Generalization Gradients in Deep Vision Models: Insights from Shepard's Universal Law Daniel L. Carstensen¹, Steven M. Frankland^{2†}, Serra E. Favila^{1†} ¹Brown University, ²Dartmouth College, [†]Equal Contribution

Introduction

- Deep vision models share striking similarities with (and differences to) the primate visual system.
- Shepard's universal law of generalization provides a framework to assess representational alignment.
- Shepard's law posits that generalization decreases as a concave function of psychological distance reflecting universal cognitive principles.¹
- Supported across species and stimuli, and recently validated in large-scale naturalistic image dataset.^{2,3}

Does the embedding space of deep vision models align with human psychological similarity space?

Approach

We computed pairwise distances between image embeddings, matched with corresponding human-evaluat-

ed similarity scores.

1.0-

0.5-

0.0 -

0.0

0.2 0.4 0.6 0.8 1.0 1.2

Explained Variance

Left: OLS fit for DreamSim, the most predictive model in this task. Right: KDE of explained variances across all models and datasets.

References & Contact

 Determine necessary and sufficient conditions of Shepard's law by training custom vision models.

1. Shepard, R. N. (1987). Science 2. Marjieh, R., Jacoby, N., Peterson, J. C., & Griffiths, T. L. (2024). J Exp Psychol Gen 3. Peterson, J. C., Abbott, J. T., & Griffiths, T. L. (2018). Cogn Sci **Contact:** daniel_carstensen@brown.edu