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Deep Vision Models Follow Shepard’s Universal Law of Generalization
Daniel L. Carstensen (daniel carstensen@brown.edu)
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Department of Cognitive and Psychological Sciences, Brown University
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Abstract

Shepard’s (1987) universal law of generalization holds that
the probability of generalizing between two stimuli decays as
a concave function of their distance in psychological space.
While there is widespread evidence for the law in human per-
ception, its relevance to artificial neural networks remains un-
clear, despite the importance of generalization for these sys-
tems. Here, we find that the representational spaces of mod-
els that vary in their architecture, objective, and training data
yield a concave generalization gradient with respect to human
judgments of naturalistic images (Peterson et al., 2018), con-
sistent with Shepard’s law. Our results suggest that the rep-
resentational spaces of deep vision networks serve as com-
pelling, but imperfect, proxies for classic psychological spaces
derived from behavioral data. This highlights the strengths and
weaknesses of deep vision models as contributors to cognitive
theories of perceptual generalization, while adding further ev-
idence for the generality of Shepard’s law.
Keywords: generalization; deep learning; embedding spaces;
perceptual similarity

Introduction
Generalization reflects a fundamental challenge for informa-
tion processing systems. Suppose a bird preys on a bumble-
bee and is consequently stung. In order to avoid being stung
again, the bird must identify organisms that resemble this
bumblebee based on the perceptual information it receives.
Since no two bumblebees look identical, the bird must be able
to generalize over these possibilities. It does so at the cost
of potentially missing opportunities to prey on visually sim-
ilar—but innocuous—species that may closely resemble the
bumblebee, such as the hoverfly (Edmunds & Reader, 2014).

Similarly, suppose that a convolutional neural network is
presented with images of insects and asked to categorize
them. Since no two images of a species, such as bumble-
bees, are exactly the same, the network must generalize over
the possible pixel-level inputs to learn a useful representation
of the class. Likewise, it must be careful not to learn overly
coarse representations that treat visually similar, but function-
ally distinct, task-relevant categories as equivalent.

The broad scope of the challenge of generalization rein-
forces the search for unifying principles, first made famous
by Shepard and subsequently strengthened by others (Chater
& Vitányi, 2003; Frank, 2018; Shepard, 1987; Sims, 2018;
Tenenbaum & Griffiths, 2001; Wu, Meder, & Schulz, 2025).
Shepard posited that the strength of generalization between

*Denotes equal contribution

two stimuli decays as an invariant, concave upward func-
tion of their distance in a hypothetical metric “psychologi-
cal space.” Numerous empirical studies have supported Shep-
ard’s law across different types of low-dimensional stim-
uli and across different species, with generalization gradi-
ents usually following an exponential or, sometimes, a Gaus-
sian function (e.g., Cheng, 2000; Ghirlanda & Enquist, 2003;
Shepard, 1987). More recently, Marjieh et al. (2024) showed
that the universal law holds for naturalistic stimuli by ana-
lyzing a large set of human similarity judgments made across
sets of natural images.

Since psychological space is not directly observable,
studies have relied on non-metric multidimensional scaling
(NMDS) of behavioral data, a technique developed by Shep-
ard (1962) and Kruskal (1964). NMDS takes a similarity
matrix for a set of stimuli and maps the stimuli into a low-
dimensional space, ensuring their pairwise similarities are
preserved as accurately as possible and allowing for the ex-
traction of stimulus distances. Here, we take a different
approach to deriving psychological space. We ask: could
the representational spaces of deep neural networks (DNNs)
trained to optimize standard computer vision objectives natu-
rally stand in as proxies for behaviorally-derived psychologi-
cal spaces?

In recent years, advances in DNNs have significantly
enhanced the capabilities of artificial processing systems.
In computer vision, DNNs (or deep vision models) have
achieved or surpassed human-level performance on a num-
ber of perceptual tasks involving naturalistic images (LeCun,
Bengio, & Hinton, 2015; Kheradpisheh et al., 2016; Que-
sada et al., 2024; Russakovsky et al., 2015). While deep vi-
sion models are at most imperfect models of biological vision
(Wichmann & Geirhos, 2023), growing evidence has revealed
parallels between their internal representations (i.e., their em-
bedding spaces) and the psychological and neural representa-
tions extracted from humans and non-human primates (Cichy
et al., 2016; Khaligh-Razavi & Kriegeskorte, 2014; Mutten-
thaler et al., 2023; Rajalingham et al., 2018; Sucholutsky et
al., 2023; Yamins et al., 2014). Importantly, prior work has
shown that the representational geometry of DNN embedding
spaces is predictive of human similarity judgments (Jha et al.,
2023; Peterson et al., 2016, 2018) and can be finetuned to pre-
dict NMDS-derived psychological space (Sanders & Nosof-
sky, 2018). Nevertheless, standard deep vision models sub-
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stantially differ from human visual cognition in a number of
ways, including their respective strategies in object recogni-
tion tasks (Bowers et al., 2023; Linsley et al., 2023). Hence, it
remains unclear whether the embedding spaces of deep vision
models might be suitable proxies for Shepard’s psychological
space.

Here, we evaluate this possibility by specifically asking
whether the distances in DNN-generated embedding spaces
predict human similarity judgments as a concave generaliza-
tion gradient. To do so, we selected a diverse range of deep
vision models that varied in architecture, training task, and
training dataset, and drew from a large dataset of natural im-
ages with corresponding human similarity judgments (Peter-
son et al., 2018). We then extracted image embeddings from
each deep vision model and computed the pairwise distance
matrix of the embeddings, yielding a human-evaluated simi-
larity score and a model-derived distance value for each im-
age. Finally, we examined the resulting generalization gradi-
ents for each image set and for each model. We find that the
internal representations of deep vision models predict human
similarity judgments as a concave generalization gradient in
a way that is strikingly similar to classic behaviorally derived
psychological spaces.

Methods

Figure 1: Overview of the experimental approach. Human
similarity judgments are paired with model-derived
distances to test whether deep vision model embeddings
adhere to Shepard’s universal law of generalization.

Stimuli and Vision Models
We used a dataset collected by Peterson et al. (2018). This
dataset includes six sets of 120 images from the general cat-
egories “animals,” “automobiles,” “fruits,” “furniture,” “var-
ious,” and “vegetables,” and corresponding human pairwise
similarity judgments (see Figure 1, left). Each image pair re-
ceived ten unique human similarity judgments, reported on
a scale from 0 (“not similar at all”) to 10 (“very similar”).

These data were aggregated into an average 120 x 120 simi-
larity matrix for each of the six image sets and then rescaled to
range from 0 to 1. Notably, Marjieh et al. (2024) also used the
“animals”, “fruits”, and “vegetables” image sets, establishing
the existence of Shepard’s law in naturalistic stimuli. Using
the same analysis, we replicated these results and tested if
they applied to the remaining “automobiles,” “furniture,” and
“various” image sets. We then selected a diverse set of pre-
trained deep vision model families that varied in architecture,
training task, and training dataset (see Table 1). From each
model family, we chose several models of varying size and,
if applicable, using different architectures. This enabled us
to conduct a comprehensive evaluation of embedding spaces
across different deep vision models; in total, we tested 24 in-
dividual models. We additionally chose pixel-level MSE as a
baseline model of low-level perceptual distance.

Table 1. Selected Deep Vision Model Families

Model family Architecture Training task Training data

VGG CNN 1K classification ImageNet-1k
ResNet CNN 1K classification ImageNet-1k
ViT Transformer 1K classification ImageNet-1k
CLIP CNN/Transformer Language alignment WebImageText
OpenCLIP CNN/Transformer Language alignment CC12M/LAION-2B
DINO CNN/Transformer Self-supervision ImageNet-1k
DINOv2 Transformer Self-supervision LVD-142M
DreamSim Transformer Perceptual alignment NIGHTS

Embedding Extraction and Generalization
Gradient Computation
Our goal was to test if the internal representations of deep
vision models served as proxies for psychological space,
thus aligning with Shepard’s universal law of generalization.
To derive generalization gradients, we mapped the human-
evaluated similarity score for each image pair to a corre-
sponding model-derived distance value (see Figure 1, right).
Though prior work has mainly relied on Euclidean distance
as a measure of distance in psychological space (e.g., Mar-
jieh et al., 2024; Shepard, 1962, 1987), we chose to use co-
sine distance for our analyses because it is standard practice
in the field of computer vision and has previously been shown
to predict human similarity judgments (e.g., Fu et al., 2023;
Radford et al., 2021; Roads & Love, 2021).1 We first ex-
tracted individual image embeddings from the final hidden
layer of each model. Embeddings from this layer contain
high-level information most related to human categorization
(Cohen et al., 2020; LeCun et al., 2015; Sucholutsky et al.,
2023). For transformer-based models, we specifically ex-
tracted the classification token of the last hidden layer (Doso-
vitskiy et al., 2021). Then, we computed the cosine distance
between each pair of embeddings from the same image set.
Finally, we matched the human-evaluated similarity score for
each image pair A-B with its associated cosine distance in
model embedding space, yielding a similarity-distance tuple

1Nevertheless, we also performed the main analyses using Eu-
clidean distance, yielding comparable results (see Figure 3).
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(see Figure 1, bottom). To mitigate artificial bias in the distri-
bution of similarity-distance tuples, we excluded trivial self-
similarity tuples with a similarity of 1 and a distance of 0
(i.e., the diagonal of the similarity-distance matrix). To al-
low for cross-model comparisons, we then rescaled distances
from each model such that the smallest distance equaled 0
and the greatest distance equaled 1. This produced six sets of
similarity-distance generalization gradients corresponding to
the six image sets for each model.

Since the sampling density of these gradients varied drasti-
cally, with substantially fewer high-similarity pairs than low-
similarity pairs, the right tail of the gradient is overempha-
sized. To counteract this imbalance, we followed the ap-
proach taken in Marjieh et al. (2024) and additionally com-
puted binned generalization gradients. Specifically, we di-
vided the similarity-distance tuples into 100 equally spaced
bins based on their distance values and computed the average
similarity score and distance value for each bin.

Curve Fitting and Evaluation
To test if the embedding spaces of vision models abide by the
universal law of generalization, we fit four candidate curves
to the raw and binned generalization gradients. As a baseline,
we chose a linear model of the form f (x) = ax+b. To allow
for concave upward or downward fits, we additionally chose a
quadratic model of the form f (x) = ax2 +bx+ c. Finally, we
selected an exponential model of the form f (x) = ae−bx + c
and a Gaussian model of the form f (x) = ae−bx2

+c. Both ex-
ponential and Gaussian functions are models of the universal
law that are supported by empirical and theoretical evidence
(e.g., Chater & Vitányi, 2003; Cheng, 2000; Frank, 2018;
Marjieh et al., 2024; Shepard, 1987). To fit the curves, we
used the model.fit least squares optimizer from the lmfit
package (Newville et al., 2024).

To evaluate the fit of the curves to the data, we computed
the root mean squared error (RMSE), the coefficient of deter-
mination (R2), and the Bayesian Information Criterion (BIC).
We performed 5 x 5-fold cross-validation (i.e., five repetitions
of standard 5-fold cross-validation) to obtain robust perfor-
mance estimates (Burman, 1989; Kim, 2009; Stone, 1974).
In particular, we randomly split the similarity-distance tuples
from each generalization gradient into five equal-sized folds.
Then, we fit the curves on the union of four folds and tested
on the remaining fold, repeating this process five times with a
different test fold each time. We repeated this procedure five
times and averaged the resulting performance metrics across
all folds. Since we were particularly interested in whether
our non-linear curves approximated the generalization gradi-
ents better than the linear curve, we also computed the perfor-
mance difference between each non-linear curve and the lin-
ear curve within each fold, yielding ∆RMSE, ∆R2, and ∆BIC
values.

Distance Alignment and Regression Analysis
To assess if model embedding spaces are viable proxy spaces
for psychological space, we extracted the distances between

all image pairs in NMDS space and matched each NMDS-
derived distance value with its corresponding model-derived
distance value. We split the resulting tuples into 100 equally
spaced bins according to their model-derived distance values
and computed an average NMDS distance value and model
distance value for each bin. Then, we fit an ordinary least
squares (OLS) model by regressing the NMDS-derived dis-
tances onto the model-derived distances for each individual
model and recorded the estimated coefficients and Pearson
correlation coefficients. Finally, we used a random-effects
meta-analysis model to estimate pooled coefficients and ex-
plained variance along with 95% confidence intervals (CI).2

Residual Analysis
We used the residuals obtained during curve fitting to deter-
mine if model embedding spaces failed to adhere to Shepard’s
law in some regions. First, we examined a quantile-quantile
plot (Q-Q plot) comparing the distribution of the residuals to
a normal distribution. Additionally, we split the residuals into
10 equal-sized bins according to their corresponding ground-
truth similarity value and computed the average residual in
each bin. We applied the same evaluation to the residuals
from the distance alignment regression analysis. This allowed
us to assess if the distribution of the residuals along the gra-
dient showed any systematic biases.

Results
Our goal was to investigate whether the embedding spaces of
deep vision models follow Shepard’s universal law. We note
that for the sake of brevity, the results presented here derive
from the binned generalization gradients unless otherwise in-
dicated. Nevertheless, all findings apply to the raw gradients
as well, though with reduced performance metrics due to in-
creased variance.

NMDS-Derived Psychological Space Adheres to
Shepard’s Law
We first constructed a baseline psychological space by map-
ping human similarity judgments for the six image sets into
NMDS space. Our results reproduced the findings of Mar-
jieh et al. (2024) and extended them to the remaining image
sets (“automobiles,” “furniture,” and “various”), all of which
exhibited concave generalization gradients and thus aligned
with Shepard’s law (Figure 2a).

Model-Derived Generalization Gradients Adhere to
Shepard’s Law
Having established this baseline, we focused our analysis
on the model-derived generalization gradients. To test each
model’s adherence to Shepard’s law, we fit four curves (lin-
ear, quadratic, exponential, Gaussian) to the binned general-
ization gradients and recorded RMSE, R2, and BIC of each fit.

2To estimate pooled explained variance, we first computed a
pooled Fisher z-transformed correlation coefficient, then inverse-
transformed the estimate back to a correlation coefficient, and finally
squared the result.
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(a) NMDS generalization gradients.
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(b) CLIP ViT-B/16 generalization gradients.

Figure 2: Comparison of human and model-derived
generalization gradients. (a) NMDS-derived generalization
gradients from human similarity judgments confirm
Shepard’s law across six image sets. (b) Model-derived
generalization gradients for CLIP ViT-B/16 exhibit similar
concavity, indicating alignment between deep vision models
and psychological space.

Figure 2b shows the best-fit curves for the best-performing
model (CLIP ViT-B/16) across all image sets, highlighting
the strong concavity of the gradients. Overall, we found that
the non-linear curves outperformed the linear curve across all
image sets with the Gaussian curve performing the best (Ta-
ble 2). Additionally, Table 3 reports the ∆RMSE, ∆R2, and
∆BIC values for all non-linear curves. Since these differences
were computed relative to the linear curve fits, the relative
performance metrics for the linear curve are omitted from the
table. These results held across all model families and gener-
alized to Euclidean distance-derived generalization gradients
(see Figure 3). Notably, no nonlinear curve reliably provided
improved fits across all image datasets for gradients com-

puted using the pixel-level MSE model. Finally, we found
that over 83% of quadratic curve fits were concave upward
with strictly positive second derivatives f (x)′′ = 2a > 0 with
CI [0.7, 0.75]. Since the quadratic curve allowed both con-
cave upward and concave downward fits, the strong tendency
toward positive second derivatives further supports adherence
to Shepard’s law. Overall, these results confirmed that model-
derived generalization gradients aligned with Shepard’s law.

Table 2. Performance Metrics of Curves

Curve Metric Mean CI Lower CI Upper

Exponential RMSE 0.075 0.074 0.076
Exponential R2 0.818 0.787 0.840
Gaussian RMSE 0.064 0.063 0.065
Gaussian R2 0.852 0.840 0.864
Linear RMSE 0.102 0.101 0.103
Linear R2 0.679 0.653 0.701
Quadratic RMSE 0.072 0.071 0.073
Quadratic R2 0.836 0.822 0.848

Table 3. Performance Metrics of Non-Linear Curves Relative
to Linear Curve

Curve Metric Mean CI Lower CI Upper

Exponential ∆RMSE -0.027 -0.028 -0.026
Exponential ∆R2 0.139 0.104 0.170
Exponential ∆BIC -52.049 -53.719 -50.361
Gaussian ∆RMSE -0.038 -0.039 -0.037
Gaussian ∆R2 0.174 0.151 0.198
Gaussian ∆BIC -72.075 -73.869 -70.250
Quadratic ∆RMSE -0.030 -0.031 -0.029
Quadratic ∆R2 0.157 0.140 0.177
Quadratic ∆BIC -53.878 -55.282 -52.472

Model Embedding Spaces Approximate
Psychological Space

Next, we assessed if model embedding spaces are viable
proxy spaces for psychological space by regressing the
binned NMDS-derived distances onto the binned model-
derived distances. We observed a positive correlation be-
tween model-derived distances and NMDS-derived distances
across all models and image sets. By applying a random-
mixed effects meta-analysis, we found that in aggregate
model-derived distances were able to explain over 86% of the
variance in NMDS-derived distances. Table 4 lists the pooled
slope, intercept, and explained variance estimates along with
CIs. The pixel-level MSE model did not exhibit high predic-
tive strength, with only 8% variance explained. Hence, model
embedding spaces were adequate proxy spaces for psycho-
logical space.
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Figure 4: Assessment of model deviations from Shepard’s
law. The Q-Q plot (left) shows that residuals deviate from
normality, while residuals binned by similarity score (right)
reveal a systematic underestimation of high-similarity pairs,
highlighting model limitations.

Model Embedding Spaces Fail for High-Similarity
Pairs
Finally, we assessed if model embedding spaces systemat-
ically deviated from Shepard’s law in any region, making

Table 4. Regression Coefficients and r2 For NMDS Distances
Predicted by Model Distances

Pooled estimate CI Lower CI Upper

Slope 0.800 0.776 0.834
Intercept 0.081 0.051 0.111
r2 0.868 0.850 0.884

use of the curve residuals. Here, we used the residuals cor-
responding to the curves fitted to raw generalization gradi-
ents as opposed to binned gradients.3 Figure 4 shows the
Q-Q plot and the binned average residuals corresponding
to the Gaussian curve. We found that residuals were well-
behaved for low-similarity image pairs but were skewed for
higher-similarity pairs, exhibiting systematic underestimation
of similarity for those pairs. For example, two different im-
ages of giraffes may be farther apart in the network’s em-
bedding space than expected from the psychological space.
This applied across all models and image sets. We corrobo-
rated these findings by examining the residuals of the distance
alignment regression which showed the same pattern.

Discussion
In this study, we asked whether the representational spaces
of a diverse group of deep vision models naturally serve as
proxies for Shepard’s “psychological space.” We found that
regressing human generalization judgments onto the cosine
distances of image pairs in model embedding space natu-
rally yielded Shepard’s invariant concave upward generaliza-
tion gradient (Figure 2b). Regression analyses corroborated
these findings, showing a strong positive correlation (pooled
r2 ≈ 0.87) between model-derived distances and NMDS-
derived distances, demonstrating that the internal model rep-
resentations naturally approximated psychological space de-
rived from behavioral data. Nevertheless, deep vision mod-
els were not perfect predictors of human generalization judg-
ments: residual analyses revealed systematic distortions for
high-similarity image pairs.

In previous studies (e.g., Marjieh et al., 2024; Shepard,
1987), researchers approximated the relevant psychological
space by performing NMDS on a matrix of human behav-
ioral judgments. In the present work, we exploited our ability
to fully observe the internal representational spaces of deep
vision models to directly approximate distances in psycho-
logical space. Remarkably, neither the training data nor the
objective used to train the models (see Table 1) had any ob-
vious connection to the behavioral task or the corresponding

3We used residuals from the raw generalization gradients instead
of the binned gradients because residuals specifically capture devi-
ations from the fitted model, rather than reflecting the overall dis-
tribution of the raw data. This distinction is important because the
raw data distribution can be influenced by uneven sampling, whereas
residuals isolate how much each data point differs from the model’s
expected pattern. By working with residuals, we could retain the full
dataset without discarding data points due to binning, which maxi-
mized statistical power in our analyses.
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data from Peterson et al. (2018).4 Nonetheless, our results
paralleled previous findings that inferred psychological space
directly from human behavioral data, suggesting that these
components successfully shaped the models’ representational
spaces without directly relating to the behavioral context we
tested them in. This further supports the universality of Shep-
ard’s law and suggests considerable flexibility in how repre-
sentational spaces that exhibit this law can be derived.

Our analyses thus far suggest that the emergence of con-
cave generalization gradients in model embedding spaces is
not tightly tied to any particular network architecture, ob-
jective function, or training dataset. We specifically tested
deep vision models that, while not exhaustive, varied across
all of these characteristics (see Table 1); yet their embedding
spaces consistently exhibited alignment with Shepard’s law.
Our findings fall in line with recent studies that have revealed
surprising levels of alignment between different deep vision
models, both with respect to their representational spaces
(Huh et al., 2024) and with respect to their brain predictivity
(Conwell et al., 2024). Finally, our findings suggest that the
representational spaces of conventional deep vision models
already capture a high proportion of variance in psychologi-
cal space. While it remains to be seen if this pattern transfers
to DNNs of other modalities, this highlights the potential of
such models to serve as computational proxies for human per-
ceptual generalization after further refinement.

In ongoing and future work, we plan to address several
questions left open by the present study. First, while we found
concave generalization gradients across all tested models, we
observed significant differences between individual models
(see Figure 3). It is crucial to understand if and how dif-
ferences in model architecture, training objective, and train-
ing data influence the degree of adherence to Shepard’s law.
Going forward, we hope to design and train custom mod-
els to help us achieve this. A deeper understanding of the
model characteristics driving alignment with psychological
space and Shepard’s law will not only aid in the development
of more accurate models of human perception and general-
ization but will also inform theoretical accounts of this law.
For instance, by systematically manipulating the model archi-
tecture and/or training procedure, future work could poten-
tially arbitrate between competing accounts of how this law
arises (e.g., Frank, 2018; Sims, 2018; Tenenbaum & Griffiths,
2001).

Furthermore, it is unclear why model embedding spaces
fail to align with psychological space for high-similarity pairs
and whether this deviation is correctable. We aim to employ
several approaches to remedy this deviation. For example,
it is possible that fine-tuning techniques that align the visual
strategies used by deep vision models with human behavioral
data (Fel et al., 2022) will also align their embedding spaces
for high-similarity pairs. Moreover, large language models

4DreamSim, one of the models we tested, was explicitly trained
to predict human similarity judgments. Somewhat surprisingly how-
ever, DreamSim did not perform better than other models.

(LLMs) are increasingly performant predictors of human be-
havior (Binz et al., 2024). Hence, it may be possible to treat
LLMs as though they were participants in a behavioral exper-
iment and replicate the analyses in Marjieh et al. (2024) with
LLM-evaluated similarity judgments. Crucially, in-context
learning (Dong et al., 2024) allows LLMs to learn from ex-
amples in the provided context (and without adjustment of
their weights). This paradigm provides a tool that could repli-
cate the experimental conditions under which human partici-
pants made similarity judgments in Peterson et al. (2018) with
greater precision. This could yield similarity judgments that
more closely mirror the context dependence of human simi-
larity judgments (Medin, Goldstone, & Gentner, 1993; Tver-
sky, 1977).

Finally, we hope to assess the utility of Shepard’s law as
a novel measure of representational alignment. Often, rep-
resentational alignment of deep vision models is measured
through linear probing or correlation with neural data and/or
measures of behavior, such as similarity judgments or recog-
nition task performance, yielding a singular alignment score
(e.g., Schrimpf et al., 2018). Recent work has further sought
to align the representational geometries of deep vision models
to behaviorally derived human similarity spaces (for review
see Sucholutsky et al., 2023). Here, Shepard’s psychological
space could be a useful target of representational alignment.
Parameterizing alignment in this space could offer a more
fine-grained measure that identifies where DNN representa-
tions adhere to human cognitive representations and where
they diverge.

In summary, our study demonstrates that deep vision mod-
els naturally capture a concave generalization gradient, par-
alleling the predictions of Shepard’s universal law. These
findings underscore the potential of model-derived represen-
tational spaces as computational proxies for human percep-
tual generalization, even in the absence of direct training on
behavioral data. Looking forward, we plan to refine our un-
derstanding of the factors that drive alignment between ar-
tificial and psychological spaces and explore the utility of
large language models in replicating human similarity judg-
ments. By integrating insights from computational modeling
and behavioral experiments, we hope to advance a more uni-
fied framework for understanding generalization across both
artificial and biological systems.
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M., Tsvetkov, C., Biscione, V., . . . et al. (2023). Deep
problems with neural network models of human vision.
Behavioral and Brain Sciences, 46, e385.

Burman, P. (1989). A comparative study of ordinary cross-
validation, v-fold cross-validation and the repeated
learning-testing methods. Biometrika, 76(3), 503–514.

5408
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