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Density-matrix renormalization-group analysis of quantum critical points: Quantum spin chains
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We present a simple method, combining the density-matrix renormalization-group algorithm with finite-size
scaling, which permits the study of critical behavior in quantum spin chains. Spin moments and dimerization
are induced by boundary conditions at the chain ends and these exhibit power-law decay at critical points.
Results are presented for the spin-1/2 Heisenberg antiferromagnet; an analytic calculation shows that logarith-
mic corrections to scaling can sometimes be avoided. We also examine the spin-1 chain at the critical point
separating the Haldane gap and dimerized phases. Exponents for the dimer-dimer and the spin-spin correlation
functions are consistent with results obtained from bosonization.
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I. INTRODUCTION

Quantum critical points are characterized by fluctuatio
over all length and time scales and by the appearanc
power-law scaling. In this paper we present a simple
powerful numerical method to access quantum critical po
in one-dimensional systems. The method combines
density-matrix renormalization-group~DMRG! algorithm
and finite-size scaling ideas. We illustrate the method
applying it to several well-understood quantum spin cha
In a second paper to follow we apply the method to differ
classes of supersymmetric spin chains which describe v
ous disordered electron systems.1

The development of the density-matrix renormalizatio
group ~DMRG! algorithm by White2 represented an impor
tant improvement over previous numerical methods for
study of low dimensional lattice models. It has been appl
to a wide variety of systems.3 The DMRG approach was
used to study the ground-state properties and low-energy
citations of one-dimensional chains. It has been extensiv
applied to the study of various spin chains. Low-lying e
cited states of the spin-1~Refs. 4–6! and spin-1/2~Ref. 7!
Heisenberg antiferromagnets have been calculated. Likew
spin-1 chains with quadratic and biquadratic interactions,8,9 a
spin-2 antiferromagnetic chain,10,11 spin-1/2 and spin-1
chains with dimerization and/or frustration~next-nearest-
neighbor coupling!,12–16 and frustrated spin-3/2 and spin-
chains17 have all been studied. Edge excitations6,10,18,19at the
ends of finite spin chains and the effects of perturbati
such as a weak magnetic-field coupled to a few sites20 have
been considered. Randomness in the form of random tr
verse magnetic field in a spin-1/2XY model,21 random ex-
change couplings,22 and random modulation patterns of th
exchange,23,24 has been examined. Finally, alternating sp
magnitudes,25 the presence of a constant,26 or a staggered27

magnetic field in a spin-1 chain, bond doping,28 the effects
of a local impurity,29 and interactions with quantum
phonons30,31 have also been considered.

Most of the above work involves systems in which t
first excited state is separated from the ground state b
nonzero energy gap as the DMRG works best for gap
systems. Early attempts to extract critical behavior of gap
systems used the DMRG to generate renormalization tr
PRB 620163-1829/2000/62~9!/5546~12!/$15.00
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formations of the coupling constants in the Hamiltonian.32,33

Hallberg and co-workers34 studied the critical behavior o
S51/2 andS53/2 quantum spin chains with periodic boun
ary conditions through extensive calculations of ground-s
correlation functions at different separations and differ
chain sizesL. Spin-correlation functions in an open cha
have also been calculated and compared with results ca
lated from low-energy field theory, showing that estimates
the amplitudes can also be obtained.35 The approach de-
scribed in this paper was applied to the spin-1/2 Heisenb
chain and a non-Hermitian supersymmetric~SUSY! spin
chain.36 More recently, critical behavior of classical one
dimensional reaction-diffusion models37 and the two-
dimensional Potts model38 has been studied using the finite
size DMRG algorithm. Bulk and surface exponents of t
Potts and Ising model have been obtained by using
DMRG to calculate correlation functions at different sepa
tions and collapsing curves obtained at different syst
sizes.39 The SUSY chain describing the spin quantum H
effect ~SQHE! plateau transition was also examined in som
detail. Critical exponents were extracted40 and compared to
exact predictions.41 Thermodynamic properties of other two
dimensional classical critical systems have also been stu
by the DMRG method.42–44Finally, Andersson, Boman, an
Östlund investigated the convergence of the DMRG in
thermodynamic limit for a gapless system of noninteract
fermions.45

The method described in this paper combines the DM
algorithm with finite-size scaling analysis, and yields acc
rate critical exponents. The main advantage of the metho
its simplicity. Only the calculation of ground-state correl
tions near the middle of chains with open boundary con
tions are required. The relatively simple ‘‘infinite-size
DMRG algorithm2 is particularly accurate for this job. In
Sec. II we describe the method. The tight-binding model c
be solved exactly and in Sec. III we use it to illustrate o
scaling analysis. DMRG results are presented in Sec. IV
the anisotropicS51/2 Heisenberg antiferromagnet and se
eral critical exponents are obtained. An analytical calculat
shows that multiplicative logarithmic corrections—whic
complicate the extraction of accurate critical exponents
may be avoided in some instances. In Sec. V, theS51 an-
tiferromagnetic spin chain is studied, focusing on the criti
5546 ©2000 The American Physical Society
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PRB 62 5547DENSITY-MATRIX RENORMALIZATION-GROUP . . .
point that separates the Haldane and the dimerized pha
We conclude with a summary in Sec. VI.

II. DMRG ÕFINITE-SIZE SCALING APPROACH

We first describe how critical exponents may be obtain
from a finite-size scaling analysis of chains with open
fixed boundary conditions. These boundary conditions
the simplest to implement in DMRG calculations. In the ne
subsection the DMRG algorithm itself is briefly described

A. Finite-size scaling

To illustrate the sorts of power-law scaling we wish
examine, first consider the case of a spin chain with perio
boundary conditions that is at its critical point. The syste
can be moved away from criticality by turning on a unifor
magnetic field, say in thex direction, at each site:

HB5h(
j 51

L

Sj
x . ~1!

This perturbation makes the correlation length finite:

jB}uhu2nB. ~2!

Explicit dimerization, breaking the symmetry of translatio
by one site, also moves the system away from criticality.
a Heisenberg antiferromagnet, this can be realized by
addition of a staggering termR to the Hamiltonian

H5 (
j 51

L21

@11~21! jR#SW j•SW j 11 . ~3!

The correlation lengthj in this case scales as

j}uRu2n. ~4!

Thus there are two independent exponents which corresp
to these two perturbations of critical spin chains. Tw
parameter scaling functions can be written for various
servables and, for a finite system, these involve two dim
sionless variables: the ratiosL/j and L/jB . The induced
dimerization, defined for now as the modulation of thex-x
andy-y spin-spin correlations on even versus odd links,

D5~21! j@^Sj
xSj 11

x 1Sj
ySj 11

y &2^Sj 21
x Sj

x1Sj 21
y Sj

y&#,
~5!

is of course independent of the site index for periodic cha
and scales as a function of the chain lengthL, the fieldh, and
the dimerization parameterR as

D~L,R,h!5sgn~R!uRuaD f D~LuRun,LuhunB!. ~6!

When the applied magnetic field is removed,h50, and this
expression simplifies to

D~L,R!5sgn~R!uRuaDgD~LuRun!

;LxDR as R→0, ~7!

where the second line follows from the fact that when
perturbationR is very small, or equivalently when the corre
lation length is larger than the system size, the net indu
es.
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dimerization must be an analytic, linear, function ofR.
Therefore, foruxu!1, the scaling functiongD(x) is given by

gD~x!5uxu2aD /n~a1uxu1/n1a2uxu2/n1••• !; ~8!

the first term yields linear dependence ofD in R in the R
→0 limit, in agreement with Eq.~7!, and the subsequen
terms are higher-order corrections. To recover the correL
dependence, we must set

xD5
12aD

n
. ~9!

The exponentxD and the correlation length exponentn sat-
isfy the usual relation

n5
1

22xD
. ~10!

The applied magnetic field also polarizes the spins alo
the chain. The scaling form for the spin moment at each
is given by

^Sx&5sgn~h!uhuaBf B~LuRun,LuhunB!. ~11!

With no applied dimerization,R50, and we expect the
simple power law

^Sx&;LxBh as h→0. ~12!

ThereforexB5(12aB)/nB .
Alternatively, dimerization can be induced by ope

boundary conditions, and we take advantage of this fac
extract critical exponents. As depicted in Fig. 1, open bou
ary conditions favor enhanced nearest-neighbor spin-s
correlations on the two outermost links. Chains of increas
lengthL54,6,8, . . . exhibit alternating patterns of dimeriza
tion on the interior bonds. Likewise, spin moments may

FIG. 1. Extraction of critical behavior from finite-size effect
Dimerization of the nearest-neighbor spin-spin correlation functi
indicated here by alternating strong~solid! and weak ~dashed!
bonds, is induced by the open boundary conditions. Spin mom
are induced by the application of a magnetic field of strength6h to
the two spins at the ends of the chains.



tic
e
e

ely
m
w

nt

n
m
n
in
th

o

s
r-

a
f

is
ra
fo
s
o
in
ne
tu
G
a

e

’’
in
th

sit

-
th
a
e
ni
e

en

of

by
e
lf
trix
d as
s

e re-
a

d to
eld-
by
ew

wo,
ve
til
eds

ons
ost

r is
rre-
po-
ap.
vi-
RG
tral
ore
c-

lcu-
or

g
in-

G
of

y 2.

5548 PRB 62SHAN-WEN TSAI AND J. B. MARSTON
induced in the interior of the chain by applying a magne
field to the ends of the chain. Strong applied edge magn
fields completely polarize the end spins and induce nonz
and alternating spin moments along the chain. Alternativ
spin moments can be induced as before by a staggered
netic field applied along the entire chain. Here, however,
consider only edge magnetic fields.

We monitor the induced dimerization and spin mome
at the center of the chain as the chain lengthL is enlarged via
the DMRG algorithm. This scaling analysis is convenie
because the relatively simple infinite-size DMRG algorith
applies to open chains and is most accurate at the ce
region of the chain where we focus our attention. The
duced dimerization and spin moments in the interior of
chain show power-law scaling at the critical point.46 Igloi
and Rieger demonstrated power-law scaling for a variety
open boundary conditions~free, fixed, and mixed!.47 At the
critical pointR50 andh50 the induced dimerization scale
as a power law with possible multiplicative logarithmic co
rections:

D~L/2!5L2xD~ ln L !yDS a1
b

L
1••• D . ~13!

A similar expression holds for the induced spin moment
the center of the chain,̂Sx(L/2)&, with the replacement o
the exponentsxD→xB andyD→yB .

B. Infinite-size DMRG algorithm

The name ‘‘density-matrix renormalization-group’’
something of a misnomer as the method is most accu
away from critical points, when there is an energy gap
excitations. It is helpful to think of the DMRG algorithm a
a systematic variational approximation for the calculation
the ground state and/or low-lying excitations, principally
one dimension. The Hilbert space of a quantum chain ge
ally grows exponentially with the chain length, and even
ally must exceed available computer memory. The DMR
algorithm is an efficient way to truncate the Hilbert space;
the size of the space retained can be varied~up to machine
limits! it is possible to ascertain the size of errors introduc
by the truncation.

For simplicity, we use the so-called ‘‘infinite-size
DMRG algorithm.2 As the algorithm has been described
some detail by White, we just sketch the essentials of
method. It begins with the~numerically exact! diagonaliza-
tion of an open chain consisting of just four sites, each
having on-site Hilbert space of dimensionD. For quantum
spin chainsD52S11, thusD52 for the spin-1/2 Heisen
berg antiferromagnet. The chain is then cut through
middle into two pieces, one-half of which is interpreted
the ‘‘system’’ and the other half as the ‘‘environment,’’ th
two parts combined being thought of as the entire ‘‘u
verse’’ of the problem, see Fig. 2. At this point the reduc
density matrix for the system of sizeDM3DM is con-
structed by performing a partial trace over the environm
half of the chain. It is defined by

r i j 5 (
i 851

DM

C i i 8C j i 8 , ~14!
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whereC i i 85^ i i 8uC& are the real-valued matrix elements
the eigenstate of interest~the ‘‘target’’ which is often the
ground state! projected onto a basis of states labeled
unprimed Roman indexi which covers the system half of th
chain and primed indexi 8 which covers the environment ha
of the chain. The eigenvalues of the reduced density ma
are real, positive, and sum up to one; these are interprete
probabilities. We keep only theM most probable eigenstate
corresponding to the largest eigenvalues, and discard th
maining M (D21) eigenstates. The retained states form
new basis for the problem. Next, two new sites are adde
the middle of the chain and the pieces are connected, yi
ing a chain of sizeL56. The process is then repeated
finding the targeted state of this chain, constructing the n
reduced density matrix and again projecting onto theM most
probable states. As the chain length grows in steps of t
the total Hilbert space dimension grows by a multiplicati
factor ofD2. None of the Hilbert space is thrown away un
the chain grows large enough that its Hilbert space exce
the space that is held in reserve, in other words untilDL

.D2M2. The truncation process damages the outer regi
of the chain the most, and the central region is treated m
accurately.

One advantage of the method presented in this pape
that critical exponents are extracted from ground-state co
lations only. Excited states are not needed for these ex
nents and there is no need to calculate the excitation g
Furthermore, the finite-size analysis described in the pre
ous subsection takes advantage of the fact that the DM
algorithm works best with open chains and treats the cen
region of the chain most accurately. The use of the m
complicated finite-size algorithm might yield even more a
curate results. However, we show below that we can ca
late critical exponents to an accuracy of a few percent
better with the infinite-size algorithm.

III. TIGHT-BINDING MODEL AT HALF FILLING

As a simple first illustration of our finite-size scalin
method we study the ordinary tight-binding model of sp

FIG. 2. Schematic of one iteration in the infinite-size DMR
algorithm. At each step, a ‘‘new block’’ is formed for each half
the chain~the ‘‘old block’’ plus one additional site! and two more
sites are added in the middle of the chain, increasing its length b
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less fermions hopping from site to site along a chain at h
filling. Obviously, the DMRG algorithm is not needed in th
case as we can solve the quadratic problem exactly v
Fourier transform. Due to particle-hole symmetry, at h
filling the chemical potential is zero. The correlation leng
exponent for this system isn51. A direct way to see this is
by introducing the staggering parameterR to modulate the
amplitude of the hopping matrix elements on even ver
odd links:

H5t (
j 50

L21

@11~21! jR#~cj
†cj 111H.c.!. ~15!

To diagonalize the Hamiltonian, in the case of period
boundary conditionsc05cL , we introduce separate fermio
operators for even and odd sites as follows:

c2 j5d2 j ,

c2 j 215e2 j . ~16!

After the Fourier transformation to momentum space,
Hamiltonian can be written as

H5t(
k

$@~12R!1e2ik~11R!#dk
†ek

1@~12R!1e22ik~11R!#ek
†dk%, ~17!

where the lattice spacinga51. For eachk, diagonalization
of the 232 matrix yields the dispersion relation

ek562tA12~12R2!sin2~k!. ~18!

At half filling the ground state has all states withek,0 oc-
cupied. The left and right Fermi points are, respectively,kF
56p/2. Hence the gapm52tuRu. As the correlation length
j}m21}uRu21 we obtainn51. Sincen21522xD51, the
dimerization exponentxD51.

We now reproduce this result using the finite-size scal
method applied to open chains. We consider a finite chai
length L with open boundary conditions and calculate t
induced dimerization D( j )5(21) j^cj

†cj 112cj 11
† cj 12&

around the chain centerj 5L/2, and extract its leading de
pendence onL. Open boundary conditions are imposed
using the Fourier transform

cj5
1

A2~L11!
(

m51

L

ckm
~eikmj2e2 ikmj !,

km5
p

L11
m, m51,2, . . . ,L ~19!

as this enforcesc05cL1150. Filling all of the negative en-
ergy states at half filling, the expectation value of the dim
ization atL/2 can be found by straightforward calculation

D~L/2!}
1

L11 (
m5

L
2 11

L

$cos@km~L13!#2cos@km~L11!#%.

~20!
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This sum can be evaluated numerically with the result t
xD→1 asL→` as shown in Fig. 3, in agreement with th
explicit calculation for the periodic chain. It is also easy
show that open chains with an odd number of sites h
vanishing induced dimerization at the center of the chain
expected by the symmetry of reflection about the central s

The induced density moment can likewise be obtain
either directly by studying the effects of a staggered che
cal potentialmstag ~which doubles the size of the unit ce
from one to two sites and thus generates a gapm
52umstagu) or by the inclusion a local chemical potentialm
at the two ends of the chain:

H→H2m~c0
†c01cL21

† cL21!. ~21!

Again the system consists ofL sites, the site index running
from 0 to L21, and there are open boundary condition
j 50 and j 5L21. For largem@0, the boundary condition
is equivalent to enforcing unit occupancy at the chain en
n05nL2151. This boundary condition is satisfied by th
Fourier transform

cj5
1

A2~L21!
(

m50

L21

ckm
~eikmj1e2 ikmj ! ~22!

with

km5
p

L21
m, m50,1, . . . ,L21. ~23!

Again it is a simple exercise to calculate the occupancies
the chain ends we obtain:^c0

†c0&5^cL21
† cL21&51 in agree-

ment with the boundary condition. At the center of the cha
the occupancy can be evaluated analytically,

^c†~L/2!c~L/2!&5
1

L21 (
m5L/2

L21

@11cos~kmL !#. ~24!

FIG. 3. Induced dimerization in the tight-binding model. A log
log plot of the dimerization at the center of the chain@Eq. ~20!# is
shown as a function of the chain lengthL. For more complicated
systems, the DMRG algorithm is employed to calculateD(L/2)
numerically. In the inset, the dimerization exponent calculated fr
the slope of the curve shown in the main graph is plotted as fu
tion of 1/ln(L). For smallL there are subleading corrections to sc
ing, butxD→1.0 as the chain length increases.
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It scales aŝ c†(L/2)c(L/2)&21/2}L21. HencenB5xB51
in agreement with the direct calculation of these expone

IV. SPIN-1Õ2 ANTIFERROMAGNET

We next turn to the study of a richer system: spin-1
antiferromagnetic chains. We begin with theXY model,
which can be solved exactly by a Jordan-Wigner mapping
the tight-binding model. We then study the anisotropicXXZ
model. The isotropic Heisenberg model is treated separa
as there are complicating multiplicative logarithmic corre
tions to scaling at the isotropic point.

A. XY model

The Hamiltonian for the spin-1/2XY model,

H5J(
j 50

L22

@Sj
xSj 11

x 1Sj
ySj 11

y #, ~25!

can be written in terms of spinless fermion creation and
nihilation operators cj

† and cj via the Jordan-Wigner
transformation.48 An up spin in thez direction at sitei then
corresponds to having the site occupied by a fermion, w
spin down corresponds to an empty site. The Hamiltonian
Eq. ~25! is mapped to a nearest-neighbor tight-bindi
Hamiltonian witht5J. Based on our analysis in the previou
section we can conclude thatn51 for theXY model.

Figure 4 presents our DMRG results for the induc
dimerization and induced spin moments, in thex and in thez
directions, at the center of the chain as a function of
chain lengthL. The exponents are obtained from the slop
of the curves shown in Fig. 4. The induced dimerizati
exponent forD(L/2) is close to 1 (xD50.9960.01) as ex-
pected from the relationn51/(22xD). The slope of the log-
log plot of the induced spin moment in thez direction is also
close to 1 (xB51.0160.02). This result is also expecte
since it is equivalent to the exponent for the induced den

FIG. 4. Log-log plots of induced dimerization and induced sp
moments in thez direction andx direction~with the edge magnetic
field applied in thez and in thex directions, respectively! at the
center of the chain for the spin-1/2XY model. The magnitude o
the applied edge magnetic field ish51.0 in both cases and th
number of block states kept isM5128.
s.
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-
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moment in the tight-binding model as discussed in the p
vious section. In the case of the induced spin moment in
x direction, the exponent is 0.24860.003. This value com-
pares well with the exact number of 1/4 as derived in
next section.

B. XXZ model

Next consider the nearest-neighbor, spin-1/2XXZ
Heisenberg antiferromagnet:

H5J(
j 50

L22

@Sj
xSj 11

x 1Sj
ySj 11

y 1gSj
zSj 11

z #. ~26!

Anisotropy in the coupling between thez components of the
spins may be varied by changingg. Performing the Jordan
Wigner transformation, theXY terms again yield the tight-
binding Hamiltonian. Low-energy excitations therefore o
cur near the two Fermi points atk56p/2a. We may treat
the non-Gaussiang term as a perturbation and focus on e
citations around these Fermi points by defining left and ri
moving low-energy quasiparticles. Taking the continuu
limit and keeping only the low-energy modes, the tigh
binding term is then effectively described by the massl
fermions. TheSj

zSj 11
z term is quartic in the fermion opera

tors. Integrating out the high-energy modes, it will renorm
ize the fermion velocity and also contain interaction term

We then implement Abelian bosonization, with UV cuto
a. The effective Hamiltonian is a sine-Gordon model~a deri-
vation can be found in Ref. 49!:

H5H02
yf

2pa2E dx cos@A8pf~x!#, ~27!

where

H05uE dxFKP21
~]xf!2

K G . ~28!

Here u52Ja52a is the bare Fermi velocity and the con
stantK[11y0/2 depends on the anisotropyg. TheXY limit
correspond toyf50.

The long-distance behavior of the staggered part ofSz and
S2 are given in terms of the boson fields as

Sz~x!'~21!x/acos@f~x!/R#,

S2~x!'~21!x/aei2pRf̃(x), ~29!

where the radiusR is given by49

R5A 1

2p
2

cos21g

2p2
. ~30!

First consider the anisotropic caseg5” 1. The isotropic case
has logarithmic corrections to scaling that are dealt with
the next section. Forg.1 the interaction term is relevan
and the system is gapped, and in the Ising universality cl
Indeed, in the limitg→` it is the Ising model. Forg,1 the
interaction term is irrelevant, the system is gapless a
D(L/2) and^Sx(L/2)& should exhibit power-law decay, with
no log corrections as there are no marginal operators.
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log-log plots of Fig. 5~a! show the induced spin moment i
the x direction at the chain center for different values of t
anisotropyg. The edge magnetic field in thex direction is
fixed, h51.0. As expected, forg.1 there is exponentia
decay and in the casesg,1 the exponentsxB(g) are found
by fitting the curves in Fig. 5~a! to the form of Eq.~13!. The
exponentsyB are set equal to zero, the higher-order corr
tions are included and give very small deviations from
simple linear fit. In Fig. 5~b! the exponentsxB(g) are com-
pared to the exact valuexB(g)5pR2(g) obtained by
Affleck.50 Agreement is found at the percent level. Afflec
derived the exponent as follows. The edge magnetic field
the x direction applied atj 50 corresponds to a term

HB52hSx~0!52const3h cos@A2pf̃~0!# ~31!

in the Hamiltonian. For sufficiently largeh the energy is
minimized by setting

f̃~0!50⇒fR~0!5fL~0!. ~32!

FIG. 5. Spin-1/2XXZ Heisenberg antiferromagnetic chain.~a!
DMRG results (M5128 andh51.0) for the induced spin momen
in the x direction at center of chain for different values of aniso
ropy g, showing power-law decay forg<1 and exponential deca
for g.1 and~b! corresponding exponentxB(g) for g,1. The solid
line is the exact valuepR2(g). The exponents are obtained b
fitting the curves in~a! to the form of Eq.~13! with yB50 since
there are no logarithmic corrections away from the isotropic po
-

in

RegardingfR as an analytic continuation offL , we may
identify

fR~x!5fL~2x!. ~33!

Using this boundary condition, the induced spin momen
given by

^Sx~ j !&'~21! j /a^ei2pRfL( j )e2 i2pRfL(2 j )&'
~21! j /a

~2 j !pR2(g)
.

~34!

For theXY model (g50), the induced spin moment in thex
direction therefore decays with exponentpR2(0)51/4.

A log-log plot of the induced dimerization at the center
the chain for various values of the anisotropyg is shown in
Fig. 6~a!. The free boundary condition at the chain ends c
responds to setting

SW 05SW L1150. ~35!

This condition translates tofR(x)52fL(2x)1pR in
terms of the boson fields51 which yields

D~ j !'~21! j /a^cos@f~ j !/R#&'
~21! j /a

~2 j !1/4pR2(g)
. ~36!

t.

FIG. 6. Spin-1/2XXZ Heisenberg antiferromagnetic chain.~a!
DMRG results (M5128) for the induced dimerization at center
chain for different values of anisotropyg and ~b! corresponding
exponentxD(g), obtained by fitting to Eq.~13! with yD50. The
solid line is the exact value 1/4pR2(g).
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In Fig. 6~b! the exponents obtained from the slopes of
curves in Fig. 6~a! are plotted against the exact valuesxD

51/4pR2(g). Again agreement is found at the percent lev
Another quantity of interest is the sum, instead of t

difference, of the spin-spin correlation function on adjac
bonds near the center of the chain:

e~L/2![
1

2
~^SW L/2•SW L/211&1^SW L/221SW L/2&!, ~37!

which atg51 equals the energy density per bond and the
fore does not vanish in the thermodynamic limit. Figure 7
a plot of e(L/2) as a function of the system sizeL at the
isotropic pointg51.

As expected, this quantity approaches a constant v
e(`) in the thermodynamic limit. After subtracting the e
trapolated value atL→`, e(L/2) too exhibits power-law
decay of the form of Eq.~13!. The constante(`) can be
found by an iteration process. Starting with an initial val
for e(`) obtained from a rough extrapolation of the curve
Fig. 7, we fit the subtracted valuee(L/2)2e(`) to a power-
law form. The extrapolated valuee(`) is then adjusted
slightly until an optimal fit to a pure power law is attaine
The extrapolated value found this way ise(`)5
20.443 148 and Fig. 8 shows the power-law behavior of
subtracted quantity.

We obtain an exponent of 2.160.1 in the scaling of
e(L/2)2e(`). This is as expected from the linear dispersi
relation of Heisenberg antiferromagnets: in a Loren
invariant theory the energy density operator has dimensio

The DMRG result for the energy per bond is extreme
accurate and can be compared with the exact value obta
from the Bethe ansatz solution52 of e51/42 ln 25
20.443 147 18. It is crucial to note that the open bound
conditions induce staggering in the strength of the bo
along the chain. To eliminate this effect, the energy per b
must be calculated as the average of the bond energy
two consecutive bonds at the center of the chain. Sugges
that infinite-size DMRG results for the center region of t
chain are not very accurate53 appear to have failed to tak
this effect into account. We have also checked our result
different anisotropies. For theXY case (g50.0), we obtain

FIG. 7. Sum of the two central bonds for the spin-1/2XXZ
Heisenberg antiferromagnetic chain at the isotropic pointg51. The
block size isM5256.
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e(`)520.318 310 extrapolating from chains up toL5200
andM5128 and the exact result52 is 21/p520.318 309 9.

C. Logarithmic corrections to scaling

In the isotropicXXX limit, the interaction cos@A8pf(x)#
in the low-energy effective Hamiltonian Eq.~27! becomes
marginal and can generate multiplicative logarithmic corr
tions to scaling. In this section we calculate its effect on
scaling of the induced spin moment^Sx(L/2)& when an edge
magnetic fieldHB in thex direction is applied. Cancellation
occur and in this case there are no multiplicative ln(L) cor-
rections. As a practical matter, the cancellation of the lo
rithmic corrections means that numerical calculations of
exponentxB are particularly precise. We note that finite-si
scaling of the spin-spin correlation function has been pre
ously calculated for a spin-1/2 chain with periodic bounda
conditions.54,55

The coupling constants in the sine-Gordon Hamilton
@Eq. ~27!# renormalize under a change of the ultraviolet c
off a→ael according to the renormalization-grou
equations:56

dy0

dl
52yf

2 ~ l !,

dyf

dl
52yf~ l !y0~ l !. ~38!

As noted in the previous section, a large edge magnetic fi
applied atx50 in thex direction enforces the boundary con
dition fR(x)5fL(2x) @Eq. ~33!#. Thus

^Sx~x!&;~21!x/a^cos@A2pf̃~x!#&

;^eiA2pfL(x)e2 iA2pfL(2x)&. ~39!

For the free theory, which corresponds to theXY modelyf
50, the induced spin moment is simply

^Sx~x!&0;exp@2KUL~2x!#, ~40!

where

FIG. 8. Log-log plot ofe(L/2) after subtracting the extrapolate
valuee(`)520.443 148. The fit is to a straight line of slope 2.1
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UL~x!5
1

2
lnS a1 ix

a D . ~41!

But in the generalXXZ case we ascertain the effect of th
marginal operator by following a procedure similar to o
developed by Giamarchi and Schulz56 who calculated corre-
lation functions for finiteperiodicchains. We first define the
function

F~x![eKUL(2x)^Sx~x!&. ~42!

At the XY point yf50 clearly F(x)51. For smallx, an
expansion ofF in powers ofyf converges, and for suffi
ciently small couplingyf , F(x);1. Upon rescaling, the
function F(x) also depends on the new length scale and
the rescaled coupling constantsy0( l ) andyf( l ). By an argu-
ment similar to the one employed by Kosterlitz,57 the effect
of rescalinga→ela is

F@x,ael ,y~ l !#5I @dl,y~ l !#F@x,ael 1dl,y~ l 1dl !#,
~43!

wherey( l ) denotes all the couplings as function of the sc
ing parameterl. The rescaled short distance cutoff is th
a( l )5ela, wherea is the initial cutoff. Rescaling can b
repeated untila( l );x, at which point we have

F„x,x,y@ ln~x/a!#…5O~1!. ~44!

The contributions to the functionF from repeated rescalings
until a( l ) reachesx, can be written explicitly as

F„x,a,y~a!…5 )
l 50

l 5 ln(x/a)

I @dl,y~ l !#

5expH E
0

ln(x/a)

ln$I @dl,y~ l !#%dlJ . ~45!

We proceed to calculate the functionI. First we expand
^Sx(x)& in powers ofyf , writing it in terms of averages with
respect to the free Hamiltonian,

^Sx~x!&;e2KUL(2x)

1
yf

2pa2E d2x8^Sx~x!cos@A8pf~x8!#&0

1
1

2 S yf

2pa2D 2E d2x1E d2x2^S
x~x!

3cos@A8pf~x1!#cos@A8pf~x2!#&01 . . . .

~46!

The averages are given by

^Sx~x!cos@A8pf~x8!#&050

and
n

-

^Sx~x!cos@A8pf~x1!#cos@A8pf~x2!#&0

;
1

2
exp@2KUL~2x!14KUL~2x1!14KUL~2x2!

24KU~x11x2!24KU~x12x2!#. ~47!

TheO(yf
2 ) term can be simplified by assuming that the ma

contribution comes from configurations wherex1 andx2 are
very close to each other.58,56 Introducing new integration
variables

r[x12x2 ,

R[
x11x2

2
~48!

and expandingUL in powers ofr, which is assumed to be
small,

UL~2x1!5UL~2R1r !5UL~2R!1r ]RUL~2R!1 . . . ,

UL~2x2!5UL~2R2r !5UL~2R!2r ]RUL~2R!1 . . . ,
~49!

we obtain the average

^Sx~x!cos@A8pf~x1!#cos@A8pf~x2!#&0

;
1

2
exp@2KUL~2x!24KU~r !#. ~50!

The dependence onR cancels out. The expansion Eq.~46!
becomes

^Sx~x!&;e2KUL(2x)F11
yf

2 V

4a2 Ea
dre24KU(r )G , ~51!

whereV[*dR is a measure of the linear size of the syste
Next consider the effect of rescalinga85aedl, wheredl is
infinitesimal. Using

E
a

`

dx5E
a

a8
dx1E

a8

`

dx, ~52!

we obtain

^Sx~x!&;e2KUL(2x)F11
yf

2

4a2
dl1

y8f
2

4a82Ea8
dre24KU(r )G .

~53!

Matching this result with Eq.~43!, we find

I @dl,y0~ l !,yf~ l !#;expF yf
2 ~ l !

4a2
dlG , ~54!

hence from Eqs.~45! and ~42!, we have

^Sx~x!&;expH 2KUL~2x!1E
0

ln(x/a)yf
2 ~ l !

4a2
dlJ . ~55!

Using the RG equations@Eq. ~38!#, the solution at largel is
yf( l );1/l and
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^Sx~x!&;S x

a D 21/2

expH E
0

ln(x/a)

dlFOS 1

l 2D G J . ~56!

There are no multiplicative ln(x) corrections, as these woul
require terms of orderO(1/l ) in the integrand inside the
exponential in Eq.~56!. In our calculation,O(1/l ) terms do
not appear, onlyO(1/l 2) and higher-order terms. As a chec
we can repeat the same procedure for^Sz(x)&, with the edge
field now oriented in thez direction. Of course this should
give the same result since the system is isotropic, but as
Jordan-Wigner transformation picks thez direction as the
spin quantization axis, the equivalence is not obvious,
the check is nontrivial. Again, explicit calculation shows th
O(1/l ) terms do not arise. This result is in reasonable agr
ment with our numerical results. Fitting the DMRG data~see
Fig. 9! to the form Eq.~13!, we obtainxB50.48560.01 with
a small nonzero value for the log exponentyB50.0660.01.
By contrast, in the case of the induced dimerization we
tain xD50.5760.01 andyD50.1060.05. The error was es
timated from deviations obtained by fitting theM5128 data
over different ranges of L (4<L<600) and by comparison
with M564 data (4<L<300). Results are systematical
improved by increasing the value ofM.

Finite-size scaling behavior for theXXX model with open
boundary conditions35 and periodic boundary conditions34

were obtained from DMRG calculations of ground-state
ergies and correlation functions^Sz(x)Sz(x1r )& for differ-
ent system sizes and separationsr. In our approach, critica
exponents are extracted from expectation values at the ce
of the chain only. The chain size is increased via the infin
size DMRG method. It is also advantageous to extr
power-law exponents when there are no logarithmic corr
tions.

FIG. 9. Log-log plot of the induced spin moment (h51.0) and
induced dimerization at center of chain for the isotropicS51/2
Heisenberg antiferromagnet. Data obtained using block Hilb
space size ofM5128 andM564 are plotted for comparison. Not
the slight curvature inD(L/2) which signals the existence of mu
tiplicative logarithmic corrections to scaling. The log is absent
the plot of^Sx(L/2)&. The discrepancy in the induced dimerizatio
at large chain length is due to the truncation of the block Hilb
space.
he
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D. Conformal anomaly

Finally, we may calculate the value of the conform
anomalyc. We note that the central charge of the restrict
solid-on-solid~RSOS! model60 and of the spin-3/2 Heisen
berg chain,34 which is in the same universality class as t
spin-1/2 chain, have previously been obtained using
DMRG. The conformal anomaly can be extracted by findi
the coefficient of the 1/L finite-size correction to the free
energy, equivalent at zero temperature to the ground-s
energy. We fit the ground-state energyE0(L) to the follow-
ing form:

E0~L !5AL1B1C/L1 . . . . ~57!

The extensive contribution, proportional toA, and the con-
stant termB are nonuniversal. At the isotropic pointg51
our results for the case of block sizeM5128 and for chain
lengths in the range 30<L<100 yieldC'20.323. To relate
this coefficient to the conformal anomaly we must normal
it by dividing by the speed of low-lying excitations,v. The
speed can be obtained by extrapolation to the thermo
namic limit of the gap to the lowest-lying excitation mult
plied by the chain length:

v5 lim
L→`

Gap~L !3L

p
. ~58!

We find v52.44. Now for open boundary conditions,59

c5
224C

pv
'1.01. ~59!

This compares well with the value ofc51 appropriate for a
single boson or the pair of left and right moving fermions

V. SPIN-1 CHAIN

As a final example we apply the DMRG/finite-size scali
method to the isotropic spin-1 antiferromagnetic chain. T
problem is more challenging numerically as the on-site H
bert space now has dimensionD53 instead ofD52. The
most general nearest-neighbor Hamiltonian for the spi
chain includes the possibility of a biquadratic spin-spin
teraction term:

H5 (
j 50

L22

@cosuSW j•SW j 111sinu~SW j•SW j 11!2#. ~60!

The phase diagram can be represented on a circle pa
etrized byu as depicted in Fig. 10.

Generically there is a gap to excitations in the antifer
magnetic region of the phase diagram, in accord with
Haldane conjecture.62 The point u50 corresponds to the
usual pure bilinear Heisenberg antiferromagnet. At the po
tanu51/3 the Hamiltonian can be written as a sum
positive-definite projection operators, and the exact grou
state is the Affleck-Kennedy-Lieb-Tasaki~AKLT ! valence
bond solid~VBS!.61 Negative sinu favors dimerization, as
the energy is minimized by concentrating singlet correlatio
on isolated dimers. The dimerized phase also is gappe
dimer must be broken to generate a spin excitation. The p
that separates the dimerized and Haldane phases lies au5
2p/4 and can be solved exactly by the Bethe ansatz.63,64
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The chain is quantum critical at this integrable point. T
ground state is nondegenerate here as well as in the di
ized and Haldane phases.

DMRG calculations clearly delineate the two mass
phases and the critical point separating them, even for r
tively small block Hilbert sizesM. In Figs. 11 and 12, the
block sizeM581 for the massive phases. Thus the resu
are numerically exact up only to chain lengthsL510. For
chain lengthsL.10 the Hilbert space is truncated via th
DMRG algorithm. To increase accuracy, results at the c
cal point were obtained with a larger Hilbert size for t
blocks,M5256.

The induced spin moment at the center of the chain
cays exponentially in both the Haldane and the dimeri

FIG. 10. Phase diagram for isotropic, nearest-neighbor,S51
chain, parametrized by the angleu. A critical point at u52p/4
separates the Haldane and dimerized phases, both of which
gapped. Atu5tan21(1/3), the ground state is a valence bond so
~VBS!, as depicted in the schematic. Each oval represents an a
the two black dots inside the oval are two electrons symmetri
into a triplet S51 spin state. Rectangles represent singlet bo
which encompass two electrons on adjacent sites. In the dimer
phase, singlet correlations are instead enhanced on altern
dimers.

FIG. 11. Induced spin moment at center of a spin-1 chain
different values ofu. Hereh51. Note the power-law decay at th
critical point (u52p/4). Exponential decay occurs at the AKL
valence bond solid point@u5arctan(1/3)50.321 751# within the
Haldane phase and in the dimerized phase atu52p/2. Results at
the critical point were obtained withM5256, whileM581 for the
other two cases.
er-

a-

s

i-

-
d

phases, as expected. The induced dimerization at the c
center also decays exponentially in the Haldane phase,
approaches a nonzero constant in the dimerized phase
must. Power-law decay in both observables occurs at
critical point. Fitting theM5256 data shown in Fig. 12 a
the critical pointu52p/4 we obtain dimerization exponent
xD50.3760.01 andyD50.360.05, reflecting the apparen
presence of a marginal interaction and consequent mult
cative logarithmic corrections to scaling. Likewise, for
field of h51.0 applied to the chain ends, the exponents
the spin operator arexB50.3460.01 andyB50.2360.05.
The values of the exponents compare to the exact values65,66

xD53/8'0.375 andxB53/8. To the best of our knowledg
there are no analytic results at the integrable pointu5
2p/4 ~which corresponds to ak52 SU(2) Wess-Zumino-
Witten model! on the size of the logarithmic correctionsyD

andyB , at least for open boundary conditions.
Finally, we may repeat the analysis of the conform

anomaly described above in Sec. IV D for the case of
spin-1 chain at its critical point. ForM5256 and fitting over
chain lengths 10<L<26 we find that the speed of excita
tions isv53.69,C50.508, and hencec51.05. This value is
close to its exact value of 1, demonstrating that the con
mal anomaly can be reliably extracted even from relativ
short chains.

VI. CONCLUSION

We have presented a simple method for studying criti
behavior of quantum spin chains. Accurate critical expone
can be extracted. For small on-site Hilbert space sizesD
52 for the spin-1/2 chain andD53 for spin-1 chains! the
method does not require supercomputers. Results can be
tematically improved by increasing the size ofM, the dimen-
sion of the Hilbert space retained in the blocks, up to lim
set by machine memory and speed. The DMRG meth
works best for massive, noncritical, systems, but it is a
quite accurate even at critical points. Critical exponents
be calculated at percent level accuracy. We showed that

are

m;
d
s
ed
ing

r

FIG. 12. Induced dimerization at center of a spin-1 chain. Ag
we setM5256 at the critical point andM581 for the two massive
phases. There is power-law decay at the critical point (u52p/4)
and exponential decay at the AKLT point. As expected the dim
ization approaches a nonzero constant in the dimerized phasu
52p/2).
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leading multiplicative logarithmic correction to the scaling
the induced spin moment cancels out in the case of the
tropic spin-1/2 Heisenberg antiferromagnet. Thus accu
exponents can sometimes be found numerically despite
presence of marginal interactions.

Use of the ‘‘finite-size’’ DMRG algorithm might improve
the method, but good results were obtained with the re
tively simpler ‘‘infinite-size’’ DMRG algorithm. The reason
for this is that the finite-size scaling method employed h
focuses on the scaling of observables near the center o
chain only, where the ‘‘infinite-size’’ algorithm is particu
larly accurate. The method can be used to study new
tems. For example, several noninteracting but disorde
electron systems, like the integer and spin quantum H
transitions, can be described by supersymme
in
ll-

T.

s
.
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hy
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he

-

e
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Hamiltonians.67,68 In a paper which follows,1 we employ the
combined DMRG/finite-size method in combination wi
analytic calculations to understand the behavior of these
persymmetric spin chains.
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9G. Fáth and J. So´lyom, Phys. Rev. B51, 3620~1995!.
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