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I. INTRODUCTION

As part of the summer 2021 HERA/CHAMP program
at the University of Pennsylvania, I was tasked with
building and training a convolutional neural network that
could make prediction about the 21cm signal coming
from the Epoch of Reionization period of the early Uni-
verse. The Epoch of Reionization period occurred ap-
proximately between 200 Million years and 1 Billion years
after the Big Bang. This period in the Universe is par-
ticularly interesting because it is when star formation
began. The yellow rectangle in the 21cm Light-cone in
FIG. 1 highlights the Epoch of Reionization period of in-
terest. It also shows the signal is redshifted. The signal
coming from about 200 Million years after the Big Bang
has redshifts as high as 16 while the signal from about 1
Billion years is consistent with redshifts of 6.

FIG. 1. 21cm Light-cone.

I trained the convolutional neural network using a
Toy Model of the ionization fraction of neutral hydro-
gen. FIG. 2 shows the 128x128 pixel images in the Toy
Model. The first images in the figure is a 2D slice of the
light-cone in FIG. 1 at a particular redshift. The last im-
ages is the ionization fraction of neutral hydrogen with
added background noise that is similar to what HERA
would encounter as it scans the night sky. The Toy Model
consists of 10,000 ionization fraction of neutral hydrogen
images. 8,000 of those images were used to train the con-
volutional neural network and 2,000 images were used to
test the convolutional neural network’s prediction capa-
bilities. For this particular job the network was trained
for a total of 400 epochs. The network performed well
with the training and predicting average absolute errors
resulting under 1%.

In the summer of 2022, I participated in the Re-
search Experiences for Non-Traditional Undergraduates
(RENTU) program at Brown University. I was asked to
perform a fast Fourier transform on the Toy Model im-
ages of the ionization fraction of neutral hydrogen. A fast
Fourier transform coverts the pixel of an image into fre-
quencies called Fourier coefficients. I applied two differ-
ent filters on the fast Fourier transformed Fourier coeffi-
cients to understand which frequencies coefficients could
be blocked and still have enough information to accu-
rately recreate the original pixel images. Then, I used the
convolutional neural network that I used to train the ion-
ization fraction of neutral hydrogen images to train the
filtered fast Fourier transform recreated images. Finally,
I compared the results of the average absolute errors for
the filtered fast Fourier transform recreated images to
the average absolute errors of the ionization fraction of
neutral hydrogen.

The goal of this research was to provide insight on
which frequency coefficients could be discarded while still
having enough data to accurately recreate the original
image. Furthermore, this research could give us a glimpse
into how the Epoch of Reionization period gave birth to
the first stars and galaxies. HERA plans to built a 3D
model of the Epoch of Reionization period using 2D ion-
ization fractions of neutral hydrogen images. I began
training and testing 2D ionization fractions of neutral
hydrogen images using the convolutional neural network
that I built in the summer of 2021. I began with a noise-
less Toy Model made up of 32x32 pixel images of the
ionization fraction of neutral hydrogen. Afterwards, I
increased the image size to 128x128 pixel images and I
added accurate background noise. Now, I’ve performed
a fast Fourier transform on the 128x128 pixel images and
applied filters to the Fourier coefficients of the images.
I trained and tested these images using the same convo-
lutional neural network that used to train and test the
original ionization fraction of neutral hydrogen images.
Finally, I compared the results.

II. A FAST FOURIER TRANSFORM.

A fast Fourier transform coverts the pixel of the im-
age into frequencies called Fourier coefficients. FIG. 3
shows the process of performing a fast Fourier trans-
form on an image of the ionization fraction of neutral
hydrogen. First, the pixels of the original image are con-
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FIG. 2. Toy Model Slice of Ionization Fraction of HI.

FIG. 3. Fast Fourier Transform.

verted into Fourier coefficients in the spectrum image.
The Fourier coefficients spread from lower frequencies in
the corner inwards to the center into higher frequencies.
Then, I utilized the rotational and translation proper-
ties of a Fourier transform to center the zero-frequencies.
The frequency coefficients are centered because it makes
it easier to apply the different circular filters I used to
block certain frequencies. Afterwards the image is fil-
tered, an inverse fast Fourier transform is performed on
the filtered frequency coefficients to return them back
into their spectrum frequency mode. Finally, the orig-
inal image is recreated with the information from the
filtered frequency coefficients. After this process, I ran
the newly filtered fast Fourier transformed 128x128 Toy
Model images through the convolutional neural network
to test whether the filtered frequency coefficients contain
enough information for the network to execute learning
and predicting capabilities to within an acceptable error
margin.

I investigated two types of filters. The first of the fil-
ters was a Low Pass Filter that can be seen in FIG. 4. A
Low Pass Filter blocks high frequency Fourier coefficients
while allowing low frequency Fourier coefficients to pene-
trate the filter. More specifically, this is a 20 pixel radius
Low Pass Filter. As Equation (1) describes, any Fourier
coefficient greater than the radius of the Low Pass Filter
is zeroed out and blocked by the filter. The Fourier co-
efficients that are within the radius penetrate the filter

and are used as data to recreate the original image. The
recreated image appears to focus on the location of the
islands of ionization fraction of neutral hydrogen. This
suggests that the filtered frequency coefficients contain
data on the concentrated areas of mass.

G(x, y) =

{
1 if F (x, y) ≤ G0

0 if F (x, y) ≥ G0
(1)

I applied 5 different Low Pass Filter sizes to the Fourier
coefficients of the fast Fourier transform images. Then, I
trained and tested the convolutional neural network us-
ing the filtered Toy Model images. I began with a 20
Low Pass Filter and increased the filter size by incre-
ments of 10 until I reached the 90 Low Pass Filter. The
90 Low Pass Filter has a greater radius than the images
therefore it is like not applying a filter at all. I trained
and tested these filter Toy Model for 100 epoch each.
Moreover, I logged the average absolute errors for each
increasing Low Pass Filter in increments of 10 epoch un-
til I reach 100 epoch to study the prediction capabilities
as the filters decreased in size. additionally, a Low Pass
Filter can help reduce the noise level within the pixels of
the images. If the Low Pass Filter images are success-
fully trained and the convolutional neural network can
accurately make prediction then, it is an indication that
the most important information is located in the lower
frequencies of the Fourier coefficients.
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FIG. 4. Low Pass Filter.

FIG. 5. High Pass Filter.

G(x, y) =

{
0 if F (x, y) ≤ G0

1 if F (x, y) ≥ G0
(2)

I also investigated how a High Pass Filter, which can be
seen in FIG. 5, could affect the recreation of the original
image. Unlike the Low Pass Filter, a High Pass Filter
blocks low frequency Fourier coefficients while allowing
high frequency Fourier coefficients to pass through the fil-
ter. The piece-wise function is Equation (2) shows that
the filter blocks all Fourier coefficients within the sug-
gested radius input by zeroing those Fourier coefficients
while allowing Fourier coefficients outside that radius to
penetrate the filter. For example FIG. 5, demonstrates a
20 pixel radius High Pass Filter. As you can see, the filter
blocks most of the centered lower frequency Fourier coef-
ficients resulting in a recreated image that is sharper than
the Low Pass Filter image. This suggests that the high
frequency Fourier coefficients contain information regard-
ing the outline of the islands in the image while the lower
frequency coefficients contain information about the lo-
cation of the islands in the image. If these types of filter
images are successfully trained and tested then, it is an
indication that the important information is located in
the higher frequency coefficients.

III. CONVOLUTIONAL NEURAL NETWORK.

A convolutional neural network is a machine learning
algorithm. The algorithm learns from given data and

FIG. 6. Convolutional Neural Network.

makes predictions about future unseen data. FIG. 6 is an
example of how a convolutional neural network can learn
and make predictions. First, a convolutional layers scans
the 2D image using a specified nxn filter. Then, the net-
work makes use of a MaxPooling command which puts an
emphasize on the important features of the image. This
process repeats itself multiple times to properly scan the
image. After the image is properly scanned, the Flatten
Layer takes the image array and converts it into an infor-
mation vector. This vector passes down the information
to the Dense Layers. Dense Layers are fully connected
inputs that preform most of the learning process. Finally,
the last dense layer makes a prediction based on the in-
formation it has learned. In the case of FIG. 6, the car
is identified from other types of transportation vehicles.
The convolutional neural network in FIG 7 is the net-

work that I used to train all of the different types of Toy
Models I’ve built. The first convolutional layer starts of
with 64 inputs that associate a value to each pixel. The
kernel size command is the 3x3 filter used to scan the
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pixels of the image. The ’relu’ activation function is a
piece-wise function that keeps the values between 0 and
1. The input shape dictates the size of the images and
for the purpose of this project the images are 128x128
pixel images. Padding ’same’ ensures all the pixels are
scanned by the filter.

FIG. 7. Convolutional Neural Network.

After the first convolution of the images, I used the
MaxPooling command to emphasize the important fea-
tures of the original images. I wanted to make sure I
captures as much information as possible in the first con-
volution. Then, the convolved images are passed down to
the next convolution layer. I used a Dense Layer before
the second convolutional layer to help the inputs of the
layer to deal with the large set of incoming parameters.
The 32 inputs scan the convolved images with a 3x3 filter
however, I did not pad the images for this layer. Instead,
I ignored the pixels on the edge. This helps with the re-
duction of the image size. After the convolution, I used
the MaxPooling command one more time. The scanning
process repeats itself as the inputs decrease and images
approach the Flatten Layer. The final 2 input convolu-
tion uses a 1x1 filter to ensure the final convolved images
are scanned thoroughly to gather as much information as
possible before converting the 2D image array into a vec-
tor. The final dense layer makes the prediction while also
converting the results into an easy to understand linear
function.

IV. RESULTS.

I logged the results for 8 different Low Pass Filters. I
trained these filtered image sets for 100 Epoch at 107s
Epoch each. This resulted in a total training time of
2.97hrs for each training set. I began with a 20 pixel ra-
dius Low Pass Filter because a 10 radius Low Pass filter
did not collect enough information for the convolutional
neural network to train. As the legend in FIG. 8 displays,
I started with a 20 pixel radius Low Pass Filter and I in-
creased the radius of the filter in increments of 10 up to
the 90 Low Pass Filter. The 20 Low Pass Filter blocks all
frequency Fourier coefficients outside of a 20 pixel radius.

The first 10 training Epochs resulted in an average ab-
solute error of 0.0980 (9.80%). This is the third highest
start for an average absolute training error of a Low Pass
Filter. After 100 Epoch, the network committed fewer
errors with a 0.0185 (1.85%) average absolute training
error. This filtered set trained well but was not the best.

The 90 radius Low Pass Filter was expected to per-
form well however, it was not the case. It was expected
to perform well because the filter’s radius is greater than
the radius of the images which allows all Fourier coeffi-
cients pass through the filter. Instead, the average abso-
lute training error for the first 10 Epochs was the second
highest training error at 0.1050 (10.5%). The average ab-
solute training error after 100 Epoch was 0.0312 (3.12%).
This was the highest average absolute error after train-
ing the network for 100 epoch. A possible reason for
this higher error after 100 Epoch could be the result of
noise that the convolutional neural network encountered
during the training process.

The best performing training image set was the 40 ra-
dius Low Pass Filter training set. This set of filtered im-
ages has the best starting average absolute training error
at 0.0556 (5.56%) for 10 Epoch. I believe this filter per-
formed best because it allowed the right combination of
low and high frequency Fourier coefficients to penetrate
the filter. After 100 epochs, the 40 radius Low Pass Filter
also performed best with an average absolute training er-
ror of 0.00118 (0.118%). The training process suggested
that the lower frequency Fourier coefficients could poses
the important information.

The validation results for the Low Pass Filters in
FIG.9represent the prediction capability of the convolu-
tional neural network. The network was presented with
2,000 images it did not see in the training process and it
was asked to classify the images. Even though the 20 ra-
dius pixel Low Pass Filter performed well in the training
process it did not translate into the validation process.
The average absolute validation error for 10 Epoch was
0.0999 (9.99%). However, the average absolute valida-
tion error for 100 epoch only reach 0.0462 (4.62%). This
was the second highest validation error after a 100 Epoch
training. The reason for this high error could be a result
of blocking to many low frequency Fourier coefficients.

Moreover, the 90 radius Low Pass Filter average abso-
lute validation error began with an error 0.118 (11.8%).
After 100 Epoch the average absolute validation error was
0.0501 (5.01%). This was the highest validation error for
all the Low Pass Filters. I believe the higher error could
be caused by the high frequency Fourier coefficients. The
40 radius Low Pass Filter performed the best during the
training process and the validation process. It started
with the best average absolute validation error for all
the Low Pass Filters at 0.0582 (5.82%) for the first 10
Epochs. The average absolute validation error for 200
epoch was 0.0118 (1.18%). I believe this set of images
trained well because it had a good balance of low and
high frequency Fourier coefficients.

To test my theory about low frequency Fourier coeffi-
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cients I experimented with High Pass Filters. The High
Pass Filters blocked frequency Fourier coefficients inside
the selected radius area. As the legend in FIG. 10 shows,
I trained 7 High Pass Filters. I began with a zero High
Pass filter. It allowed all Fourier coefficients to pene-
trate the filter. Then, I increased the filter sizes up to
a 20 radius High Pass Filter. The convolutional neu-
ral network became increasingly difficult to train after a
20 radius High Pass Filter. The zero High Pass Filter
set of images performed well with the second best start-
ing average absolute training error of 0.1045 (10.45%).
The average absolute training error after 100 epoch was
0.0237 (2.37%). The best performing filter was the 5 ra-
dius High Pass Filter. It had the best starting average
absolute training error at 0.0632 (6.32%) This could be
because the center of the fast Fourier transform images
have a small amount of high frequencies and blocking
them can help the network perform better. After 100
Epoch, this filtered set reach an average absolute train-
ing error of 0.0168 (1.68%).

On the other hand, the 20 radius High Pass Fil-
ter struggled to obtain any useful information to train
the convolutional neural network. The average absolute
training error was the highest at 0.3231 (32.31%). The
network did not perform much better over time. After
100 Epoch, the convolutional neural network committed
an average absolute training error of 0.2581 (25.81%).
This was the highest error for the entire High Pass Filter
training set. As you can see, the convolutional neural
network struggled to train as the filter increases in size.
This data supports my theory that the most important
information on these filtered fast Fourier transformed im-
ages are the low frequency Fourier coefficients.

As FIG. 11 shows, the results for the High Pass Fil-
ter validation error is very similar to that of the training
results for the High Pass Filters. Surprisingly, the best
performing High Pass Filter is the 5 radius High Pass
Filter. It began with an average absolute error at 0.068
(6.80%) for 10 Epoch. However, at 100 Epoch, the val-
idation was still committing a 0.0248 (2.48%). The 15
High Pass Filter was very chaotic during the training
and validation processes while the 20 radius High Pass
Filter performed unfavorable. The filter failed to collect
enough information from the Fourier coefficients to train
well. This translated into the validation process by hav-
ing errors go from 0.3283 (32.83%) to 0.2683 (2683%) in
100 Epoch. This further re-enforces my theory about low
frequency Fourier coefficients. It appears that the low fre-
quency coefficients contain the majority of the important
information in these fast Fourier transformed images.

I decided to train a couple of Low Pass Filters for more
than 100 Epoch to investigate whether the convolutional

neural network’s learning and prediction capabilities in-
creased over a longer period of time. First, I ran the
90 radius Low Pass Filter for 200 Epoch. The curve for
the 90 radius Low Pass Filter can be seen the right of
FIG. 12. It shows that the learning and predicting ca-
pabilities are chaotic for the first 100 Epoch but level
out after 100 Epoch. The training average absolute error
after 200 Epoch was 0.0072 (0.72%). This was a great
result but the validation error was 0.0368 (3.68%). This
means that while the networked learned from the fea-
ture overtime those features did not help to increase the
prediction capabilities.
Furthermore, I ran the 40 radius Low Pass Filter im-

age set for 360 Epoch. I wanted to investigate how many
Epochs does it take to stabilize the learning and pre-
diction capabilities of the convolutional neural network.
The graph on the left of FIG. 12 shows that the net-
work continues to learn but the prediction capabilities
plateaus at about 100 Epoch. The average absolute val-
idation error after 360 Epoch was 0.0175 (1.75%) while
the average absolute validation error for 100 Epoch was
0.0118 (1.118%). Similar to the 90 radius Low Pass Fil-
ter, the network continued to learn overtime however, it
did not help to increase the prediction capabilities.
Finally, I compare the results for the ionization frac-

tion of neutral hydrogen Toy Model images with that of
the fast Fourier transform filtered images. I trained the
ionization fraction of neutral hydrogen images for 500
Epoch which resulted in an average absolute training er-
ror of 0.0035 (0.35%). Moreover, the average absolute
validation error was 0.0060 (0.60%). The total training
time was 14.86hr. On the contrary, I trained the fast
Fourier transformed filtered images for 100 Epoch and a
total training time of 2.97hr. The results for the average
absolute training error of the 40 radius Low Pass Filter
was 0.118 (1.18%) and The average absolute validation
error was at 0.0158 (1.58%). We are giving up a 1% error
for about an 11hr reduction in training time.

V. CONCLUSION

The convolutional neural network trained and pre-
dicted better under the Low Pass Filter images than the
High Pass Filter images. This data suggests that the im-
portant frequencies in the fast Fourier transform images
are the lower Fourier coefficient frequencies. Further-
more, the convolutional neural network trained about
11hrs faster on the fast Fourier transform images than
it did with the original ionization fraction of neutral hy-
drogen images. However, this large reduction in training
time comes at a cost of about a 1% error increase.
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FIG. 8. 20-90 Low Pass Filter Training Errors.

h!

FIG. 9. 20-90 Low Pass Filter Validation Errors.
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FIG. 10. 0-20 High Pass Filter Training Errors.

FIG. 11. 0-20 High Pass Filter Validation Errors.
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FIG. 12. Low Pass Filters Greater Than 100 Epoch Results.

FIG. 13. CNN Result Comparison.


