percep-
tion task. We constructed our model such that the activity in each
layer was created by convolving the activity from the previous layer
with a fixed Gaussian kernel (Fig. 7a, left; see Methods). Beginning
with a boxcar stimulus, we cascaded this convolutional operation to
simulate multiple layers of the network. Note that specific layers of
the model do not have a one-to-one correspondence with any stage
of visual processing or cortical area. We varied the size (σ) of the
convolutional kernel, the size of the stimulus (width of boxcar), and

the number of layers in the model in order to explore the full
parameter space of this model. We plot one instance of the model
with 8 layers, a 15∘ stimulus, and kernel with σ = 15∘ in Fig. 7b. As
expected, the location of the simulated peak response during
feedforward processing was unchanged across layers, but the
FWHM of the responses increased (Fig. 7c). This qualitatively mat-
ches the pattern of fMRI responses we observed during our per-
ception task (Fig. 4b, c). This increasing FWHM pattern during
feedforward simulations holds true for a wide range of model
parameters (Supplementary Fig. 7a, b).

We then explored whether backwards propagation of reinstated
activity in our hierarchical model could account for patterns in our
memory data. To do this, we assumed that feedforward and feedback
connections in the model were reciprocal, meaning that the convolu-
tional kernel was the same in feedforward and feedback direction. We
assumed perfect reinstatement in the top layer, and thus began the
feedback simulation by duplicating the feedforward activity from the
final layer. Starting with this final layer activity, we convolved each
layer’s activity with the sameGaussian kernel to generate earlier layers’
activity (Fig. 7a, right). The properties of the simulated activity (Fig. 7b,
c) in our examplemodel instance bear a striking resemblance to those
of the observed memory data (Fig. 4b, c). First, simulated feedback
activity had a preserved peak location across layers (Fig. 7c, left),
similar to the memory data. Second, simulated feedback activity was
wider and lower amplitude than feedforward activity overall (Fig. 7c,
middle and right)—just as our memory data had wider and lower
amplitude responses than our perception data. Third, the increase in
FWHM across layers was smaller in the feedback direction than in the
feedforward direction, and it reversed direction with respect to the
visual hierarchy. This reversal is of interest given that this trend was
numerically present in our memory data but small in magnitude and
not statistically reliable at our sample size. Finally, the difference
between feedforward and feedback amplitude and FWHM was

Gaussian kernel  gLayer 2 Layer 1
* =

a Feedforward 

Stimulus

Layer 1

Layer 3

Layer 2

Feedback 

Layer 1

Layer 3

Layer 2

cb

*g

*g

*g

*g

*g

Gaussian kernel  gLayer 1 Layer 2
* =Feedforward

Feedback

feedforward
feedback

Fig. 7 | Perception andmemory responses canbe simulatedwith abidirectional
hierarchical model. a Illustration of stimulus-driven activity propagating through
a linear hierarchical network model in the feedforward direction (left) and mne-
monic activity propagating through the model in the feedback direction (right). In
both cases, a given layer's activity is generated by convolving the previously active
layer's activity with a fixed Gaussian kernel. The feedforward simulation beganwith
a boxcar stimulus. The feedback simulation began with duplication of the feed-
forward activity from the final layer. b Example of feedforward and feedback
simulations for one set of parameters (stimulus = 15∘; kernel σ = 15∘, number of lay-
ers = 8), plotted in the conventions of Fig. 4b. The feedforward simulation parallels

our observations during perception, and the feedback simulation parallels our
observations during memory. c Location, amplitude, and FWHM parameters for
each layer, plotted separately for feedforward and feedback simulations in b.
Location is preserved across layers in the feedforward and feedback direction. Note
that FWHM becomes progressively wider in later layers in the feedforward direc-
tion and in earlier layers in the feedback direction. This results in large differences
in FWHM between feedforward and feedback activity in early layers. These trends
closely follow our observations in Fig. 4c. See Supplementary Fig. 7 for other
simulations with different layer numbers, stimulus sizes, and kernel sizes.
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maximal in the earliest layers, just as the difference between our per-
ception and memory data was maximal in V1.

We note thatwhile the exact FWHMvalues dependon the number
of layers, the stimulus size, and the kernel size (Supplementary Fig. 7),
the qualitative patterns we focus on are general properties of this
model class and can be observed across many parameter choices.
Though some parameter choices can result in little to no change in
FWHM, there are no parameter choices that can reverse the trends we
report – for example, by producing smaller FWHM in layer 1 than in
layer 2 during feedback. These simulations suggest that the distinct
spatial profile of mnemonic responses in visual cortex may be a
straightforward consequence of reversing the flow of information in a
system with hierarchical structure and reciprocal connectivity, and
that spatial pooling accumulated during feedforward processing may
not be inverted during reinstatement. More broadly, these results
demonstrate that models of the visual system may be useful for
probing the mechanisms that support and constrain visual memory.

Discussion
In the current work, we combined empirical andmodeling approaches
to explore howepisodicmemories are represented in thehumanvisual
system. By using computational models of spatial encoding to com-
pare perceptual and mnemonic BOLD activity, we provide evidence
that visual memory, like visual perception, produces retinotopically
mapped activation throughout visual cortex. Critically, however, we
also identified systematic differences in the population spatial tuning
properties of perceptual and mnemonic activity. Compared to per-
ceptual responses,mnemonic responses were lower in amplitude in all
visual areas. Further, while we observed a three-fold change in spatial
precision from early to late visual areas during perception, mnemonic
responses violated this pattern. Instead, mnemonic responses dis-
played consistent spatial precision across visual areas. Notably, simu-
lations showed that neither reduced SNR nor memory failure could
account for this difference. We speculate, instead, that this difference
arises from a reversal of information flow in a hierarchically organized
and reciprocally connected visual cortex. To support this, we show
that top-down activation in a simple hierarchical model elicits a sys-
tematically different pattern of responses than bottom-up activation.
These simulations reproduce the properties we observe during both
perception and memory. Together, these results reveal properties of
memory-driven activity in visual cortex and suggest specific compu-
tational processes governing visual cortical responses during memory
retrieval.

Muchwork in neuroscience has been dedicated to the question of
how internally generated stimulus representations are coded in the
brain. Early neuroimaging work established that sensory cortices are
recruited during imagery andmemory tasks5,6,8, moving the field away
from purely symbolic accounts of memory51. More recently, memory
researchers have favored decoding and pattern similarity approaches
over univariate activation analyses to examine the content of retrieved
memories10,11,52. While these approaches are powerful, they do not
explicitly specify the form mnemonic activity should take, and many
activation schemes can lead to successful decoding or changes in
pattern correlations. In the present work, we leveraged encoding
models from visual neuroscience, specifically stimulus-referred pRF
models, to examine and account for memory-triggered activity in
visual cortex. In contrast to decoding or pattern similarity approaches,
encoding models predict the activity evoked in single voxels in
response to sensory or cognitive manipulations using a set of explicit
mathematical operations53. Spatial encoding models have proved
particularly powerful because space is coded in the human brain at a
scale that is well-matched to the millimeter sampling resolution of
fMRI54–56. Despite the power of such encoding models, relatively little
work has applied these models to questions about long-termmemory
(though see refs. 15, 16, 57, 58). Here, using this approach, we revealed

properties of memory responses in visual cortex that decoding
approaches havemissed.Most notably, we found thatmemory activity
is characterized by a different pattern of spatial precision across
regions than perceptual activity. Because spatial parameters such as
polar angle are explicitly modeled in pRF models, we were able to
quantify and interpret these differences.

Because encoding models of space confer such analytical advan-
tages, we specifically designed our fMRI analyses to assess neural
coding of spatial location during memory retrieval. The spatial tuning
evident in our results and our simulations are consistent with the idea
that participants were in fact remembering the stimulus location
during the fMRI scan. Although the spatial location was the focus of
our analysis, this does not imply that participants only remembered
this dimension of the stimuli. Participants were not told that fMRI
analyses would focus on the spatial location of the stimulus and were
trained to remember both spatial location and pattern features of the
stimuli. Hence it is likely that participants were retrieving both location
and pattern. Our design does not allow us to demonstrate stimulus
pattern reactivation because participants only saw one stimulus pat-
tern per location. However, prior studies have shown that stimulus
dimensions including orientation12,16, spatial frequency16, shape59,60,
and pattern49 are encoded in visual cortex activity during memory
retrieval. Might pattern tuning differ between perception andmemory
in a similar manner to spatial location tuning? Answering this question
will require developing well-validated encoding models for stimulus
pattern that do not currently exist. There has, however, been recent
progress in this direction. A recent paper by Breedlove and
colleagues57 demonstrated that tuning for a non-location feature
(spatial frequency) differs between perception and memory. Devel-
oping visual encoding models that can account for increasingly com-
plex stimulus properties will be a critical component in the effort to
understand memory representations.

Our results have implications for the study of memory reactiva-
tion. First, our findings suggest that the specific architecture of a
sensory system may constrain what memory reactivation looks like in
that system. Though memory reactivation is often studied in sensory
domains, the architecture of these systems is not usually considered
when interpreting reactivation effects. Here, we propose that hier-
archical spatial pooling in visual cortex produces a systematic and
distinct pattern of memory reactivation that cannot be attributed to
memory failure. Accounting for effects like this is necessary for
developing aquantitativemodel ofmemory reactivation. Further, even
when failures of the memory system are of interest, care should be
taken to avoid confounding memory failure effects with the kinds of
effects described here. Second, our results advocate for shifting the
emphasis of memory reactivation research away from similarities with
perception to differences between them. Most previous work has
focused on identifying similarities between the neural substrates of
visual perception and visual memory. These studies have been suc-
cessful in that they have produced many positive findings of memory
reactivation in human visual cortex5–14. However, much of this work
implicitly assumes that any mismatch between perception and mem-
ory is due to the fact that memory reactivation is either inherently low
fidelity or susceptible to noise23, or is a subset of the perceptual
response7,8,61. Our results demonstrate that, at least in the spatial
domain, this is not the case, and that systematic differences beyond
noise exist.

Other recent work has also argued for reconsidering a strict view
of reactivation. A recently published study using similar methods
reported a highly complementary finding to ours: that individual
voxels in human visual cortex have larger pRFs during imagery than
during perception57. While our empirical results and those of Bree-
dlove and colleagues57 are mutually supportive, our results are also
distinct from theirs because we quantify neural responses at the
population level rather than the voxel-level and rule out numerous
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confounds related to memory task performance. Our results are also
broadly consistent with other recent studies reporting
computational62 and neural63–67 differences between perception and
memory responses in the visual system. Ultimately, the field should
strive to quantify and explain these differences in order to fully
understand the neural basis of memory retrieval.

Despite the usefulness of encoding models like pRF models for
quantifying neural responses in a stimulus-referred space, these
models do not provide a natural explanation for why perception and
memory responses differ. We show in Fig. 6 that pRF models fail to
capture the aspects of memory responses that are distinct from per-
ceptual responses: namely, the dramatic change in spatial precision.
While it would be possible to fit separate pRF parameters to memory
data to improve the ability of the model to accurately predict memory
responses, this approach would not explain why these parameters or
responses differ. How then can we account for this? We were parti-
cularly intrigued by the possibility that differences between memory
and perception activity are a consequence of the direction of proces-
sing in hierarchically-organized cortex. Hierarchical structure and
feedback processing are not typically directly simulated in a pRF
model but there is considerable evidence to suggest these factors are
of interest. Studies of anatomical connectivity provide evidence that
the visual system is organized approximately hierarchically44,68

(for other perspectives see refs. 69, 70), and that most connections
within the visual system are reciprocal44. Studies also show that the
hippocampus sits atop the highest stage of the visual hierarchy, with
reciprocal connections to high-level visual regions via the medial
temporal lobe cortex43–45. The hippocampus is also strongly coupled to
a widespread cortical network, including retrosplenial/posterior cin-
gulate cortex, lateral parietal and temporal cortices, and lateral and
medial prefrontal cortices71,72. Some of these regions may also exert
top-down drive over visual cortex. These observations make the pre-
diction that initial top-down drive from the hippocampus and its cor-
tical network during memory retrieval may result in the backwards
propagation of neural activity through the visual system. Neural
recordings from the macaque46 and human47–49, as well as computa-
tional modeling73 support the idea of backwards propagation.

Based on these observations and our hypothesis, we constructed
a hierarchical network model in which we could simulate top-down
activity. Though this model shares some features of hierarchical
models of object recognition74,75, our implementation is simpler. Our
model is entirely linear, its parameters are fixed (not the result of
training), and it encodes only one stimulus feature: space. In contrast
to pRFmodels, which express each voxel’s activity as a function of the
stimulus, hierarchicalmodels express each layer’s activity as a function
of the previous layer’s activity.While hierarchicalmodels are often run
in a feedforward direction, they can be adapted to also incorporate
feedback processes76. While highly simplified, the simulations we
performed captured the dominant features of our data, providing a
parsimonious explanation for our observations. These simulations
suggest that the greater similarity between perception andmemory in
later areas than in earlier areas is a consequence of spatial pooling and
the reversal of information flow during memory retrieval. Our simu-
lations also indicate that some trends present in our data warrant
further investigation. For instance, while we could not conclude that
the earliest visual cortical areas had the least precise responses during
memory (a reversal of the perception pattern), our simulations predict
that this effect should be present, albeit significantly weaker than in
the feedforward direction. Our model predictions diverge from those
of a recently published generative model of visual imagery57 in pre-
dicting this reversal. Like our model, the Breedlove et al. model pre-
dicts overall coarser spatial responses during imagery than during
perception. However, whereas the Breedlove et al. model predicts that
late visual areas should have coarser spatial responses than early visual
areas during both perception andmemory, wepredict a reversal of the

perception pattern during memory. Given the small sample size of
both our study and that of Breedlove et al., and the small size of the
expected effect, future work should adjudicate between the predic-
tions of these models with a highly powered experiment.

Our simulations also raise questions and generate predictions
about the consequences of visual cortical architecture for cognition.
First, why have a hierarchical architecture in which the detailed
information present in early layers cannot be reactivated? The hier-
archical organization of the visual system is thought to give rise to the
low-level feature invariance required for object recognition74,75. Our
results raise the possibility that the benefits of such an architecture for
recognition outweigh the cost of reduced precision in top-down
responses. Second, how is it that humans have spatially precise
memories if visual cortical responses do not reflect this? One possi-
bility is that read-out mechanisms are not sensitive to all of the prop-
erties of mnemonic activity we measured. For instance, memory
decisions could bedriven exclusivelyby the neural populationwith the
strongest response (e.g. those at the peak of the polar angle response
functions). Another possibility is that reactivation in other non-sensory
regions52,58,77,78, which may express different properties, is pre-
ferentially used to guide memory-based behavior. These, and other
possibilities should be explored in future work that simultaneously
measures brain activity and behavioral memory precision in larger
cohorts of participants than were used here.

Sensory reactivation during long-termmemory retrieval has clear
parallels to sensory engagement in other forms of memory such as
iconic memory and working memory. Nonetheless, there may also be
differences in the specificway that sensory circuits are activated across
these forms of memory. One critical factor may be how recently the
sensory circuit was activated by a stimulus at the time of memory
retrieval. In iconic memory studies, very detailed information can be
retrieved if probed within a second of the sensory input79. In working
memory studies, sensory activity is thought to bemaintained by active
mechanisms through a seconds-long delay33. In imagery studies, eye-
specific circuits presumed to be in V1 can be re-engaged if there is a
delay of 5min or less from when the participant viewed stimuli
through the same eye, but not if there is a delay of 10min25. Long-term
forms of episodic memory retrieval and imagery are both thought to
be capable of driving visual activity at much longer delays. While epi-
sodic memory retrieval depends on the hippocampus, some forms of
imagery may not require hippocampal processing at all80. Given that
the mechanism for engaging sensory cortex may differ across these
different forms of memory, the question of how similar sensory acti-
vation is across these timescales remains an open question.

The field of visual workingmemory in particular has relied on very
similarmethods to theonesweusehere to investigate the role of visual
cortex inmemorymaintenance39,81.Many such studies have shown that
early visual areas contain retinotopically specific signals throughout a
delay period34,39,82. These studies agree with ours in that they demon-
strate a role for visual cortex in representing mnemonic information,
and establish that some properties of neural coding during perception
are preserved duringmemory. However, to the best of our knowledge,
noworkingmemory study has reported precision differences between
perceptual and mnemonic activity akin to what we report. Informal
assessment of recent working memory papers suggests that stimulus
reconstructions made from working memory delay period activity are
approximately as precise as reconstructions made from perceptual
activity34,35,39. There are theoretical reasons to expect a difference
between working memory and episodic memory representations.
During typical working memory tasks, a visual cortical representation
that was just evokedmust be kept activated. However, during episodic
memory tasks such as the paired associates task we use here, there is
no recently evoked representation of the stimulus in visual cortex. This
representation must be created anew, and in standard models of
memory retrieval, this process is initiated by the hippocampus and its
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cortical network. As described by our model, this mechanism for
reactivating visual cortex may come with unique costs relative to
working memory maintenance. Ultimately, a direct comparison
between working memory and episodic memory in the same experi-
ment will be required to make progress on this question.

Our results raise questions about whether long-termmemory and
endogenous attention sharemechanisms formodulating the response
of visual cortical populations. Both attention andmemory can activate
visual cortex. Spatial and feature-based attention have been shown to
enhance neural responses to stimuli83–88. Similar to our results, atten-
tion has also been shown to enhance visual cortical activation in the
absence of any visual stimulation89–94. Given these findings, are the
responses we observed during memory retrieval better characterized
as long-termmemory reactivation or as attention? There are a number
of reasons why we don’t think it’s useful to attribute our findings to
attention alone. First, characterizing our results as spatial attention
does not explain them. We report that the precision of spatial tuning
during memory retrieval differs from the precision of spatial tuning
during perception. To the best of our knowledge, there is no parallel
finding in the spatial attention literature. Second, there aremeaningful
differences between our task and typical endogenous attention tasks.
Most attention tasks have no memory component since the cue
explicitly represents the attended location or feature. In contrast, in
our task, the correct spatial location or pattern cannot be determined
from the fixation cue without having previously encoded the associa-
tion between them and then successfully recalling it. Thus, our task by
necessity involvesmemory. Itmay also involve attention, to the extent
that items retrieved from memory become the targets of internal
attention95. From our perspective, it is plausible that the neural
responses we observed during memory retrieval resemble those
observed when visual attention is deployed in the absence of a sti-
mulus. Future experiments should address this question directly.
Further, modeling efforts should address whether it’s possible to
develop a model of top-down processing in visual cortex that can
account for both memory retrieval and attention, or whether separate
computational models are needed.

In the current work, we provide empirical evidence that memory
retrieval elicits systematically different activation in human visual cor-
tex compared to visual perception. Using simulations and a network
model of cortex, we argue that these distinctions arise from a reversal
of information flow within a hierarchically structured visual system.
Collectively, this work makes progress on providing a detailed account
of reactivation in visual cortex and sheds light on the broader compu-
tational principles that guide top-down processes in sensory systems.

Methods
Participants
Nine human participants participated in the experiment (5 males,
22–46 years old), following procedures approved by the New York
University Institutional Review Board. All participants had normal or
correct-to-normal visual acuity, normal color vision, and no MRI con-
traindications. Participants were recruited from the New York Uni-
versity community and included author S.E.F. and author J.W. All
participants gave written informed consent prior to participation.
Participants were compensated $30/h for participation. Participants
who were NYU employees and volunteered to perform the study
during work hours waived compensation, as approved by the New
York University Institutional Review Board. No participants were
excluded from data analysis.

Stimuli
Experimental stimuli included nine unique radial frequency patterns
(Fig. 1a). We first generated patterns that differed along two dimen-
sions: radial frequency and amplitude. We chose stimuli that tiled a
one-dimensional subspace of this two-dimensional space, with radial

frequency inversely proportional to amplitude. The nine chosen sti-
muli took radial frequency and amplitude values of: [2, 0.9], [3, 0.8], [4,
0.7], [5, 0.6], [6, 0.5], [7, 0.4], [8, 0.3], [9, 0.2], [10, 0.1].We selected four
of these stimuli to train participants on in the behavioral training
session and to appear in the fMRI session. For every participant, those
stimuli were: [3, 0.8], [5, 0.6], [7, 0.4], [9, 0.2]; (radial frequency,
amplitude). The remaining five stimuli were used as lures in the test
trials of the behavioral training session. Stimuli were generated using a
publicly available script96, saved as images, and cropped to the
same size.

Experimental procedure
The experiment beganwith a behavioral training session, duringwhich
participants learned four paired associates (Fig. 1). Specifically, parti-
cipants learned that four colored fixation dot cues were uniquely
associated with four spatially localized radial frequency patterns. An
fMRI session immediately followed completion of the behavioral ses-
sion (Fig. 2a). During the scan, participants completed two types of
functional runs: (1) perception, where they viewed the cues and asso-
ciated spatial stimuli; and (2) memory, where they viewed only the
fixation cues and recalled the associated spatial stimuli. Details for
each of these phases are described below. A separate retinotopic
mapping session was also performed for each participant (Fig. 2b),
which is described in the next section.

Behavioral training. For each participant, the four radial frequency
patterns were first randomly assigned to one of four polar angle
locations in the visual field (45∘, 135∘, 225∘, or 315∘) and to one of four
colored cues (orange, magenta, blue, green; Fig. 1b). Immediately
before the fMRI session, participants learned the association between
the four colored cues and the four spatially localized stimuli through
interleaved study and test blocks (Fig. 1c). Participants alternated
between study and test blocks, completing a minimum of four blocks
of each type. Participants were required to reach at least 95% accuracy,
and performed additional rounds of study-test if they did not reach
this threshold after four test blocks. The training task was imple-
mented in PsychoPy v1.85.697.

During study blocks, participants were presented with the asso-
ciations. Participants were instructed to maintain central fixation and
to learn each of the four associations in anticipation of a memory test.
At the start of each study trial (Fig. 1c), a central white fixation dot
(radius = 0.1 dva) switched to one of the four cue colors. After a 1 s
delay, the associated radial frequency pattern appeared at 2∘ of
eccentricity and its assigned polar angle location in the visual field.
Each pattern image subtended 1.5 dva and was presented for 2 s.
The fixation dot then returned to white, and the next trial began after
a 2 s interval. No participant responses were required. Each study
block contained 16 trials (4 trials per association), presented in
random order.

During test blocks, participants were presented with the colored
fixation dot cues and tested on their memory for the associated sti-
mulus pattern and spatial location. Participants were instructed to
maintain central fixation and to try to covertly recall each stimulus
when cued, and then to respond to the test probe when prompted. At
the start of each test trial (Fig. 1c), the central white fixation dot swit-
ched to one of the four cue colors. This cue remained on the screen for
2.5 s while participants attempted to covertly retrieve the associated
stimulus. At the end of this period, a test stimulus was presented at 2∘

of eccentricity for 2 s. Then, participants were cued to make two
consecutive responses to the test stimulus: whether it was the correct
radial frequency pattern (yes/no) and whether it was presented at the
correct polar angle location (yes/no). Test stimuli were presented at a
random orientation on each trial. Each test stimulus had a 50% prob-
ability of being the correct pattern. Incorrect patterns were drawn
randomly from the three patterns associated with other cues and the
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five lure patterns (Fig. 1a). Each test stimulus had a 50% probability of
being in the correct polar angle location, whichwas independent from
the probability of being the correct pattern. Incorrect polar angle
locations were drawn from the three locations assigned to the other
patterns and 20 other evenly spaced locations around the visual field
(Fig. 1a). This placed the closest spatial lure at 15∘ of polar angle away
from the correct location. Responses were solicited from the partici-
pant with the words "Correct pattern?" or "Correct location?" dis-
played centrally in white text. The order of these queries was
counterbalanced across test blocks. Participants responses were
recorded on a keyboard with a maximum response window of 2 s.
Immediately after a response was made or the response window
closed, the color of the text turned black to indicate an incorrect
response if one was made. After this occurred for both queries, par-
ticipants were presented with the colored fixation dot cue and correct
spatially localized pattern for 1 s as feedback. This feedback occurred
for every trial, regardless of participant responses to the probe. Each
test block contained 16 trials (4 trials per association), presented in
random order.

fMRI session. During the fMRI session, participants performed two
types of functional runs: perception and memory retrieval (Fig. 2a).
Participants completed 5–6 runs (~3.5min each) of both perception
and memory tasks in an interleaved order. This amounted to 40–48
repetitions of perceiving each stimulus and of remembering each sti-
mulus per participant. Both perception and memory tasks were
implemented in PsychoPy v1.85.697.

During perception runs, participants viewed the colored fixation
dot cues and the radial frequency patterns in their learned locations.
Participants were instructed to maintain central fixation and to per-
form a one-back task on the stimuli. The purpose of the one-back task
was to encourage covert stimulus-directed attention on each trial. At
the start of each perception trial (Fig. 2a, top), a central white fixation
dot (radius = 0.1 dva) switched to one of the four cue colors. After a
0.5 s delay, the associated radial frequency pattern appeared at 2∘ of
eccentricity and its assigned polar angle location in the visual field.
Each pattern subtended 1.5 dva and was presented for 2.5 s. The fixa-
tion dot then returned towhite and the next trial began after a variable
interval. Intervals were drawn from an approximately geometric dis-
tribution sampled at 3, 4, 5, and 6 secwith probabilities of 0.5625, 0.25,
0.125, and 0.0625, respectively. Participants indicated when a stimulus
repeated from the previous trial using a button box. Responses were
accepted during the stimulus presentation or during the interstimulus
interval. Each perception run contained 32 trials (8 trials per stimulus).
The trial order was randomized for each run, separately for every
participant.

During memory runs, participants viewed the colored fixation
dot cues and recalled the associated patterns in their learned spatial
locations. Participants were instructed to maintain central fixation,
to use the cues to initiate recollection, and to make a subjective
judgment about the vividness of their memory on each trial. The
purpose of the vividness task was to enforce attention to the
remembered stimulus on each trial. At the start of each memory
trial (Fig. 2a, top), the central white fixation dot switched to one of
the four cue colors. This cue remained on the screen for a recol-
lection period of 3 sec. The fixation dot then returned to white and
the next trial began after a variable interval. Participants indicated
whether the stimulus associated with the cue was vividly remem-
bered, weakly remembered, or not remembered using a button box.
Responses were accepted during the cue presentation or during the
interstimulus interval. Each memory run contained 32 trials (8 trials
per stimulus). For a given participant, eachmemory run’s trial order
and trial onsets were exactly matched to one of the perception runs.
The order of these matchedmemory runs was scrambled relative to
the order of the perception runs.

Retinotopic mapping procedure
Each participant completed either 6 or 12 identical retinotopic map-
ping runs in a separate fMRI session from themain experiment (Fig. 2b,
top). Stimuli and procedures for the retinotopicmapping sessionwere
based on those used by the Human Connectome Project36 and were
identical to those reported by Benson and Winawer98. During each
functional run, bar apertures on a uniform gray background swept
across the central 24 degrees of the participant’s visual field (circular
aperture with a radius of 12 dva). Bar apertures were a constant width
(1.5 dva) at all eccentricities. Each sweep began at one of eight equally
spaced positions around the edge of the circular aperture, oriented
perpendicularly to the direction of the sweep. Horizontal and vertical
sweeps traversed the entire diameter of the circular aperture while
diagonal sweeps stopped halfway andwere followedby a blank period.
A full-field sweep or half-field sweep plus blank period took 24 s to
complete. One functional run contained 8 sweeps, taking 192 s in total.
Bar apertures contained a grayscale pink noise background with ran-
domly placed faces, scenes, objects, and words at a variety of sizes.
Noise background and stimuli were updated at a frequency of 3Hz.
Each run of the task had an identical design. Participants were
instructed tomaintain fixation on a central dot and to use a button box
to report whenever the dot changed color. Color changes occurred on
average every 3 s.

MRI acquisition
Images were acquired on a 3T Siemens Prisma MRI system at the
Center for Brain Imaging at New York University. Functional images
were acquired with a T2*-weighted multiband EPI sequence with
whole-brain coverage (repetition time = 1 s, echo time = 37 ms, flip
angle = 68∘, 66 slices, 2 × 2 × 2mm voxels, multiband acceleration fac-
tor = 6, phase-encoding = posterior-anterior) and a Siemens 64-
channel head/neck coil. This sequence was based on the CMRR Mul-
tiBand Accelerated EPI Pulse Sequences (Release R015a)99–101.
Spinecho imageswith anterior-posterior andposterior-anterior phase-
encoding were collected to estimate the susceptibility-induced
distortion present in the functional EPIs. Between one and
three whole-brain T1-weighted MPRAGE 3D anatomical volumes
(0.8 × 0.8 × 0.8mm voxels) were also acquired for seven participants.
For two participants, previously acquired MPRAGE volumes (1 × 1 × 1
mm voxels) from a 3T Siemens Allegra head-only MRI system
were used.

MRI processing
Preprocessing. Anatomical and functional images were preprocessed
using FSL v5.0.10102 and Freesurfer v5.3.0103 tools implemented in
nipype v1.1.9 workflow104. To correct for head motion, each functional
image acquired in a session was realigned to a single band reference
image and then registered to the spin echo distortion scan acquired
with the same phase encoding direction. The two spin echo images
with reversed phase encodingwere used to estimate the susceptibility-
induced distortion present in the EPIs. For each EPI volume, this non-
linear unwarping function was concatenated with the previous spatial
registrations and applied with a single interpolation. Freesurfer was
used to perform segmentation and cortical surface reconstruction on
each participant’s average anatomical volume. Registration from the
functional images to each participant’s anatomical volume was per-
formed using boundary-based registration. Preprocessed functional
time series were then projected onto each participant’s reconstructed
cortical surface.

GLM analyses. Beginning with each participant’s surface-based time
series, we used GLMdenoise v1.4105 to estimate the neural pattern of
activity evoked by perceiving and remembering every stimulus
(Fig. 2a). GLMdenoise improves signal-to-noise ratios in GLM analyses
by identifying a pool of noise voxels whose responses are unrelated to
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the task and regressing themout of the time series. This technique first
converts all time series to percent signal change and determines an
optimal hemodynamic response function for all vertices using an
iterative linear fitting procedure. It then identifies noise vertices as
vertices with negative R2 values in the task-based model. Then, it
derives noise regressors fromthenoisepool time series usingprincipal
components analysis and iteratively projects them out of the time
series of all vertices, one noise regressor at a time. The optimal number
of noise regressors is determined based on cross-validated R2

improvement for the task-based model. We estimated two models
using this procedure. We constructed design matrices for the per-
ception model to have four regressors of interest (one per stimulus),
with events corresponding to stimulus presentation. Design matrices
for the memory model were constructed the same way, with events
corresponding to the cued retrieval period. These models returned
parameter estimates reflecting the BOLD amplitude evoked by per-
ceiving or remembering a given stimulus versus baseline for every
vertex on a participant’s cortical surface (Fig. 2a, bottom).

Fitting pRF models. Images from the retinotopic mapping session
were preprocessed as above, but omitting the final step of projecting
the time series to the cortical surface. Using these time series, non-
linear symmetric 2D Gaussian population receptive field (pRF)
models29,31 were estimated in Vistasoft v1.0 (Fig. 2b). We refer to this
nonlinear version of the pRF model as the compressive spatial sum-
mation (CSS) model, following Kay and colleagues31. Briefly, we esti-
mated the receptive field parameters that, when applied to the drifting
bar stimulus images, minimized the difference between the observed
and predicted BOLD time series. First, stimulus images were converted
to contrast apertures and downsampled to 101 × 101 grids. Time series
from each retinotopy run were resampled to anatomical space and
restricted to graymatter voxels. Time serieswere then averaged across
runs. pRF models were solved using a two-stage coarse-to-fine fit on
the average time series. The first stage of the model fit was a coarse
grid fit, whichwas used to find an approximate solution robust to local
minima. This stage was solved on a volume-based time series that was
first temporally decimated, spatially blurred on the cortical surface,
and spatially subsampled. The parameters obtained from this fit were
interpolated and then used as a seed for subsequent nonlinear opti-
mization, or fine fit. This procedure yielded four final parameters of
interest for every voxel: eccentricity (r), polar angle (θ), sigma (σ),
exponent (n). The eccentricity and polar angle parameters describe
the location of the receptive field in space, the sigma parameter
describes the size of the receptive field, and the exponent describes
the amount of compressive spatial summation applied to responses
from the receptive field. Eccentricity and polar angle parameters were
converted from polar coordinates (r, θ) to rectangular coordinates (x,
y) for some analyses. Variance explained by the pRF model with these
parameters was also calculated for each voxel. All parameters were
then projected from each participant’s anatomical volume to the
cortical surface (Fig. 2b, bottom).

ROI definitions
Regions of interest were defined by hand-drawing boundaries
between visual field maps on each participant’s cortical surface. For
each map, we drew boundaries at polar angle reversals following
established practice106. We used this method to define six ROIs
spanning early to mid-level visual cortex: V1, V2, V3, hV4, LO (LO1
and LO2), and V3ab (V3a and V3b). We had several goals in mind
when choosing these ROIs. First, we wanted ROIs that spanned the
visual hierarchy and that were known to have different receptive
field sizes. Second, we wanted to avoid the most anterior maps,
which require large quantities of data to define reliably in individual
participants. We selected early visual areas V1-V3, based on their
well-described anatomical boundaries and organization in

humans106. We then selected the visual areas bordering V3 from
each of the ventral, lateral, and dorsal streams.

We further restricted each ROI by preferred eccentricity in order
to isolate vertices responsive to our stimuli. We excluded vertices with
eccentricity values <0.5∘ and >8∘. This procedure excluded vertices
responding primarily to the fixation dot and vertices near themaximal
extent of visual stimulation in the scanner. We also excluded vertices
whose variance explained by the pRF model (R2) was <0.1, indicating
poor spatial selectivity. All measures used to exclude vertices from
ROIs were independent of the measurements made during the per-
ception and memory tasks.

Analyses quantifying perception and memory activity
2D visualizations. Our main analyses examined the BOLD response
evoked by perceiving and remembering the experimental stimuli as a
function of visual field parameters estimated from the pRFmodel. Our
first step was to visualize evoked activity during perception and
memory in visual field coordinates (Fig. 3a). Transforming the data in
this way allowed us to view the activity in a common reference frame
across all brain regions, rather than on the cortical surface, where
comparisons are made difficult by the fact that surface area and cor-
ticalmagnification differ substantially fromone area to the next. To do
this, we selected the (x, y) parameters for each surface vertex from the
retinotopy model and the β parameters from the GLM analysis. Sepa-
rately for a given ROI, participant, stimulus, and task (perception/
memory), we interpolated the β values over (x, y) space. We rotated
each of these representations according to the polar angle location of
the stimulus so that they would be aligned at the upper vertical mer-
idian. We then z-scored each representation before averaging across
stimuli and participants. We used these images to gain intuition about
the response profiles and to guide subsequent quantitative analyses.

Polar angle response functions. Before quantifying these repre-
sentations, we simplified them further. Because our stimuli were all
presented at the same eccentricity, we reduced our 2D stimulus
coordinate representations to 1D dimensional responses functions on
the polar angle dimension (Fig. 4a). We did this by selecting surface
vertices whose pRFs were within one σ of the stimulus eccentricity (2∘)
for each ROI. We then binned the vertices into 18 bins of polar angle
distance from the stimulus and took the median evoked BOLD
response within each bin to produce polar angle response functions
for each participant. We divided each participant’s response function
by the norm of the response vector before taking the mean across
participants and then multiplying by the average vector norm to get
the correct units back. This procedure prevents a participant with a
high BOLD response across all polar angles from dominating the
average response. The resulting average polar angle response func-
tions showed clear surround suppression for polar angles near the
stimulus during perception. Given this, we fit a difference of two von
Mises distributions to the average data, with the location parameters
(μ) for the twovonMises distributions fixed to be equal, but the spread
(κ1, κ2) and scale (β1, β2) allowed to differ. Note that these are different
β parameters than those estimated from GLMdenoise, which we refer
to above.

Group-level quantification. We quantitatively assessed the simila-
rities and differences between perception and memory responses
using these differenceof vonMises fits.We interpreted the value of the
location parameter as a neural indicator of the perceived or remem-
bered polar angle location. We also computed an amplitude metric
that quantified the height of the fit difference of vonMises (max -min).
This measure indicates the relative strength of the BOLD response in
the verticesmost responsive to the stimulus. Finally, we computed the
FWHMof thefit differenceofVonMises as an indicator of theprecision
of the BOLD response, or spread of the response to vertices that code
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for polar angles away from the stimulus. We repeated our across-
participant averaging and von Mises fitting procedure 500 times,
drawing participants with replacement, to create bootstrapped 68%
and 95% confidence intervals for both perception and memory loca-
tion, amplitude, and FWHM parameters. We used these confidence
intervals to make inferences about spatial tuning differences between
perception and memory and across visual areas.

Individual participant quantification. We estimated the same loca-
tion, amplitude, and FWHM parameters using data from individual
participants. We first computed average polar angle response func-
tions for each participant as described in the prior section. Because
participants varied in how offset these response functions were from
0% signal change, which our group-level von Mises fitting procedure
was not designed to account for, we removed these offsets by shifting
the response functions such that vertices farthest away from the sti-
mulus (−160∘, 160∘, and 180∘) had a mean response of 0%. We then fit a
difference of von Mises to each participant’s response function. In
addition to extracting the location, amplitude, and FWHM measures
described in the prior section for each participant, we also computed
the R2 of the fit difference of von Mises (Supplementary Fig. 2).

We re-assessed the main effects of ROI, the main effects of per-
ception vs memory, and the interaction of these variables on location,
amplitude, andFWHMvalues using individualparticipant values.Todo
this, we entered individual participant parameters into repeated
measures ANOVAs. In all models, ROI was coded numerically accord-
ing to hypothesized position in the visual hierarchy (V1 = 1; V2 = 2;
V3 = 3; hV4 = 4; LO = 5; V3ab = 6) and perception/memory as a cate-
gorical variable.We report F values from thesemodels and two-tailedp
values under α =0.05. Because of uncertainty about how cleanly visual
field areas map onto such a hierarchy, we recomputed these statistics
with ROI coded as a categorical variable. All inferences remained the
same. We assessed whether data met the assumptions for an ANOVA
by evaluating normality and sphericity. We determined that the data
met assumptions for normality by visualizing the model residuals
using q-q plots and by using the Shapiro-Wilk test. We determined that
the data met assumptions for sphericity using Mauchly’s test, though
this value was close to significance in some cases. Inferences were the
same when the Huynh-Feldt correction for violations of sphericity was
applied.

Eccentricity response functions. We performed a cursory evaluation
of eccentricity-dependent BOLD responses during perception and
memory. For each stimulus, we first excluded all vertices further than
15∘ of polar angle from the stimulus. We then divided vertices into
eccentricity bins of 0.5 dva (min = 0.5 dva and max= 8 dva). For each
participant, task, and ROI, we computed the median evoked BOLD
response within each bin, and averaged this value across participants
as described in the section above on polar angle response functions.
Because these eccentricity response functions were asymmetric and
noisy, we did not fit a parametric function to these binned data.
Instead, we simply plot the binned estimates, with linear interpolation
between adjacent bins (Supplementary Fig. 1). We obtained 95% con-
fidence intervals for each bin by resampling participants with repla-
cement 500 times, and recomputing the bin averages.

Software. Statistical quantification and data visualizations for these
analyses and all those subsequently described were made using niba-
bel 3.2.1107, numpy 1.21.2108, scipy 1.7.1109, pandas 1.3.3110,111, matplotlib
3.4.3112, and seaborn 0.11.2113.

Noise simulations
Weperformed four simulationsdesigned to testwhetherdifferences in
noise between perception andmemory data could explain differences
in the responses we observed. We identified four potential types of

noise that were present in our memory data but not our perception
data: (1) reduced SNR; (2) retrieval task lapses; (3) associative memory
errors; (4) angular memory errors. We then simulated the effect of
these types of noise on our perception data and asked whether these
noise sources could produce responses similar to the ones we
observed during memory.

SNR simulation. To simulate reduced SNR, we created artificial
datasets with different amounts of additive noise introduced to
every vertex’s perception parameter estimate. Noise was added in
five levels: noise needed to regenerate the empirical SNR of the
perception data (p), noise needed to generate the empirical SNR of
thememory data (m), or noise needed to generate 1/2, 1/4, or 1/8 the
empirical SNR of the memory data. For each of these values, we
simulated 100 independent datasets for every participant and ROI.
We determined the amount of signal and noise actually observed for
each vertex during perception and memory by examining boot-
strapped parameter estimate distributions produced by GLMde-
noise. We defined themedian parameter estimate across bootstraps
as the amount of signal and the standard error of this distribution as
the amount of noise. To simulate new data for a vertex, we randomly
drew a new parameter estimate from a normal distribution defined
by the true signal value (median) and the noise value (SE) needed to
produce the target SNR. Critically, we made the draws correlated
across vertices for each simulation. We did this by selecting a scale
factor from a standard normal distribution which determined how
many SEs away from the median every vertex’s simulated value
would lie. This scale factor was shared across all vertices in an ROI
for a given simulation. This procedure overcompensates for the
spatial correlation present in BOLD data by assuming that SNR is
100% correlated across all vertices in an ROI. Note that if the noise
were uncorrelated across vertices, it would have a much smaller
effect on the population tuning curves. For each noise value and
each of the 100 simulations, we analyzed the simulated data using
the same procedure we applied to the actual data. This yielded 100
von Mises fits to the simulated data for each noise value and ROI
(Supplementary Fig. 3a). We extracted the location, amplitude, and
FWHM values from these fits. For very high noise simulations, von
Mises fitting sometimes failed. We evaluated whether the location
and FWHM values approximated the ones we observed during
memory by calculating the proportion of simulations that fell within
the 95% confidence intervals derived from the memory data (Fig. 5a
and Supplementary Fig. 4a).

Retrieval task lapse simulation. To simulate retrieval task lapses, we
created artificial datasets that contained a variable number of per-
ception trials with no signal. Retrieval task lapse was simulated in five
levels: 0%, 25%, 50%, 75%, and 100% of trials. For each of these values,
we simulated 100 independent datasets for every participant and ROI.
Depending on the percentage of lapses, zero, one, two, three, or all
four stimuli were randomly designated as “lapsed” in each simulated
dataset. For the lapsed stimuli, new parameter estimates were drawn
from a distribution defined by zero signal during perception for every
vertex. For the remaining stimuli, new parameter estimates were
drawn from a distribution defined by the true perception signal for
every vertex. The noise was equated for both trial types; for each
vertex, we used the amount of noise observed during perception. We
performed this analysis at the level of stimuli, rather than trials because
our GLM yielded parameter estimates for each stimulus, not each trial.
As in the SNR simulation, simulated data were correlated across ver-
tices in an ROI and simulated data were analyzed using the same
procedures as for the actual data, yielding von Mises fits (Supple-
mentary Fig. 3b). For the highest lapse rates, von Mises fitting some-
times failed. We evaluated whether simulated location and FWHM
values approximated the ones we observed during memory by
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calculating the proportion of simulations that fell within the 95%
confidence intervals derived from the memory data (Fig. 5b and Sup-
plementary Fig. 4b).

Associative memory error simulation. To simulate associative mem-
ory errors, we created artificial datasets that contained a variable
number of perception trials where the response corresponded to one
of theother studied stimuli. Associativememory errorswere simulated
in four levels: 0%, 25%, 50%, 75%, and 100% of trials. For each of these
values, we simulated 100 independent datasets for every participant
and ROI. Depending on the percentage of errors, zero, one, two, three,
or all four stimuli were randomly designated as “associative errors” in
each simulated dataset. For error stimuli, one of the three other stu-
died stimuli was randomly chosen and new parameter estimates were
drawn from this distribution rather than the correct one. For the
remaining stimuli, new parameter estimates were drawn from a dis-
tribution defined by the true perception signal for every vertex. As in
the task lapse simulation, we performed this analysis at the level of
stimuli, rather than trials because our GLM yielded parameter esti-
mates for each stimulus, not each trial. Like the prior simulations,
simulated data were correlated across vertices in an ROI and simulated
data were analyzed using the same procedures as for the actual data,
yielding von Mises fits (Supplementary Fig. 3c). For the highest error
rates, von Mises fitting sometimes failed. We evaluated whether
simulated location and FWHM values approximated the ones we
observed duringmemory by calculating the proportion of simulations
that fell within the 95% confidence intervals derived from the memory
data (Fig. 5c and Supplementary Fig. 4c).

Angular memory error simulation. To simulate angular memory
error, we created artificial datasets that contained a variable amount of
angular error in the peak location of the perception polar angle
response functions. Angular memory error was simulated in five levels
of standarddeviation: 0, 30, 60, 90, and 180degrees. For each of these
values, we simulated 100 independent datasets for every participant
and ROI. We assigned the amount of memory error for a given parti-
cipant and stimulus by drawing a random value from a normal dis-
tribution centered at the true angular location of the stimulus andwith
the current standard deviation. We then used these memory error
values to misalign simulated perception data. Specifically, we created
new perception datasets based on the true signal and noise char-
acteristics of our perception data (equivalent to SNR simulation with p
noise, 0% retrieval task lapse simulation, or 0% associative error
simulation). As in all other simulations, simulated data were correlated
across vertices in an ROI, and simulated data were analyzed according
to the same procedure as for the actual data. Before averaging the
simulated data across stimuli and participants, we rotated each
responseby the chosenmemory error value rather thanby the location
of that stimulus. That is, instead of rotating the response to a 45∘ sti-
mulus by 45∘ to align all stimuli at 0∘ (aswedid in ourmain analysis), we
rotated the response by a value either close to 45 (generated using
small standard deviations, representing small errors) or potentially
quite far away from 45 (generated using large standard deviations,
representing large errors). After averaging and yielding von Mises fits
(Supplementary Fig. 3d), we extracted location and FWHM values. For
very high standard deviations, von Mises fitting sometimes failed. We
then evaluated whether simulated location and FWHM values
approximated the onesweobservedduringmemoryby calculating the
proportion of simulations that fell within the 95% confidence intervals
derived from the memory data (Fig. 5d and Supplementary Fig. 4d).

pRF forward model
We evaluated the ability of our pRF model to account for our per-
ception and memory measurements. To do this, we used our pRF
model as a forward model. This means that we took the pRF model

parameters fit to fMRI data from the retinotopy session (which used a
drifting bar stimulus) and used them to generate predicted BOLD
responses to our four experimental stimuli. The model takes pro-
cessed stimulus images as input, and for each of these images, outputs
a predicted BOLD response (in units of % signal change) for every
cortical surface vertex. Before running themodel, we transformed our
experimental stimuli into binary contrast apertures with values of 1
where the stimulus was and values of 0 everywhere else. These images
were downsampled to the same resolution as the images used to fit the
pRF model (101 × 101).

Model specification. The pRF forward model has two fundamental
operations. In the first operation, a stimulus contrast aperture
image is multiplied by a voxel’s pRF. In the CSS and linear models,
this pRF is defined as a circular symmetric 2D Gaussian, para-
meterized by a location in the visual field (x, y) and a size (σ). In the
DoG + CSS version of themodel, this pRF is defined as the difference
of two such Gaussians, centered at the same location (see next
paragraph). The second operation applies a power-law exponent (n)
to the result of the multiplication, effectively boosting small
responses. This nonlinear operation is the key component of the
CSS model and improves model accuracy in high-level visual areas
that are known to exhibit subadditive spatial summation31,114. The
values of the exponent range from 0 to 1, where a value of 1 returns
the model to linear. The output of this nonlinear stage is multiplied
by a final scale parameter (β), which returns the units to % signal
change (Fig. 6a).

Because we observed negative surround responses in V1–V3
during perception, we focused mainly on the results of the DoG+CSS
model. Prior work has shown that difference-of-Gaussians (DoG) pRF
models can account for the center-surround structure we observed38.
In order to construct DoG pRFs, we converted each pRF from the CSS
model we fit to the retinotopy data to a DoG pRF. We chose this
approach after encountering difficulty in fitting a DoG pRF model to
the retinotopy data. First, we took every 2DGaussianpRF from the CSS
model, and we subtracted from it a second 2D Gaussian pRF that was
centered at the same location but was twice as wide and half as high.
This ratio of 2σ and 0.5β between the negative and positive Gaussians
wasfixed for all voxels. In order to prevent the resulting DoGpRF from
being systematically narrower and lower in amplitude than the original
pRF, we rescaled the σ and β of the original pRF before converting it to
a DoG. We multiplied the original σ by

ffiffiffi

2
p

and the original β by 2,
resulting in a DoG pRF with equivalent FWHM and amplitude as the
original pRF. Thus, the DoG pRF differed from the original pRF only in
the presence of a suppressive surround.

Evaluating model predictions. We evaluated the predictions of the
DoG+CSS model for our experimental stimuli. After generating a pre-
diction for each participant, stimulus, and surface vertex, we carried
these predictions forward through the same analysis pipeline used to
analyze our task-based data. This generated predicted polar angle
response functions for each ROI (Fig. 6b). We conducted the same
procedure on the bootstrapped datasets. Finally, we generated pre-
dictions for two simpler pRF models: the CSS model without the DoG
pRF shape and a linear model with no exponent parameter (Supple-
mentary Fig. 5a).

We evaluated howwell the DOG+CSSmodel predictions matched
our perception versus memory measurements. We extracted location,
amplitude, and FWHM measures from the predicted polar angle
response functions. We then compared the predicted amplitude and
FWHM parameters for each ROI with the actual perception and
memory parameters. We evaluated these relationships by fitting a
linear model to the predicted versus observed observations. To gen-
erate confidence intervals on these fits, we fit a linear model between
the predicted parameters and the actual perception/memory
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parameters for each of the bootstrapped datasets (Fig. 6c). We repe-
ated the same procedure using predictions from the alternative pRF
models as well (Supplementary Fig. 5b).

As another measure of goodness-of-fit, we calculated the coeffi-
cient of determination (R2) for the predicted polar angle response
functions from theDoG+CSSmodel and the observed perception and
memory polar angle response functions (Supplementary Fig. 6, top).
Under this measure, a model that predicts the mean observed
response for every value of polar angle distancewill have anR2 of zero,
with better models producing positive values and worse models pro-
ducing negative values. We generated confidence intervals for these
accuracies by computing R2 values for each of the 500 bootstrapped
perception and memory datasets and the yoked pRF predictions.
Given the large negative R2 values we observed for our memory data,
we considered the extent to which rescaling the predictions would
yield better results. We repeated our R2 calculations after rescaling the
predicted polar angle response functions to best fit the memory data
(Supplementary Fig. 6, bottom). We rescaled the predictions by the
single best fitting scale factor across all ROIs. For the sake of com-
parison between perception and memory, we also separately rescaled
the predictions by the single best fitting scale factor for the
perception data.

Hierarchical network model
We assessed whether a simple instantiation of a single neural
network model could account for both the perception and mem-
ory data. We implemented a fully linear hierarchical model of
neocortex in which the activity from each layer was created by
pooling activity from the previous layer. This model encodes 1D
space only and its parameters are fixed (i.e., it is not trained). For
the feedforward simulation, we began with a 1D boxcar stimulus,
which was centered at 0∘ and spanned 15∘ of polar angle. We cre-
ated a fixed Gaussian convolution kernel (μ = 0∘, σ = 15∘), which we
convolved with the stimulus to create the activity in layer 1. This
layer 1 activity was convolved with the same Gaussian kernel to
create the layer 2 activity, and this process was repeated recur-
sively for 8 layers (Fig. 7a, left). In order to simulate memory-
evoked responses in this network, wemade two assumptions. First,
we assumed that the feedback simulation began with the layer 8
activity from the feedforward simulation. That is, we assumed no
information loss or distortion between perception and memory in
the last layer. Second, we assumed that all connections were
reciprocal and thus that the same Gaussian kernel was applied to
transform layers in the feedback direction as in the feedforward
direction (Fig. 7a, right). Thus, in the feedback simulation, we
convolved the layer 8 activity with the Gaussian kernel to produce
the layer 7 activity and repeated this procedure recursively, ending
at layer 1. Note that these computations can be performed with
matrix multiplication rather than convolution by converting the
convolutional kernel to a Toeplitz matrix, which is how we
implemented it. In this case, the transpose of the Toeplitz matrix
(itself, as it is symmetric) is used in the feedback direction. We
plotted each layer’s activation (Fig. 7b) and extracted the location,
amplitude and FWHM for each layer using the same procedure we
performed on our data (Fig. 7c).

In order to evaluate the effect of our parameter choices on our
results, we performed a suite of simulations using different combina-
tions of stimulus size, kernel size, and number of layers. To explore the
effect of number of layers, we simulated our base model (described
above; stimulus = 15∘; kernel σ = 15∘, number of layers = 8) with 4, 6, and
10 layers and then plotted the FWHM for each layer in the feedforward
and feedback directions (Supplementary Fig. 7a). In order to explore
the interaction between stimulus size and kernel size, we simulated 16
8-layermodels. Thesemodels evaluated every combinationof stimulus
size [15∘, 30∘, 45∘, 60∘] and kernel size [σ = 5∘, 15∘, 30∘, 45∘]. For each

model, we plot the FWHM for each layer in the feedback and feedback
directions (Supplementary Fig. 7b).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
PreprocessedMRI data, BOLDactivationmaps, regions of interest, and
behavioral data are deposited on the Open Science Framework at
https://osf.io/wc7zy/115. Raw MRI data have not been made available
due to size constraints, but are available on request from the first
author. Source data are provided with this paper.

Code availability
Analysis code is available on the sameOSF page as the data https://osf.
io/wc7zy/115 and can also be found at https://github.com/sfavila/Favila_
NatComm_2022.
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