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Density-matrix renormalization-group analysis of quantum critical points: Quantum spin chains
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We present a simple method, combining the density-matrix renormalization-group algorithm with finite-size
scaling, which permits the study of critical behavior in quantum spin chains. Spin moments and dimerization
are induced by boundary conditions at the chain ends and these exhibit power-law decay at critical points.
Results are presented for the spin-1/2 Heisenberg antiferromagnet; an analytic calculation shows that logarith-
mic corrections to scaling can sometimes be avoided. We also examine the spin-1 chain at the critical point
separating the Haldane gap and dimerized phases. Exponents for the dimer-dimer and the spin-spin correlation
functions are consistent with results obtained from bosonization.

. INTRODUCTION formations of the coupling constants in the Hamiltoniar®
Hallberg and co-worke?4 studied the critical behavior of
Quantum critical points are characterized by fluctuationsS= 1/2 andS= 3/2 quantum spin chains with periodic bound-
over all length and time scales and by the appearance afry conditions through extensive calculations of ground-state
power-law scaling. In this paper we present a simple butorrelation functions at different separations and different
powerful numerical method to access quantum critical pointghain sizesL. Spin-correlation functions in an open chain
in one-dimensional systems. The method combines theave also been calculated and compared with results calcu-
density-matrix renormalization-groupDMRG) algorithm  lated from low-energy field theory, showing that estimates of
and finite-size scaling ideas. We illustrate the method bythe amplitudes can also be obtain@dThe approach de-
applying it to several well-understood quantum spin chainsscribed in this paper was applied to the spin-1/2 Heisenberg
In a second paper to follow we apply the method to differentchain and a non-Hermitian supersymmet(BUSY) spin
classes of supersymmetric spin chains which describe varehain®® More recently, critical behavior of classical one-
ous disordered electron systefns. dimensional reaction-diffusion modéfs and the two-
The development of the density-matrix renormalization-dimensional Potts mod&lhas been studied using the finite-
group (DMRG) algorithm by Whité represented an impor- size DMRG algorithm. Bulk and surface exponents of the
tant improvement over previous numerical methods for thePotts and Ising model have been obtained by using the
study of low dimensional lattice models. It has been appliedMRG to calculate correlation functions at different separa-
to a wide variety of systemsThe DMRG approach was tions and collapsing curves obtained at different system
used to study the ground-state properties and low-energy esizes>® The SUSY chain describing the spin quantum Hall
citations of one-dimensional chains. It has been extensivelgffect (SQHE plateau transition was also examined in some
applied to the study of various spin chains. Low-lying ex-detail. Critical exponents were extract®@nd compared to
cited states of the spin-(Refs. 4—6 and spin-1/2(Ref. 7) exact predictioné! Thermodynamic properties of other two-
Heisenberg antiferromagnets have been calculated. Likewisdjmensional classical critical systems have also been studied
spin-1 chains with quadratic and biquadratic interactfohs, by the DMRG method? **Finally, Andersson, Boman, and
spin-2 antiferromagnetic chaffi!* spin-1/2 and spin-1 Ostlund investigated the convergence of the DMRG in the
chains with dimerization and/or frustratiofnext-nearest- thermodynamic limit for a gapless system of noninteracting
neighbor coupling*?>~*6 and frustrated spin-3/2 and spin-2 fermions®
chaing’ have all been studied. Edge excitatidHs'® %t the The method described in this paper combines the DMRG
ends of finite spin chains and the effects of perturbationslgorithm with finite-size scaling analysis, and yields accu-
such as a weak magnetic-field coupled to a few €ltkave  rate critical exponents. The main advantage of the method is
been considered. Randomness in the form of random tran#s simplicity. Only the calculation of ground-state correla-
verse magnetic field in a spin-1/2Y model?! random ex- tions near the middle of chains with open boundary condi-
change coupling® and random modulation patterns of the tions are required. The relatively simple ‘“infinite-size”
exchangé>?* has been examined. Finally, alternating spinDMRG algorithnt is particularly accurate for this job. In
magnitude$® the presence of a constdftor a staggered ~ Sec. Il we describe the method. The tight-binding model can
magnetic field in a spin-1 chain, bond dopiffghe effects  be solved exactly and in Sec. Ill we use it to illustrate our
of a local impurity?® and interactions with quantum scaling analysis. DMRG results are presented in Sec. IV for
phonond®3! have also been considered. the anisotropicS=1/2 Heisenberg antiferromagnet and sev-
Most of the above work involves systems in which theeral critical exponents are obtained. An analytical calculation
first excited state is separated from the ground state by shows that multiplicative logarithmic corrections—which
nonzero energy gap as the DMRG works best for gappedomplicate the extraction of accurate critical exponents—
systems. Early attempts to extract critical behavior of gaplesmay be avoided in some instances. In Sec. V,$hkel an-
systems used the DMRG to generate renormalization trangiferromagnetic spin chain is studied, focusing on the critical
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point that separates the Haldane and the dimerized phases o—0o 00— L=4
We conclude with a summary in Sec. VI.
*—0o-0—0 00 L=6
Il. DMRG /FINITE-SIZE SCALING APPROACH

We first describe how critical exponents may be obtained *—0--0—0-0— 0090 L=8

from a finite-size scaling analysis of chains with open or

fixed boundary conditions. These boundary conditions are Dimerization Induced by Open Boundary Condition
the simplest to implement in DMRG calculations. In the next

subsection the DMRG algorithm itself is briefly described.

A. Finite-size scaling +h

To illustrate the sorts of power-law scaling we wish to
examine, first consider the case of a spin chain with periodic
boundary conditions that is at its critical point. The system
can be moved away from criticality by turning on a uniform

magnetic field, say in thg direction, at each site: -h

Spin Moments Induced by Field Applied to Ends
L

HB:hE sJX_ (1) FIG. 1. Extraction of critical behavior from finite-size effects.
j=1 Dimerization of the nearest-neighbor spin-spin correlation function,

indicated here by alternating strongolid and weak(dashed
bonds, is induced by the open boundary conditions. Spin moments

&g |h| B 2) are inducegl by the application of a m_agnetic field of strengthto

the two spins at the ends of the chains.

Explicit dimerization, breaking the symmetry of translation
by one site, also moves the system away from criticality. Fodimerization must be an analytic, linear, function Bf
a Heisenberg antiferromagnet, this can be realized by th&herefore, for{x|<1, the scaling functiow,(x) is given by
addition of a staggering term to the Hamiltonian

This perturbation makes the correlation length finite:

g =[x~ (@ |x|" +ag x|+ ) (8)
L-1
_ ip1& & the first term yields linear dependence &fin R in the R
H= 1+(—-1)'R]S;- S 3 S .
,Z [1+ (DRI S ©® —0 limit, in agreement with Eq(7), and the subsequent
] ) ) terms are higher-order corrections. To recover the coirect
The correlation lengtly in this case scales as dependence, we must set
§M|R|_V' (4) 1_(1’A 9
. . Xp= .
Thus there are two independent exponents which correspond A v ©

to these two perturbations of critical spin chains. Two- .
: : . . The exponenk, and the correlation length exponentsat-
parameter scaling functions can be written for various ob- .
e ) ; isfy the usual relation
servables and, for a finite system, these involve two dimen-
sionless variables: the ratids/¢ and L/ég. The induced 1
dimerization, defined for now as the modulation of th& v=

andy-y spin-spin correlations on even versus odd links,

(10

The applied magnetic field also polarizes the spins along

=(—1)] XX yqy — (St X Y )
A=(-1 [<SJ SEER SJ+1> <Srlsl +SJ*18%/>]’ the chain. The scaling form for the spin moment at each site

is given by
is of course independent of the site index for periodic chains, . N , ,
and scales as a function of the chain lenigttthe fieldh, and (S)=sgrn(h)|h|*efg(L|R|",L|h|"8). (11
the dimerization parametét as With no applied dimerizationR=0, and we expect the

simple power law
A(L,R,h)=sgr(R)|R|“:f s (L|R|",L|h|"8). () ple P

When the applied magnetic field is removéds 0, and this ($)~L*h as h-0. (12
expression simplifies to Thereforexg=(1— ag)/ vg.
Alternatively, dimerization can be induced by open
A(L,R)=sgr(R)[R|**ga(L|R[") boundary conditions, and we take advantage of this fact to
~L%R as R—0, 7) extract critical exponents. As depicted in Fig. 1, open bound-

ary conditions favor enhanced nearest-neighbor spin-spin
where the second line follows from the fact that when thecorrelations on the two outermost links. Chains of increasing
perturbationR is very small, or equivalently when the corre- lengthL=4,6,8 . .. exhibit alternating patterns of dimeriza-
lation length is larger than the system size, the net inducetion on the interior bonds. Likewise, spin moments may be
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ipduced in the interior of th.e chain by applying a magnetiq Hilbert Space: V] DD
field to the ends of the chain. Strong applied edge magnetic ;
fields completely polarize the end spins and induce nonzero L=8 .~
and alternating spin moments along the chain. Alternatively, ;
spin moments can be induced as before by a staggered mag- ‘environment’
netic field applied along the entire chain. Here, however, we
consider only edge magnetic fields. (add two sites in middle of chain)
We monitor the induced dimerization and spin moments
at the center of the chain as the chain lerigik enlarged via M D e
the DMRG algorithm. This scaling analysis is convenient :
because the relatively simple infinite-size DMRG algorithm L=10 >
applies to open chains and is most accurate at the center ‘
region of the chain where we focus our attention. The in-
duced dimerization and spin moments in the interior of the
chain show power-law scaling at the critical pofhtigloi
and Rieger demonstrated power-law scaling for a variety of
open boundary conditiondree, fixed, and mixed*’ At the (continue)
critical pointR=0 andh=0 the induced dimerization scales

rections: algorithm. At each step, a “new block” is formed for each half of

the chain(the “old block” plus one additional sifeand two more
sites are added in the middle of the chain, increasing its length by 2.

b
A(L/2)=L"*a(InL)Ya a+E+--~ . (13

whereW;;,=(ii'|¥) are the real-valued matrix elements of
o . ) ) the eigenstate of interegthe “target” which is often the

A similar expression holds for the induced spin moment aiground state projected onto a basis of states labeled by
the center of the chaif(S*(L/2)), with the replacement of unprimed Roman indekwhich covers the system half of the

the exponentg,—Xg andy,—VYg. chain and primed indeX which covers the environment half
of the chain. The eigenvalues of the reduced density matrix
B. Infinite-size DMRG algorithm are real, positive, and sum up to one; these are interpreted as

. . o . probabilities. We keep only thl most probable eigenstates

The name “density-matrix renormalization-group” is corresponding to the largest eigenvalues, and discard the re-
something of a misnomer as the method is most accurat@aining M(D—1) eigenstates. The retained states form a
away from critical points, when there is an energy gap forew basis for the problem. Next, two new sites are added to
excitations. It is helpful to think of the DMRG algorithm as the middle of the chain and the pieces are connected, yield-
a systematic variational approximation for the calculation Ofing a chain of sizeL=6. The process is then repeated by
the ground state and/or low-lying excitations, principally in finging the targeted state of this chain, constructing the new
one dimension. The Hilbert space of a quantum chain geneggdyuced density matrix and again projecting ontoheost
ally grows exponentially with the chain length, and eventu-propable states. As the chain length grows in steps of two,
ally must exceed available computer memory. The DMRGhe total Hilbert space dimension grows by a multiplicative
algorithm is an efficient way to truncate the Hilbert space; agactor of D2. None of the Hilbert space is thrown away until
the size of the space retained can be vafigulto machine the chain grows large enough that its Hilbert space exceeds
limits) it is possible to ascertain the size of errors introduceqdpg space that is held in reserve, in other words ubtil
by the truncation. o >D2M?2. The truncation process damages the outer regions

For simplicity, we use the so-called “infinite-size” f the chain the most, and the central region is treated most
DMRG algorithm? As the algorithm has been described in accurately.
some detall by Whi;e, we just s'ketch the es'sentials'; of the ope advantage of the method presented in this paper is
method. It begins with thenumerically exadtdiagonaliza-  hat critical exponents are extracted from ground-state corre-
tion of an open chain consisting of just four sites, each sitgations only. Excited states are not needed for these expo-
having on-site Hilbert space of dimensi@n For quantum  pents and there is no need to calculate the excitation gap.
spin chainsD=2S+1, thusD=2 for the spin-1/2 Heisen- pyrthermore, the finite-size analysis described in the previ-
berg antiferromagnet. The chain is then cut through thgys subsection takes advantage of the fact that the DMRG
middle into two pieces, one-half of which is interpreted asy|gorithm works best with open chains and treats the central
the “system” and the other half as the “environment,” the region of the chain most accurately. The use of the more
two parts combined being thought of as the entire “uni-compiicated finite-size algorithm might yield even more ac-
verse” of the problem, see Fig. 2. At this point the reducedgrate results. However, we show below that we can calcu-

density matrix for the system of siZBMXDM is con- |ate critical exponents to an accuracy of a few percent or
structed by performing a partial trace over the environmengetter with the infinite-size algorithm.

half of the chain. It is defined by

oM Ill. TIGHT-BINDING MODEL AT HALF FILLING

pij = 2 0 (14) As a simple first illustration of our finite-size scaling
i'=1 method we study the ordinary tight-binding model of spin-



PRB 62 DENSITY-MATRIX RENORMALIZATION-GROUP . .. 5549

less fermions hopping from site to site along a chain at half ~ 1.00 ¢ - .
filling. Obviously, the DMRG algorithm is not needed in this 5 .
case as we can solve the quadratic problem exactly via ¢ - 11
Fourier transform. Due to particle-hole symmetry, at half | . & "
filling the chemical potential is zero. The correlation length 1.0 -
exponent for this system is=1. A direct way to see thisis _ o.10 | * 09 i
by introducing the staggering paramefito modulate the & : ‘. 0.0 02 04 06
amplitude of the hopping matrix elements on even versus% [ .. 1/Ln(L)
odd links: r *,
L-1 "
H=t> [1+(-1)R](c/c; 1+H.c). (15) 0.0t ¢ ]
1=0 i
To diagonalize the Hamiltonian, in the case of periodic 1 10 100

boundary conditiong,=c, , we introduce separate fermion

operators for even and odd sites as follows: o _ .
FIG. 3. Induced dimerization in the tight-binding model. A log-

log plot of the dimerization at the center of the chfy. (20)] is
shown as a function of the chain lendth For more complicated
systems, the DMRG algorithm is employed to calculat@ /2)
numerically. In the inset, the dimerization exponent calculated from
After the Fourier transformation to momentum space, théhe slope of the curve shown in the main graph is plotted as func-
Hamiltonian can be written as tion of 1/In(L). For smallL there are subleading corrections to scal-
ing, butx,— 1.0 as the chain length increases.

CZ] = dZJ ,

Coj—1=€yj. (16)

H=t> {[(1-R)+e? (1+R)]d]e, This sum can be evaluated numerically with the result that
K Xp—1 asL—o as shown in Fig. 3, in agreement with the
+[(1-R)+e 2%(1+R)]eld,} (17) explicit calculation for the periodic chain. It is also easy to

show that open chains with an odd number of sites have
where the lattice spacing=1. For eachk, diagonalization Vvanishing induced dimerization at the center of the chain, as

of the 2x 2 matrix yields the dispersion relation expected by the symmetry of reflection about the central site.
The induced density moment can likewise be obtained
€= *2tJ1—(1—R?)sirP(k). (18 either directly by studying the effects of a staggered chemi-

o _ cal potentialusiag (Which doubles the size of the unit cell

At half fl”lng the ground state has all states WKI@<0 ocC- from one to two sites and thus generates a gap
cupied. The left and right Fermi points are, respectivily, =2|pstad) OF by the inclusion a local chemical potentjal
=+ m/2. Hence the gam=2t|R|. As the correlation length at the two ends of the chain:
&xm 1x|R|"! we obtainv=1. Sincer 1=2-x,=1, the
dimerization exponemnt,=1. H—H—pu(clco+cl _jc_1). (21

We now reproduce this result using the finite-size scaling, . . . o .
method applied to open chains. We consider a finite chain gain the system consists afsites, the site index running
length L with open boundary conditions and calculate the'"OM 0 tO.L_l' and there are open boundary condl'glpn at
: e NN DI S j=0 andj=L—1. For largeu>0, the boundary condition
induced  dimerization A(j)=(—1)’c{cj+1—C{+1Cj+2) ! vaient t forci " t the chai q
around the chain centgr=L/2, and extract its leading de- IS equivalent to enforcing unit occupancy at the chain ends,

pendence orL. Open boundary conditions are imposed byrI;%jrri]elgr_ternls.f;;ms boundary condition is satisfied by the
using the Fourier transform

L-1
L 1 o o
1 L - Ci=———— 2 C (e'kml+ef'kml) (22)
Ci=—— c elkmj_eflkmj , J 2(L—1 =0 Km
b2+ 2, Ol ) vAL=bm
with
a— 12,...L (19
=—m, m=12,...
m L+1 km:LTﬂ-lm, m=0,1,...L—1. (23)

as this enforcesg=c, , 1=0. Filling all of the negative en-
ergy states at half filling, the expectation value of the dimer
ization atL/2 can be found by straightforward calculation:

Again it is a simple exercise to calculate the occupancies. At
the chain ends we obtaifcjc)=(c/ _,c,_1)=1 in agree-
ment with the boundary condition. At the center of the chain

1 L the occupancy can be evaluated analytically,
A(LI2)= > {cogKkny(L+3)]—cogky(L+1)]}. -
T 1
m=z+i T(LI2)c(LI2))=—+ 1+cogk,L)]. (24
20 (c'(LR)eL2)==7 2 [1+codksl)]. (24
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1.000 ¢ . . moment in the tight-binding model as discussed in the pre-

: vious section. In the case of the induced spin moment in the
x direction, the exponent is 0.248).003. This value com-
W pares well with the exact number of 1/4 as derived in the
0.100 L ° . | next section.

. B. XXZ model

Next consider the nearest-neighbor, spin-1XZ
Heisenberg antiferromagnet:

0.010 |
i v A(L2)

o <Sz(L/2)>, h=1.0

* <Sx(L/2)>, h=1.0

L-2
H= J]ZO (SS9, 1+9/S 1+ 7SS, ,]. (26)

0.001 . . Anisotropy in the coupling between tlzecomponents of the
1 10 100 spins may be varied by changing Performing the Jordan-
L Wigner transformation, th&XY terms again yield the tight-
FIG. 4. Log-log plots of induced dimerization and induced spin PiNding Hamiltonian. Low-energy excitations therefore oc-
moments in the direction andx direction (with the edge magnetic CUr near the two Fermi points &t= = /2a. We may treat
field applied in thez and in thex directions, respectivelyat the ~ the non-Gaussiaty term as a perturbation and focus on ex-
center of the chain for the spin-1/XY model. The magnitude of citations around these Fermi points by defining left and right
the applied edge magnetic field is=1.0 in both cases and the moving low-energy quasiparticles. Taking the continuum
number of block states kept i = 128. limit and keeping only the low-energy modes, the tight-
binding term is then effectively described by the massless
It scales agc'(L/2)c(L/2))—1/2xL . Hencevg=xg=1  fermions. TheS[S/, ; term is quartic in the fermion opera-
in agreement with the direct calculation of these exponentstors. Integrating out the high-energy modes, it will renormal-
ize the fermion velocity and also contain interaction terms.
IV. SPIN-1/2 ANTIFERROMAGNET We then implement Abelian bosonization, with UV cutoff

. ) a. The effective Hamiltonian is a sine-Gordon mo¢geteri-
We next turn to the study of a richer system: spin-1/2yation can be found in Ref. 49

antiferromagnetic chains. We begin with th€Y model,

which can be solved exactly by a Jordan-Wigner mapping to Yo
the tight-binding model. We then study the anisotragiXZ H=Hy—
model. The isotropic Heisenberg model is treated separately

as there are complicating multiplicative logarithmic correc-\ynere

tions to scaling at the isotropic point.

| axcog Broc01. @

2ma?

(9x)?
— 2
A XY model Ho—uf dx| KIT=+ K| (28
The Hamiltonian for the spin-1/XY model, Here u=2Ja=2a is the bare Fermi velocity and the con-
L_2 stantK=1+y,/2 depends on the anisotropy The XY limit
H=1J S+ 9. T, 25 correspond tg/,=0.
jgo (S5 157504 9 The long-distance behavior of the staggered pa&@nd

] ) ) ) ) S~ are given in terms of the boson fields as
can be written in terms of spinless fermion creation and an-

nihilation operators cj’r and c; via the Jordan-Wigner S(x)~(—1)"“cog ¢(x)/R],
transformatiorf® An up spin in thez direction at sitei then )
corresponds to having the site occupied by a fermion, while S (x)~(—1)Yeel2mRe(X), (29)

spin down corresponds to an empty site. The Hamiltonian of
Eq. (25 is mapped to a nearest-neighbor tight-bindingWhere the radiuR is given by
Hamiltonian witht=J. Based on our analysis in the previous
section we can conclude that=1 for the XY model. 1 cosly

Figure 4 presents our DMRG results for the induced R= Vor~ 2m2 (30
dimerization and induced spin moments, in ¥end in thez
directions, at the center of the chain as a function of therirst consider the anisotropic caset 1. The isotropic case
chain lengthL. The exponents are obtained from the slopeshas logarithmic corrections to scaling that are dealt with in
of the curves shown in Fig. 4. The induced dimerizationthe next section. Foy>1 the interaction term is relevant
exponent forA(L/2) is close to 1 X,=0.99-0.01) as ex- and the system is gapped, and in the Ising universality class.
pected from the relation=1/(2—x,). The slope of the log- Indeed, in the limity— it is the Ising model. Foy<1 the
log plot of the induced spin moment in tkalirection is also  interaction term is irrelevant, the system is gapless and
close to 1 §z=1.01+0.02). This result is also expected A(L/2) and(S*(L/2)) should exhibit power-law decay, with
since it is equivalent to the exponent for the induced densityio log corrections as there are no marginal operators. The
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A
Q & 010 ¢ —
= |
3 0.10 ¢ 1 I
723
\
0.01 .
e v=1.0
°y=13 . .
10 100 () L
(@) L
1.05
0.55 T T T T T T T 1.00 4 i
0.50 0.95 .
0.90 b
0.45 0.85 [ .
0.80 i
0.40
< 3 4
) 5 0.7
> 0.35 0.70 |
0.65
0.30 0.60 |
0.55 F .
0.25 ¢ 0.50 e . . e
~0.00 010 020 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0.20 1 1 1 1 1 I | 1 I (b) 'Y
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
(b) v FIG. 6. Spin-1/2XXZ Heisenberg antiferromagnetic chaia)

) . ) ) DMRG results M =128) for the induced dimerization at center of
FIG. 5. Spin-1/2XXZ Heisenberg antiferromagnetic chai®  chain for different values of anisotropy and (b) corresponding

!Z)MRG rgsult; M=128 andh=l.Q) for thg induced spin momgnt exponentx,(y), obtained by fitting to Eq(13) with y,=0. The
in the x direction at center of chain for different values of anisot- solid line is the exact value 1#R?(y).

ropy vy, showing power-law decay foy<1 and exponential decay

for y>1 and(b) corresponding exponerg(y) for y<1. The solid Regardin as an analvtic continuation we ma
line is the exact valuerR?(7y). The exponents are obtained by ide%tify 9¢r y ob, y

fitting the curves in(a) to the form of Eq.(13) with yg=0 since
there are no logarithmic corrections away from the isotropic point. dr(X)= b (—X). (33

log-log plots of Fig. %a) show the induced spin moment in Using this boundary condition, the induced spin moment is
the x direction at the chain center for different values of thegiven by

anisotropyy. The edge magnetic field in thedirection is (—1)ila
fixed, h=1.0. As expected, fory>1 there is exponential (SX(J-)yNV(_1)J/a<ei2wR¢L(J)efi2wR¢L(7J)>f~v72_
decay and in the cases<1 the exponentsg(y) are found (2j)™R M
by fitting the curves in Fig. &) to the form of Eq.(13). The (34)

exponentsyg are set equal to zero, the higher-order correcq, thexy model (y=0), the induced spin moment in the
tions are included and give very small deviations from agirection therefore decays with exponer®?(0)=1/4.

simple linear fit. In Fig. &) the exponezntst(y) are com= A log-log plot of the induced dimerization at the center of
pared to the exact valueg(y)=mR"(y) obtained by e chain for various values of the anisotropys shown in

Affleck.® Agreement is found at the percent level. Affleck Fig. 6a). The free boundary condition at the chain ends cor-
derived the exponent as follows. The edge magnetic field "Fesponds to setting

the x direction applied aj =0 corresponds to a term
Hg=—hsX(0 t<h cog \2md(0 31 D780 %9
=- =—constXhco
B © $V2mé(0] - 3D This condition translates tapg(X)=—¢ (—X)+ 7R in

in the Hamiltonian. For sufficiently larga the energy is terms of the boson fieldSwhich yields
minimized by setting

_ ' | (—1)lle
. A1) ~(=Di"(ecod (1 )/RD~

_ 36
$(0)=0= $r(0)= ¢ (0). (32 2) ) VAmRA() (39



5552 SHAN-WEN TSAI AND J. B. MARSTON PRB 62

~0.440 : : : — 20 . . .
©
<
®
Q 4o 1
<
.....oooa...coooooolooo.oo..o.lo.--o-c.--o.-o o
— . + sor j
S oass | . 1 g
w T -s0 -
c
i
. —100 | ]
~0.450 : : : : -12.0 ' - '
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FIG. 7. Sum of the two central bonds for the spin-XXZ FIG. 8. Log-log plot ofe(L/2) after subtracting the extrapolated

Heisenberg antiferromagnetic chain at the isotropic ppiatl. The  yg)ye ¢(0) = —0.443 148. The fit is to a straight line of slope 2.14.
block size isM =256.

. . €(°)=—0.318 310 extrapolating from chains uplte= 200
In Fig. 6(b) the exponents obtained from the slopes of theandM — 128 and the exact resftis — 1/m= —0.318 309 9.
curves in Fig. 6a) are plotted against the exact values

= 1/47R?(y). Again agreement is found at the percent level.
Another quantity of interest is the sum, instead of the
difference, of the spin-spin correlation function on adjacent In the isotropicX X X limit, the interaction cos/87 ¢(x)]
bonds near the center of the chain: in the low-energy effective Hamiltonian E27) becomes
L marginal and can generate multiplicative logarithmic correc-
o > 2 > > tions to scaling. In this section we calculate its effect on the
(L= 58S See ) T (Sue-1S). - (87) scaling of the induced spin momef8*(L/2)) when an edge
magnetic fieldH g in the x direction is applied. Cancellations
which aty=1 equals the energy density per bond and therepccur and in this case there are no multiplicativejngor-
fore does not vanish in the thermodynamic limit. Figure 7 isrections. As a practical matter, the cancellation of the loga-
a plot of (L/2) as a function of the system siteat the  rithmic corrections means that numerical calculations of the
isotropic pointy=1. exponenixg are particularly precise. We note that finite-size
As expected, this quantity approaches a constant valugcaling of the spin-spin correlation function has been previ-
€() in the thermodynamic limit. After subtracting the ex- ously calculated for a spin-1/2 chain with periodic boundary
trapolated value at —, €(L/2) too exhibits power-law conditions®*>°
decay of the form of Eq(13). The constant(x) can be The coupling constants in the sine-Gordon Hamiltonian
found by an iteration process. Starting with an initial value[gq. (27)] renormalize under a change of the ultraviolet cut-
for (=) obtained from a rough extrapolation of the curve inoff «—ae' according to the renormalization-group
Fig. 7, we fit the subtracted valugL/2)— e() to a power-  equations®
law form. The extrapolated value(x) is then adjusted
slightly until an optimal fit to a pure power law is attained. dvyo 5
The extrapolated value found this way ig(®)= ar o),
—0.443 148 and Fig. 8 shows the power-law behavior of the
subtracted quantity. d
We obtain an exponent of 2t10.1 in the scaling of ﬁ:_y(é“)you)_ (39)
€(L/2)—€e(°). This is as expected from the linear dispersion el
relation of Heisenberg antiferromagnets: in a Lorentz-

invariant theory the energy density operator has dimension 26‘5 noted in the previous section, a large edge magnetic field

The DMRG result for the energy per bond is extremelyapp“ed atx=0 in thex direction enforces the boundary con-

accurate and can be compared with the exact value obtainéjétion $r(X) = ¢L(=X) [Eq. (33)]. Thus

from the Bethe ansatz solutihh of e=1/4—In2=

C. Logarithmic corrections to scaling

, ~
—0.44314718. It is crucial to note that the open boundary (S (X))~ (= 1)"*(cod 2w h(x)])
conditions induce staggering in the strength of the bonds ~ (e TTIL0ZTH(—), (39)

along the chain. To eliminate this effect, the energy per bond

must be calculated as the average of the bond energy frofoy the free theory, which corresponds to th¥ modely,,
two consecutive bonds at the center of the chain. Suggestionsg the induced spin moment is simply

that infinite-size DMRG results for the center region of the

chain are not very accurateappear to have failed to take (S (x))o~exd —KU(2x)], (40)
this effect into account. We have also checked our results at

different anisotropies. For th&Y case ¢/=0.0), we obtain where
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a+ix

(41)

1
U,_(x)=§In

But in the generaXKXZ case we ascertain the effect of the
marginal operator by following a procedure similar to one

developed by Giamarchi and Schiflzvho calculated corre-
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(SX(x)cog VB ¢(x1)]cog VBT d(X,)1)o
~%exp{— KUL(ZX) +4KUL(2X1)+4KUL(2X2)

—4KU (X1 +X5) —4KU (X1 —X5)]. (47

lation functions for finiteperiodic chains. We first define the The O(yfﬁ) term can be simplified by assuming that the main

function

contribution comes from configurations whetgandx, are
very close to each othé?>® Introducing new integration

F(x)=eRUL2)(5X(x)). (42)  variables
At the XY point y,=0 clearly F(x)=1. For smallx, an F=X1=Xa,
expansion ofF in powers ofy, converges, and for suffi-
ciently small couplingy,, F(x)~1. Upon rescaling, the _XtXe 48)
function F(x) also depends on the new length scale and on 2

the rescaled coupling constaytg(l) andy ,(I). By an argu-
ment similar to the one employed by Kosterfitzthe effect
of rescalinga—e€'« is

Fix,ae,y(H]=1[dl,y()]F[x,ae T y(1+dD)],
(43

wherey(l) denotes all the couplings as function of the scal-

and expandindJ, in powers ofr, which is assumed to be
small,

UL(2x)=U_(2R+1)=U_(2R)+T3xU (2R) + . . .,

UL(2X,)=U_(2R—1)=U_(2R)—rdgU (2R) + . ..,

ing parametell. The rescaled short distance cutoff is thenWe obtain the average

a(l)=€'a, where« is the initial cutoff. Rescaling can be

repeated untik(1)~x, at which point we have

Fxy[In(x/a)])=0(1). (44)

The contributions to the functiolR from repeated rescalings,

until «(l) reaches, can be written explicitly as

I=In(x/a)

Fx,a,y(a)= []

IdlLy()]

In(x/ )
=exp”O In{I[dlLy()]Hdl}. (45

We proceed to calculate the functibnFirst we expand
(S*(x)) in powers ofy,, writing it in terms of averages with
respect to the free Hamiltonian,

<SX(X)>~ e KU (2x)

+ﬂzf d2x'(SX(x)cog V8mh(x')1)o

27«

2
3| 5nss] [ oo

+= d?x; | d%x{S*(x
2(27Ta{2) 1 2< ( )

X cog BT (x1)1co§ VBT h(Xx) )0+ - . .-
(46)

The averages are given by

(S(x)cog V8w (x')])o=0

and

(49)
(S (x)cog \Bm(x1)]cog VB h(X2)1)o
~%exp{—KUL(2x)—4KU(r)]. (50)

The dependence oR cancels out. The expansion E@6)
becomes

2

Q
(S(x))~e KUL@) 1+3;¢2f dre—AKU(r)], (51)
o a

whereQ)= [dR is a measure of the linear size of the system.

Next consider the effect of rescaling = ae?', whered| is
infinitesimal. Using

f dx=fa dx+j ,dx,

(52

we obtain

<SX(X)>~ efKUL(Zx)

2 ’2
1+y_¢,2d|+_y ¢2f dre 4KU® |
4a’'<Ja’

4a
(53
Matching this result with Eq(43), we find
2
I[dl,yo(l),y¢(l)]~ex;{y¢(2)dI], (54)
4o
hence from Eqgs(45) and(42), we have
n(x/a)y2 |
(Sx(x))~exp[ —KU(2x) + JI o )y¢(2)dl]. (55
0 o

Using the RG equation€Eqg. (38)], the solution at largé is
yy(l)~1/ and
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1.0 . . D. Conformal anomaly

Finally, we may calculate the value of the conformal
anomalyc. We note that the central charge of the restricted
solid-on-solid(RSOS modef® and of the spin-3/2 Heisen-
berg chair®* which is in the same universality class as the
spin-1/2 chain, have previously been obtained using the
DMRG. The conformal anomaly can be extracted by finding
the coefficient of the 1/ finite-size correction to the free
energy, equivalent at zero temperature to the ground-state
energy. We fit the ground-state energy(L) to the follow-

0.1 |

» <Sy(L/2)>, M=128 ing form:
* A(L/2), M=128
-- <Sy(L/2)>, M=64 Eo(L)=AL+B+C/L+ .... (57)
— A(U2), M=64 . . .
. . The extensive contribution, proportional £ and the con-
10 L 189 1000 stant termB are nonuniversal. At the isotropic poipt=1

our results for the case of block siké=128 and for chain

FIG. 9. Log-log plot of the induced spin momert£1.0) and lengths in the range 30L <100 yieldC~ —0.323. To relate
induced dimerization at center of chain for the isotropie 1/2  this coefficient to the conformal anomaly we must normalize
Heisenberg antiferromagnet. Data obtained using block Hilberit by dividing by the speed of low-lying excitations, The
space size ol =128 andM =64 are plotted for comparison. Note speed can be obtained by extrapolation to the thermody-
the slight curvature im\ (L/2) which signals the existence of mul- namic limit of the gap to the lowest-lying excitation multi-
tiplicative logarithmic corrections to scaling. The log is absent inplied by the chain length:
the plot of(S*(L/2)). The discrepancy in the induced dimerization

at large chain length is due to the truncation of the block Hilbert . GapgL)XxL
: p=lim - (59
pace. T
B We findv =2.44. Now for open boundary conditiorss,
x| ~12 In(x/ ) 1
<SX(X)>~(— ex f dlj O 2 . (56) —24C
« 0 ' c=———~10L (59

There are no multiplicative Imj corrections, as these would This compares well with the value of=1 appropriate for a
require terms of orde©(1/) in the integrand inside the Single boson or the pair of left and right moving fermions.
exponential in Eq(56). In our calculationO(1/1) terms do

not appear, onlyYD(1/12) and higher-order terms. As a check, V. SPIN-1 CHAIN

we can repeat the same procedure(fsi(x)), with the edge As a final example we apply the DMRG/finite-size scaling

f|g|d now oriented in t_ha direction. Of course th's should method to the isotropic spin-1 antiferromagnetic chain. This
give the same result since the system is isotropic, but as ﬂ}‘?roblem is more challenging numerically as the on-site Hil-

Jo.rdan—W|gnet( tran;formatmn plcll<s trze(Ijlrecttmnba}s the $nert space now has dimensi@rn=3 instead ofD=2. The
Spin quantization axis, the equivalence Is not obvious, an ost general nearest-neighbor Hamiltonian for the spin-1

the check is nontr|V|aI.-Aga|n,.epr|C|t (_:allculatlon shows thatchain includes the possibility of a biquadratic spin-spin in-
O(1/1) terms do not arise. This result is in reasonable agre€q, o tion term:

ment with our numerical results. Fitting the DMRG dé&see

Fig. 9) to the form Eq(13), we obtainxg=0.485*0.01 with L-2 o o

a small nonzero value for the log exponeit=0.06+0.01. H= 2 [cosOS;-S;;1tsinO(S;- S,-H)Z]. (60)

By contrast, in the case of the induced dimerization we ob- 1=0

tain x,=0.57=0.01 andy, =0.10+0.05. The error was es- The phase diagram can be represented on a circle param-

timated from deviations obtained by fitting thé=128 data etrized by as depicted in Fig. 10.

over different ranges of L (#L<600) and by comparison Generically there is a gap to excitations in the antiferro-

with M =64 data (4<L=<300). Results are systematically magnetic region of the phase diagram, in accord with the

improved by increasing the value bf. Haldane conjectur®. The point #=0 corresponds to the
Finite-size scaling behavior for th€XX model with open  usual pure bilinear Heisenberg antiferromagnet. At the point

boundary conditionS and periodic boundary conditiofs tanf=1/3 the Hamiltonian can be written as a sum of

were obtained from DMRG calculations of ground-state en-positive-definite projection operators, and the exact ground

ergies and correlation functioq$*(x)S*(x+r)) for differ-  state is the Affleck-Kennedy-Lieb-TasakhKLT) valence

ent system sizes and separationgn our approach, critical bond solid (VBS).®* Negative sirg favors dimerization, as

exponents are extracted from expectation values at the centtire energy is minimized by concentrating singlet correlations

of the chain only. The chain size is increased via the infinite-on isolated dimers. The dimerized phase also is gapped: a

size DMRG method. It is also advantageous to extractimer must be broken to generate a spin excitation. The point

power-law exponents when there are no logarithmic correcthat separates the dimerized and Haldane phases li¢s at

tions. —ml4 and can be solved exactly by the Bethe an$its.
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1.000
- VBS
—
Ferromagnet [
/ Haldane Phase H(AFM) 0=0 |
~ < o100t
— 6=0.321751
Dimerized o0 6=-m4
—+ 0=—m/2
&H &&= .. .
Cac) Critical Point 6 = —TZ‘
0.010 ;
10 100
L

FIG. 10. Phase diagram for isotropic, nearest-neighBerl

chain, parametrized by the angte A critical point at 6= — /4 FIG. 12. Induced dimerization at center of a spin-1 chain. Again

separates the Haldane and dimerized phases, both of which ayée setM =256 at the critical point ant1 =81 for the two massive

gapped. At9=tan *(1/3), the ground state is a valence bond solid phases. There is power-law decay at the critical poéht (- 7/4)

(VBS), as depicted in the schematic. Each oval represents an atorald exponential decay at the AKLT point. As expected the dimer-

the two black dots inside the oval are two electrons symmetrizedzation approaches a nonzero constant in the dimerized pléase (

into a triplet S=1 spin state. Rectangles represent singlet bonds= — 7/2).

which encompass two electrons on adjacent sites. In the dimerized

phase, singlet correlations are instead enhanced on alternatifghases, as expected. The induced dimerization at the chain

dimers. center also decays exponentially in the Haldane phase, but
L . L . approaches a nonzero constant in the dimerized phase as it

The chain is .quantum critical at this mtegrable_pomt. Themust. Power-law decay in both observables occurs at the

ground state is nondegenerate here as well as in the dimegicq) point. Fitting theM =256 data shown in Fig. 12 at

ized and Haldane phases. . . _the critical pointd= — 7r/4 we obtain dimerization exponents
DMRG calculations clearly delineate the two maSS|veXA:O_37i0_01 andy,=0.3+0.05, reflecting the apparent

p_halses an|<|:i é?e Er't'.clsl point separating them, e(\j/enzforhrelamesence of a marginal interaction and consequent multipli-
tively small block Hilbert sizesVl. In Figs. 11 and 12, the o6 |ogarithmic corrections to scaling. Likewise, for a

block sizeM =81 for the massive phases. Thus the resultgje|q of h=1.0 applied to the chain ends, the exponents for
are numerically exact up only to chain lengths- 10. For the spin operator arag=0.34+0.01 andyg=0.23*0.05.

chain lengthsL>10 the Hilbert space is truncated via the 14 values of the exponents compare to the exact VEes
DMRG algorithm. To increase accuracy, results at the criti. _ 355 375 andx.= 3/8. To the best of our knowledge
cal point were obtained with a larger Hilbert size for the thAere are .no analyt?c res.ults at the integrable paint

blOCkS’M =256. . _ — /4 (which corresponds to k=2 SU(2) Wess-Zumino-
The mduced_ Spin moment at the center of the c_ham_ de(Z\/itten mode] on the size of the logarithmic correctiogg
cays exponentially in both the Haldane and the dimerize ndyg, at least for open boundary conditions.
. Finally, we may repeat the analysis of the conformal
1.000 | . anomaly described above in Sec. IVD for the case of the
2 spin-1 chain at its critical point. Favl =256 and fitting over
chain lengths 1&L <26 we find that the speed of excita-
tions isv =3.69,C=0.508, and hence=1.05. This value is
close to its exact value of 1, demonstrating that the confor-
mal anomaly can be reliably extracted even from relatively
short chains.

<Sy(L/2)>

0.010 ¢

*— 6=0321751
o—o0 §=—14 VI. CONCLUSION

*—* 0=—m/2

We have presented a simple method for studying critical
behavior of quantum spin chains. Accurate critical exponents
0.001 : . ) )
10 100 can be extracted. For small on-site Hilbert space siies (
L =2 for the spin-1/2 chain anB =3 for spin-1 chainsthe
FIG. 11. Induced spin moment at center of a spin-1 chain formethqd dogs not require. supergomputer;. Results .Can be sys-
different values ofg. Hereh=1. Note the power-law decay at the t€matically improved by increasing the sizeMf the dimen-
critical point (9= — 7/4). Exponential decay occurs at the AKLT Sion of the Hilbert space retained in the blocks, up to limits
valence bond solid pointé=arctan(1/3)0.321 751 within the ~ Set by machine memory and speed. The DMRG method
Haldane phase and in the dimerized phasé-at- w/2. Results at WOrks best for massive, noncritical, systems, but it is also
the critical point were obtained withl = 256, whileM =81 for the ~ quite accurate even at critical points. Critical exponents can
other two cases. be calculated at percent level accuracy. We showed that the
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leading multiplicative logarithmic correction to the scaling of Hamiltonians®” 8 In a paper which follows,we employ the

the induced spin moment cancels out in the case of the iseombined DMRG/finite-size method in combination with
tropic spin-1/2 Heisenberg antiferromagnet. Thus accuratanalytic calculations to understand the behavior of these su-
exponents can sometimes be found numerically despite theersymmetric spin chains.

presence of marginal interactions.
Use of the “finite-size” DMRG algorithm might improve

the method, but good results were obtained with the rela-

tively simpler “infinite-size” DMRG algorithm. The reason
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