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ABSTRACT

Quality-adjusted population density (QAPD) is population divided by land area that has been 
adjusted for geographic characteristics. We derive weights on these geographic characteristics 
from a global regression of population density at the quarter-degree level with country fixed 
effects. We show, first, that while  income per capita is uncorrelated with conventionally 
measured population density across countries, there is a strong negative correlation between 
income per capita and QAPD; second, that the magnitude of this relationship exceeds the 
plausible structural effect of density on income, suggesting a negative correlation between QAPD 
and productivity or factor accumulation; and third, that higher QAPD in poor countries is 
primarily due to population growth since 1820. We argue that these facts are best understood as 
results of the differential timings of economic takeoff and demographic transition across 
countries, and particularly the rapid transfer of health technologies from early to late developers.
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Introduction     
  

Population   density   has   long   played   a   central   role   in   the   thinking   of   economists   regarding   
economic   growth,   population   size,   agglomeration   effects,   and   the   role   of   natural   resources   in   
affecting   economic   outcomes.    Comparing   countries,   for   example,   we   naturally   adjust   population   
size   by   area   in   order   to   make   our   comparisons   more   meaningful.   It   is   not   particularly   surprising   
that   Kenya   has   10.7   times   the   population   of   the   Republic   of   Ireland   (52.6   vs.   4.9   million),   given   
that   it   has   8.3   times   the   area   (580,362   vs   70,273   km 2 ).   By   contrast,   it   is   somewhat   more  
interesting   that   the   population   in   Bangladesh   is   77   times   more   dense   than   that   in   Argentina   
(1,016   vs.   14.4   people   per   km 2 ).     
  

Economists   have   also   long   understood   that   a   simple   calculation   of   population   density   might   
miss   important   information.    It   is   difficult   for   people   to   live   in   rugged   mountains   or   deep   deserts.   
Similarly,   fertile   soil,   a   moderate   climate,   and   access   to   the   coast   are   conducive   to   settlement   
and   economic   activity.    Geographic   characteristics   would   be   expected   to   affect   population   
density,   and   we   might   want   to   judge   a   region   as   particularly   densely   or   sparsely   populated   
based   on   how   its   population   compares   to   its   area   adjusted   in   some   manner   for   geophysical   
characteristics.     
  

There   have   been   a   number   of   attempts   to   assess   the   role   of   geography   in   influencing   population   
density,   and   similarly   to   adjust   the   conventional   density   measure   for   geographic   characteristics.   
For   example,   Mellinger,   Sachs,   and   Gallup   (2000)   show   that   population   density   on   land   that   is   
within   100   km   of   an   ocean   or   sea-navigable   waterway   is   on   average   4.7   times   as   high   as   on   
land   that   is   not.   Measures   of   climate   or   land   characteristics   are   sometimes   included   as   controls   
in   cross-country   regressions   where   population   density,   income,   or   income   growth   is   the   
dependent   variable   (e.g.   Masters   and   McMillan,   2001;   Burke,   Hsiang,   and   Miguel,   2015)   .   
Some   existing   work   has   constructed   density   measures   adjusted   for   the   quality   of   agricultural   
land.    For   example   Binswanger   and   Pingali   (1988)   construct   a   measure   that   they   call   
“agroclimatic   population   density,”   which   is   population   per   million   calories   of   production   potential   
at   an   intermediate   input   technology   level,   using   FAO   estimates.    Galor   and   Ozak   (2016)   
similarly   construct   country-level   measures   of   potential   crop   yield   (millions   of   kilocalories   per   
hectare,   using   a   specified   set   of   available   crops   and   conditioning   on   specific   levels   of   inputs   and   
water   supply),   that   can   be   used   to   construct   quality-adjusted   population   densities.     
  

In   this   paper   we   introduce   a   new   method   for   adjusting   population   density   for   land   
characteristics.    Specifically,   we   estimate   weights   on   land   characteristics   from   a   Poisson   
regression   of   population   in   quarter-degree   grid   squares   on   a   vector   of   geographic   
characteristics   and   country   fixed   effects,   and   then   use   fitted   values   (suppressing   the   fixed   
effects)   to   form   a   measure   of   land   quality   for   each   grid   square.    The   use   of   country   fixed   effects   
avoids   the   problem   that   the   estimated   coefficients   on   geographic   characteristics   will   be   biased   
due   to   the   correlation   of   country-level   institutions   with   country-level   average   geographic   
characteristics,   as   stressed   for   example   by   Acemoglu,   Johnson,   and   Robinson   (2001).    
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With   our   measure   of   land   quality   in   hand,   we   can   construct   a   set   of   interesting   variables   at   the   
country   level:   average   land   quality,   total   quality-adjusted   land   area,   and   quality-adjusted   
population   density.    The   last   is   simply   total   population   divided   by   the   sum   of   grid-cell   level   
quality-adjusted   land   quantity.     2

  
Quality-adjusted   population   density   ( QAPD )   is   positively   correlated   with   conventionally   
measured   population   density,   but   there   are   a   number   of   cases   in   which   the   change   in   measure   
makes   a   substantial   difference   to   a   country’s   relative   density.    To   give   an   example,   Rwanda   and   
the   Netherlands   have   fairly   similar   values   of   conventionally   measured   population   density,   but   
when   we   use   our   quality-adjusted   measure,   Rwanda   remains   one   of   the   most   densely   
populated   countries   in   the   world,   while   density   in   the   Netherlands   is   close   to   the   world   median.   
Further,   we   show   that   switching   to   our   quality-adjusted   measure   brings   to   light   important   
empirical   regularities.    Most   significantly,   while   the   correlation   across   countries   between   income   
per   capita   and   conventional   population   density   is   close   to   zero,   income   per   capita   is   strongly   
negatively    correlated   with   quality-adjusted   population   density.    This   result   is   robust   to   alterations   
in   the   specification   and   population   dataset   used,   as   well   as   to   the   sample   of   countries   used   in   
estimating   the   weights   on   geographic   characteristics.     
  

The   finding   that   poorer   countries   have   higher   quality-adjusted   population   density   than   rich   
countries   is   a   surprise,   and   much   of   the   remainder   of   the   paper   is   devoted   to   exploring   it.    In   
many   models   of   urbanization   and   agglomeration,   higher   population   density   is   associated   with   
higher   productivity,   and   so   one   would   expect   density   and   income   to   be   positively   correlated   
(Ciccone   and   Hall,1996;   Combes   and   Gobillon,   2015).    Similarly,   in   models   in   which   there   are   
exogenous   productivity   differences   among   countries,   typically,   density   is   higher   in   more   
productive   countries,   due   to   either   migration   or   endogenous   population   growth.    As   long   as   
population   did   not   completely   swamp   the   benefits   of   density,   these   more   dense   countries   would   
also   be   richer.     
    

A   natural   mechanism   that    would    explain   the   negative   correlation   between   income   per   capita   and   
quality-adjusted   population   density   is   pressure   on   natural   resources,   à   la   Malthus.    This   view  
was   a   staple   of   thinking   among   development   economists   through   the   1980s,   but   has   mostly   
fallen   out   of   fashion   since   then.    While   we   do   not   attempt   to   directly   estimate   the   effect   of   3

2  Nordhaus   (2006)   takes   an   approach   similar   to   that   in   the   current   paper,   regressing   the   logs   of   total   
output,   output   per   capita,   and   population   at   the   level   of   one   degree   grid   cells   on   country   fixed   effects   and   
a   set   of   geographic   covariates.    Our   paper   differs   from   his   in   its   specification   (log-linear   vs.   Poisson,   as   
discussed   below),    population   data   used,   the   set   of   geographic   covariates,   and   most   importantly   in   
interpretation,   in   focusing   on   re-scaling   population   density   as   a   function   of   geographic   characteristics.     
3  The   idea   still   has   some   following   among   economists.    For   example,   Acemoglu,   Fergusson,   and   Johnson   
(2019)   interpret   their   finding   that   rapid   population   growth   induces   increased   civil   unrest   as   being   driven   by   
population   pressure   on   fixed   natural   resources.   In   the   quantitative   analysis   of   Ashraf,   Weil,   and   Wilde   
(2013)   the   Malthusian   channel   (labor   force   relative   to   resources)   accounts   for   about   one   quarter   of   the   
increase   in   income   per   capita   resulting   from   reduced   fertility   at   a   horizon   of   90   years.    By   contrast,   
analyses   such   as   Bloom,   Canning,   and   Sevilla   (2003)   focus   on   the   effects   of   fertility   reduction   on   
population   age   structure   and   dependency   ratios,   without   much   attention   to   population   size.   
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quality-adjusted   population   density   on   income   through   this   channel,   we   conduct   a   development   
accounting   exercise   to   show   that   even   if   one   allows   for   a   generous   role   of   natural   resources   in   
the   production   function,   such   a   population   channel   plays   a   limited   role   in   explaining   the   negative   
correlation   between    QAPD    and   income.   That   negative   correlation   is   better   explained   by   the   
negative   correlation   between    QAPD    and   productivity.     
  

We   then   turn   to   historical   data.    We   show   that   the   negative   correlation   between   income   and   
quality-adjusted   population   density   today   is   primarily   due   to   differential   population   growth   across   
countries   since   1820,   rather   than   persistence   in   quality-adjusted   population   density   over   time.   If   
persistence   were   important,   we   would   see   a   strong   correlation   between   income   today   and   
quality-adjusted   density   200   years   ago,   but   we   do   not.    We   also   show   that   quality-adjusted   
population   density   today   is   systematically   lower   in   countries,   primarily   in   the   New   World,   where   
the   native   population   was   displaced   over   the   last   500   years,   than   in   countries   where   such   
displacement   did   not   occur.   
  

The   final   part   of   the   paper   suggests   a   historical   explanation   for   the   negative   correlations   
between   quality-adjusted   population   density   and   both   income   per   capita   and   productivity.   We   
show   that    QAPD    is   strongly,   positively   correlated   with   a   country   having   gone   through   the   
demographic   transition   and   having   taken   off   economically   at   a   later   point   in   time.    We   argue   that   
while   late-developers   received   transfers   of   both   productive   and   health   technology   from   the   world   
leaders,   health   technology   transferred   much   more   quickly,   leading   to   rapid   population   growth.    It   
is   this   differential   timing   of   health   and   productivity   improvements   that   produced   the   patterns   that   
we   observe   in   the   data   today.     
  

The   rest   of   this   paper   is   organized   as   follows.   In   Section   1,   we   discuss   the   data   we   use   as   well   
as   a   simple   model   for   estimating   geographic   impacts.   Section   2   presents   our   basic   results   in   
terms   of   geographic   predictors,   fitted   values   for   land   quality,   and   estimates   of   quality-adjusted   
population   density   at   the   country   level.   Section   3   reports   three   key   facts   about   the   cross-country   
correlation   between   quality-adjusted   population   density   and   income   per   capita:   it   is   negative,   
development   accounting   suggests   it   is   unlikely   to   be   driven   primarily   by   population   pressure   on   
natural   resources,   and   it   arose   in   the   past   200   years.   Section   4   shows   how   simple   models   
cannot   explain   the   facts   we   have   uncovered,   and   lays   out   our   proposed   explanation,   focusing   
on   the   differential   timing   of   the   transfer   of   productive   and   health   technologies   from   rich   to   poor   
countries.   Section   5   concludes.   

    
1. Data   and   specification     

  
In   this   section   we   first   discuss   which   population   data   set   we   use   and   why.    We   then   present   a   
simple   model   of   how   population   allocates   itself   within   a   country   as   a   function   of   geographic   
characteristics,   which   we   use   to   motivate   our   empirical   specification.   

  
1.1   Population   dataset  
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Our   primary   population   dataset   is   the   European   Union’s   Global   Human   Settlements   population   
layer   (GHS-POP),   which   provides   an   estimate   of   population   within   each   30-arc-second   
(approximately   1   square   km)   grid   cell.    These   data   are   produced   in   two   steps.   First,   an   initial   
estimate   is   taken   directly   from   the   Gridded   Population   of   the   World   version   4   (GPWv4).   GPWv4   
in   turn   takes   population   estimates   for   administrative   regions   (polygons),   typically   from   censuses   
circa   2010,   and   allocates   them   to   cells   assuming   a   uniform   distribution.   Its   effective   spatial   
resolution   thus   depends   on   what   information   individual   countries   provide,   with   richer   countries   
typically   providing   data   for   finer   regions,   down   to   enumeration   units,   or   even   block   level   data.   Of   
12.9   million   input   polygons   worldwide,   10.5   million   are   in   the   United   States.   There   is   substantial   
variation   within   countries   as   well,   with   higher   resolution   in   more   densely   populated   regions.   4

  
In   the   second   step,   GHS-POP   reallocates   GPWv4   estimates   within   administrative   polygons   
based   on   a   companion   dataset,   GHS-BUILT,   that   defines   built   surface   based   on   Landsat   
30-meter   resolution   satellite   data   circa   2015.   In   the   rare   cases   where   no   built   areas   are   visible   in   
a   region,   it   reverts   to   the   GPWv4   estimates.   5

  
GHS-POP’s   use   of   building   cover   to   redistribute   people   within   census   units   is   very   likely   to   
provide   more   accuracy   than   GPWv4’s   assumption   of   uniform   density   within   large   administrative   
units.   We   however   avoid   more   heavily   modelled   population   datasets   such   as   LandScan   (Rose   
and   Bright,   2014),   primarily   due   to   endogeneity   concerns.   In   the   Appendix,   we   compare   these   
three   datasets   in   greater   detail,   including   the   key   relationship   between   GDP   per   capita   and   
quality-adjusted   density   as   measured   using   each   of   them.   
  

To   calculate   population   density,   we   follow   GHS-POP   and   divide   population   by   land   area   from   
GPWv4,   but   we   first   aggregate   both   to   quarter-degree   grid   squares   (approximately   773   square   
km   at   the   equator)   to   match   the   spatial   resolution   of   our   geographic   characteristics.   We   limit   the   
analysis   to   latitudes   between   55   South   and   75   North   due   to   data   availability.   GHS-POP   registers   
40%   of   our   sample   grid   squares   as   having   no   people.   Non-zero   values   begin   at   an   implausible   
measure   of   3   x   people   per   square   kilometer.   These   issues   of   having   many   zeroes   and   very  10 

9−  
low   recorded   population   densities   guide   our   choice   of   estimation   strategy   in   the   following   
section.   
  

1.2 Estimating   land   quality      
    

We   outline   a   simple   model   of   population   allocation   within   a   country   that   leads   directly   to   our   
econometric   specification.   In   the   equations   to   follow    c     indexes   countries,     i     indexes   regions   
(grid   cells)   within   a   country,   and    N c      is   the   number   of   regions   in   country    c.    Production   in   a   region   
is   given   by     

4  A   grid   cell   crossing   a   polygon   boundary   is   assigned   a   population   density   that   is   the   areally-weighted   
average   of   its   constituent   polygons.     
5  More   information   about   the   GHS   data   can   be   found   in   Florczyk   et   al.   (2019).   GHS-POP   is   described   in   
Schiavina    et   al .   (2019)   and   Freire    et   al .   (2016).   GHS-BUILT   is   described   in   Corbane    et   al. ,   (2018   and   
2019).   GPWv4   is   described   in   CIESIN   (2017).   
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(1)        (A Z B )  LY i,c =  i,c i,c c

1 α− α
i,c  

  
where     is   a   measure   of   land   productivity   in   a   region,     is   the   land   area   of   the   region,   and  Ai, c Z i, c  

  is   a   country-level   measure   of   productivity   due   to   non-land   factors   (institutions,   technology,   Bc  
etc.).   Differences   in   physical   and   human   capital   per   worker   could   also   be   incorporated   into   .   BC  6

Similarly,   allowing   for   agglomeration   economies   would   not   affect   the   key   results   of   the   model   for   
our   purposes.   Although   the   regions   that   we   use   are   all   quarter-degree   squares   of   latitude   and   7

longitude,   they   differ   in   their   land   areas   both   because   lines   of   longitude   converge   away   from   the   
equator   and   because   parts   of   some   grid   squares   are   covered   with   water.   
  

Total   labor   in   the   country   is     
  

(2)      .  Lc =  ∑
N c

i=1
Li,c  

  
We   assume   that   workers   in   a   region   are   paid   their   average   products     
  

(3)              yi,c =  ( Li,c

A Z Bi,c i, c c)1 α−
 

  
and   that   labor   mobility   within   a   country   equalizes   income   among   regions   
  

(4)   .  yi,c = yc  
  

We   can   thus   solve   for   the   equilibrium   distribution   of   workers   using   (2)-(4):   
  

(5)           .  LLi,c =
A Z 
i,c i, c

Z∑
Nc

i=1
A 
i,c i, c

c  

  

6  The   exponent   on   the   term   with   land   quality   and   productivity   is   simply   a   normalization.    Land   quality   is   
not   observed   directly,   but   rather   inferred   from   a   regression.   Using   a   different   normalization   would   lead   to   
different   regression   coefficients,   but   would   not   change   the   fitted   values   that   we   focus   on   below.     
7  If   we   think   that   agglomeration   economies   come   from   density   as   in   the   classic   Ciccone   and   Hall   (1996)   
paper   or   more   modern   papers   such   as   Combes   et   al.   (2017)   and   Henderson,   Kriticos   and   Nigmatulina   
(2020),   then   there   should   be   a   multiplicative   argument   on   the   right   hand   side   of   (1)   equal   to   (L i,c /Z i,c ) η .   In   
this   case,   equation   (7b)   is   the   same   except   the   X i,c    term   is   multiplied   by   (1-α)/(1-α-η).   Using    1-α=0.25   or   
0.33   from   below   and   η=0.04,   which   is   typical   in   the   literature   (see   Rosenthal   and   Strange,   2004,   or   
Combes   and   Gobillon,   2015),   this   factor   is   1.19   or   1.14.   While   this   affects   the   interpretation   of   the   
estimated   coefficients   in   (7b),   it   does   not   affect   the   fitted   values   from   this   equation   that   we   focus   on   below.   
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While   we   cannot   observe      directly,   we   do   observe   a   set   of   land   characteristics   A 
i,c  

  that   we   assume   affect   productivity :  X , X , ..]  X = [ 1  2 .  8

  
(6)    .  exp(X β)  Ai,c =   

i,c  
  

Previous   work   (Nordhaus,   2006;   Henderson,    et   al. ,   2018)   estimated   the   parameters   in   equation   
(6)   by   taking   logs   and   plugging   into   equation   (5)   with   a   log-additive   error   term:     
  

(7a)    .  Z ) C  β  ln(Li,c/ i, c =  c + X  
i,c + εi,c  

  
where     is   a   country   fixed   effect   and   is   a   stochastic   error   term.    There   are   a   number   of   Cc  εi,c  
problems   with   this   log-linear   specification,   however.   
  

First,   as   noted   above,   40%   share   of   grid   squares   in   our   data   have   zero   reported   population.   A   
common   approach   to   this   problem   is   to   replace   these   with   a   small   non-zero   value.   9

Unfortunately,   parameter   estimates   can   be   sensitive   to   the   value   used   for   imputation,   and   are   
also   sensitive   to   simply   dropping   zeros.   Moreover,   as   seen   in   Figures   A1.A   and   A1.B,   about   
50%   of   grid   squares   have   density   values   less   than   0.135   people   per   square   kilometer   and   about   
75%   less   than   12   people   per   square   kilometer.   Thus,   beyond   the   problem   of   zero   reported   
population   densities,   the   specification   in   equation   (7a)   puts   a   lot   of   weight   on   regions   with   
extremely   low   population   densities.   Given   the   data   construction   process   described   above,   it   is   
highly   unlikely   that   the   differences   between   e.g.   3   x   and   0.135   people   per   square   kilometer  10 

9−  
are   well-measured.   Even   if   they   were   well-measured,   conceptually   they   are   of   less   interest   than   
what   drives   regions   to   have   a   density   of   12   versus   1000   people   per   square   kilometer.   From   
Figure   A1.B,   over   95%   of   the   world’s   population   lives   at   above   12   people   per   square   kilometer.   
  

For   these   reasons   we   estimate   a   Poisson   model.   The   specific   functional   form   is     
  

(7b)     .  xp  E L Z ∣C ,( i,c/ i, c c X  
i,c)  = e C  β( c + X  

i,c )  

  
The   Poisson   specification   is   well-suited   for   outcome   measures   with   many   zeros   and   tiny   values.   
In   addition,   Santos   Silva   and   Tenreyro   (2006)   show   that   OLS   estimates   of   (7a)   are   inconsistent   

8  It   is   straightforward   to   allow   these   characteristics   to   also   affect   the   amenity   value   of   a   location   in   addition   
to   productivity.    Specifically,   we   can   modify   (4)   so   that   mobility   within   a   country   equalizes   the   product   of   
income   and   amenities,   rather   than   just   income.   
9  For   example,   Henderson,    et   al.    (2018),   which   examined   lights   data,   assigned   to   every   reported   zero   
observation   the   minimum   non-zero   value   in   the   dataset.   In   Nordhaus   (2006),   where   output   per   square   
kilometer   is   the   dependent   variable,   3,170   of   17,409   grid   squares   in   the   regression   sample   have   zero   
values   for   the   dependent   variable.   Norhaus   imputes   values   for   618   of   these   cells   based   on   neighbors,   
and   then   assigns   the   remainder   a   value   of   one   before   taking   logs.     
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(and   NLS   inefficient)   in   the   presence   of   heteroskedasticity,   which   is   likely   in   our   context.   Poisson   
estimation   solves   these   problems.    Also,   predicted   values   of   density   discussed   later   from   a   
Poisson   specification   are   remarkably   robust   to   using   the   two   alternative   population   datasets   
noted   above,   while   log-linear   predicted   values   are   much   more   sensitive,   as   shown   in   the   
Appendix   Figure   A.2.   Similarly   our   basic   results   on   the   relationship   between   predicted   country   
population   and   GDP   per   capita   discussed   later   are   again   remarkably   similar   across   the   three   
data   sets   under   the   Poisson   specification   with   or   without   censoring   zeros   and   tiny   values,   while   
estimates   of   the   log-linear   specification   are   wildly   different   for   the   three   different   data   sets   as   
shown   In   Appendix   Table   A.2.   
  

The   stochastic   component   of   the   Poisson   model   is   crucial   for   addressing   the   contingent   nature   
of   human   settlement.   There   is   a   vast   literature   on   multiple   equilibria   and   accidents   of   history   
with   agglomeration   (e.g.   Krugman,   1991;   Arthur,   1989;   Davis   and   Weinstein,   2002).    More   
recent   work   has   focused   on   dynamic   development   subject   to   stochastic   processes   that   yield   
particular,   unique   equilibria   as   a   way   of   encapsulating   these   accidents   (Michaels,   Rauch,   
Redding,   2012,   and   Desmet   and   Rappaport,   2017).   For   example,   in   a   model   similar   to   ours   but   
with   a   more   complex   production   process,   Desmet   and   Rappaport   envision   regions   as   being   
subject   to   initial   large   productivity/resource   shocks   and   then   to   a   series   of   accumulating   
independent   draws   over   time.   These   accidents   are   important   to   understand   why,   for   example,   
the   centre   of   Kolkata   is   not   50   kilometers   further   up   or   down   the   Hugli   River   or   on   a   completely   
different   river   in   historical   Bengal.   In   that   particular   case,   an   initial   arbitrary   choice   of   a   British   
East   India   Company   employee,   Job   Charnock,   and   then   a   history   of   other   choices   and   
accumulations   over   300   years,   anchored   that   location   and   induced   high   density.    Our   reduced   
form   specification   summarizes   the   cumulative   impact   of   such   a   succession   of   shocks   under   free   
mobility.   Since   we   are   assuming   a   Poisson   specification   overall,   we   effectively   assume   that   
these   shocks   are   a   series   of   Poisson   draws.   
  

We   estimate   the   parameter   vector   in   (7b).   The   country   fixed   effects   control   for   factors   like   β  
technology   and   national   population   relative   to   national   land   area.   Identification   of   effects   of   land   
quality   comes   from   within-country   variation.   Under   this   specification,   the   estimated   country   fixed   
effect   is   algebraically       
  

(8)          .  nĈc = l
  æ
 ç
 ç
 è

∑
 

i∈c 
Zic
Lic

xp(X β)∑
 

i∈c
e  

i,c
︿

  ö
 ÷
 ÷
 ø

 

  
  

Given   our   expression   for      in   (6),   our   estimate   of   grid   square    i ’s   land   quality   is   naturally   the  Ai,c  
fitted   value   from   (7b),   suppressing   country   fixed   effects:     
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(9)        .  uality exp(X β)Q i,c =   
i,c

︿
 

  
1.3   Geographic   data     
  

To   measure   land   quality   we   use   the   24   geographic   characteristics   that   Henderson    et   al .   (2018)   
show   explain   a   large   share   of   the   variation   in   light   intensity   globally   and   within   countries.   These   
are   temperature,   precipitation,   length   of   growing   period,   land   suitability   for   agriculture,   elevation,   
latitude,   ruggedness,   an   index   of   the   stability   of   malaria   transmission,   distance   to   the   coast,   a   
set   of   11   indicators   defining   12   biomes,   and   a   set   of   4   dummies   indicating   the   presence   of   a   
coast,   a   navigable   river,   a   major   lake,   and   a   natural   harbor   within   25   km   of   a   cell   centroid.   10

They   are   all   available   for   164   countries.   While   other   exogenous   natural   features   are   likely   useful   
for   human   settlement,   they   are   either   hard   to   define,   like   defendability,   or   measured   based   on   
highly   endogenous   search,   like   mineral   deposits.   
  

2. Results     
  

2.1 Estimation   results   for   grid   squares     
  

We   begin   by   looking   at   the   explanatory   power   of   equation   (7b).   Poisson   regression   has   no   
perfect   analog   to   the   coefficient   of   determination   ( )    in   OLS.   We   follow   Cameron   and  R2  
Windmeijer   (1996)   in   reporting   ,   which   is   based   on   the   concept   of    deviance ,   the   difference  R2

DEV  
between   the   model   log-likelihood   and   the   highest   possible   likelihood   for   a   given   dependent   
variable.   It   is   defined   as:   
  

(10)            ,  R2
DEV =

ln(y y)∑
 

i
yi i/

y ln(μ y) (μ y )  ∑
 

i
[ i 

︿
i/ − ︿

i− i ]
 

  
where     is   the   value   of   the   dependent   variable   for   observation    i ,     is   the   predicted   value   for   yi  μ︿i  
observation    i ,   and     is   the   average   of   .    y  yi   11

  
In   Table   1,   we   report      for   the   basic   specification   and   a   set   of   alternatives   for   a   Poisson  R2

DEV  
regression   using   the   GHS-POP   data.   The   first   row   of   the   table   shows   that   geography   and   12

10  The   actual   data   are   slightly   updated   from   Henderson    et   al.    (2018).   
11  This   measure   applied   to   Poisson   models   shares   five   desirable   properties   with   R 2    applied   to   OLS:    it   is   
bounded   within   [0,1];    never   decreases   with   additional   regressors;    can   be   equivalently   expressed   based   
on   sum   of   residual   squares   or   sum   of   explained   squares;   relates   to   joint   significance   tests   of   all   the   slope   
parameters;   and   has   an   interpretation   in   terms   of   information   content.   Other   typical   pseudo-R 2    measures   
for   Poisson   models   do   not   satisfy   all   these   properties.   
12  As   noted   above,   in   Appendix   Table   A.1   we   report   the   explanatory   power   of   geographic   variables   and   
country   fixed   effects   for   the   Poisson   and   log-linear   specifications   for   GHS-POP,   GPWv4   and   LandScan,   
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country   fixed   effects   alone   each   explain   similar   amounts   of   variation,   but   the   marginal   effect   of   
each   is   also   very   high.   In   the   other   rows,   we   examine   the   robustness   of   this   result   with   respect   
to   three   potential   concerns.   First,   we   experiment   with   dropping   the   six   countries   with   the   largest   
land   area,   which   contain   54.1%   of   grid   squares   and   a   large   share   of   within-country   variation.   13

Second,   Henderson,    et   al.    (2018)   stress   that   the   determinants   of   agglomeration   differed   
systematically   between   early-   and   late-agglomerating   countries.    They   show   that   geographic   
characteristics   related   to   agriculture   had   a   proportionally   larger   impact   on   urbanization   in   the   
former   group,   while   those   characteristics   related   to   trade   had   a   proportionally   larger   impact   in   
the   latter,   reflecting   declining   transportation   prices   over   time.    To   test   whether   these   
considerations   affect   our   analysis,   we   re-run   the   population   equation   using   two   complementary   
sub-samples   (early   and   late   agglomerators,   based   on   urbanization   in   1950)    to   estimate   the   
weights   on   geographic   factors.   Finally,   we   also   consider   the   robustness   of   our   results   to   the   
inclusion   of   a   richer   specification   of   geography   in   the   grid-cell   regression.    Specifically,   we   
estimate   a   version   of   (7b)   including   a   second   order   expansion   of   a   general   functional   
relationship   with   ,   with   a   full   set   of   squared   terms   and   interactions   among   all   of   our  X ic  
geographic   covariates.     
  

Table   1   shows   that   results   are   similar   across   these   specifications.   While   row   2,   which   drops   the   
six   largest   countries,   has   lower   overall   in   each   of   the   columns,   considerable   explanatory  R2

DEV  
power   remains.   Rows   3   and   4   indicate   the   geography   has   a   somewhat   stronger   role   for   early   
agglomerators,   which   is   not   surprising   because   in   Henderson    et   al.    (2018),   much   of   the   
explanatory   power   of   geography   in   general   comes   from   agriculture-related   variables.   But   
patterns   for   early   and   late   are   similar.   Finally   in   row   5,   adding   covariates   of   course   increases   the   

,   but   not   by   a   lot.   We   maintain   the   simpler   specification   where   one   can   more   easily  R2
DEV  

interpret   the   impacts   of   geography.   
  

Table   2   shows   the   coefficient   estimates   from   our   basic   specification   (column   2),   and   also   
coefficients   from   a   specification   excluding   country   fixed   effects   (column   1),   for   comparison.    As   14

a   basic   interpretation,   in   column   2,   the   coefficient   of   0.73   for   being   on   the   coast   raises   expected   
population   density   for   a   grid   cell   by   a   factor   of    .    Similarly,   being   in   a  xp(0.73) .1  e = 2  
Mediterranean   relative   to   a   temperate   conifer   forest   biome   raises    predicted   population   density   
by   a   factor   of    ,    ceteris   paribus .    Because   many   of   the   geographic  xp(1.76 .71) .8  e − 0 = 2  
characteristics   we   use   are   correlated,   we   focus   our   interpretation   on   fitted   values   from   this   
equation.   Specifically,   fitted   values   are   produced   from   the   estimates   on   the   geographic   variables   

as   well   as   versions   of   GPWv4   and   GHS-POP   that   are   censored   to   match   the   minimum   non-zero   value   in   
LandScan.     
13  The   countries   are    Russia,   Canada,   USA,   China,   Brazil,   and   Australia.    We   choose   six   as   our   cutoff   
because   there   is   a   natural   break   in   the   distribution   of   country   sizes   between   the   sixth   largest   (Australia,   
7,692,024   km 2 )   and   the   seventh   largest   (India,   3,287,263   km 2 ).     
14  Reported   standard   errors   relax   the   “equidispersion”   assumption   of   classical   Poisson   estimation   that   the   
variance   of   the   dependent   variable   is   equal   to   its   mean,   which   is   rejected   in   our   data.   The   quasipoisson   
model   we   implement   assumes   instead   that   variance   is   proportional   to   the   mean   and   estimates   the   
constant   of   proportionality.   
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in   column   2,   suppressing   the   country   fixed   effects.   These   fitted   values   are   what   we   defined   in   
equation   (9)   as    Quality .   If   the   world   were   a   single   country,   with   the   same   technology   and   
institutions   ( B    in   equation   1)   and   with   perfect   mobility   of   population,   then   population   density   in   
each   grid   cell   would   be   proportional   to    Quality .     
  

Figure   1A   shows   world   population   density   and   Figure   1B   shows   a   world   map   of    Quality,    both   at   
the   level   of   grid   cells.   Visually,   there   are   clear   similarities   between    Quality    and   actual   population   
density,   with   high   values   for    Quality    in   Europe,   Japan,   northern   China,   the   River   Plate   basin,   
and   the   Ganges   delta,   among   other   places    Not   surprisingly,    Quality    does   a   worse   job   of   
capturing   agglomeration.   In   Figure   1A,   one   can   pick   out   areas   such   as   Mexico   City,   Los   
Angeles,   Madrid,   and   Paris,   which   do   not   have   particularly   high   values   of    Quality    in   comparison   
to   their   surrounding   areas.  
  

2.2 Land   quality   at   the   country   level.      
  

Multiplying   land   quality   from   (9)   by   grid   cell   area   produces   what   we   call    Quality   Adjusted   Area    ( 
).    We   can   similarly   construct   quality-adjusted   area   at   the   country   level,   :   AA  Q i AA  Q c   

  

(11)         AA  xp(X β)ZQ c =  
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 ê
 ê
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where   we   normalize   so   that   sums   across   countries   to   the   same   value   as   actual   area   of  AA  Q c  
the   world   ( W ).   In   essence,   is   a   country’s   allocation   of   world   land   based   on   its   quality   of  AA  Q c  
land   relative   to   the   world   average   quality   of   land.     
  

Figure   2   presents   a   cartogram   in   which   each   country’s   area   is   proportional   to   its   quality-adjusted   
area   as   in   equation   (11).    The   corresponding   numbers   are   listed   in   Appendix   Table   B.1.    For   
comparison,   we   also   present   countries’   actual   areas.   In   comparing   with   conventional   area,  AA  Q  
there   are   a   number   of   interesting   rescalings   and   rank-reversals,   many   of   which   accord   with   
common   sense.    For   example,   in   our   sample   (south   of   75   degrees   North   latitude)   Canada   has   
97%   of   the   conventional   area   of   the   United   States,   but   only   23%   of   the   quality-adjusted   area.   
Overall,   the   figure   is   notable   for   showing   that   Europe   expands   greatly   in   size,   while   Africa   
contracts.   The   five   countries   with   the   highest   quality-adjusted   area   are   the   United   States,   
Australia,   China,   Brazil,   and   Argentina.     
  

For   a   corresponding   perspective,   we   can   ask   what   each   country’s   population   would   be   if   the   
world’s   population   were   reallocated   such   that   country   populations   were   proportional   to   
quality-adjusted   areas.   This   involves   replacing   the   term   in   square   brackets   in   equation   (11),   the   
world   land   area,   with   total   world   population.    In   Figure   3   we   show   actual   (in   blue)   and   
reallocated   (in   red)   populations   for   the   80   countries   with   the   largest   quality   adjusted   areas.    The   
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distance   between   the   red   and   blue   dots   corresponds   to   the   extent   to   which   a   country   would   gain   
or   lose   population   from   this   reallocation.    The   five   biggest   gains   in   absolute   population   size   
would   be   in   Australia   (adding   631   million),    The   United   States   (478   million),   Argentina   (338   
million),   Brazil   (207   million),   and   Russia   (153   million).    By   contrast,   the   countries   with   the   
biggest   absolute   declines   following   such   a   reallocation   would   be   India   (losing   1.06   billion),   China   
(834   million),   Pakistan   (167   million),   Nigeria   (160   million),   and   Bangladesh   (135   million).     
  

Next   we   can   calculate   average   land   quality   of   a   country   using   normalized   :   AA  Q c   
  

(12)       LQ  A c = Zc
QAAc  

  

where    .    Average   land   quality   values   are   in   column   1   of   Appendix   Table   B.1.   Similar  Zc = ∑
N c

i=1
Z i,c  

to   the   above,   if   the   world   had   uniform   institutions/technology   and   there   was   complete   population   
mobility,   then   the   population   density   of   countries   would   be   proportional   to   their   average   land   
quality.     The   five   countries   with   the   highest   average   land   qualities   are   Denmark,   Ireland,   the   
Netherlands,   Croatia,   and   the   United   Kingdom,   all   of   which   have   populations   less   than   would   be   
predicted   by   land   quality   in   Figure   3.     
    

Finally   we   calculate    Quality   Adjusted   Population   Density   (  ),   which   is   simply   country  APD  Q c  
population   divided   by   normalized    ,   and   can   equivalently   be   expressed   as   conventional  AA  Q c  
population   density   divided   by    .   That   is,      is   a   country’s   population   divided   by   its  LQ  A c APD  Q c  
allocation   of   total   world   land   based   on   its   share   of   world   quality-adjusted   land.   
  

(13)        APD  Q c =  Lc
QAA   c =  Lc

Z ALQ   c c
 

    
Note   that   (13)   is   similar   to   the   expression   inside   the   parenthesis   in   equation   (8)   for   country   fixed   
effects,   apart   from   the   normalization   in   (11).   The   difference   is   that   (8)   divides   the   items   in   the   
numerator   by   grid   square   land   area     before   summing,   while   in   (13)   those     terms   are   in   the   Z i  Z i  
denominator   sum.   As   noted   above,   these   areas   vary   both   due   to   the   convergence   of   longitude   
lines   away   from   the   equator   and   the   exclusion   of   surface   water   area.   If   all   grid   cells   in   a   country   
had   the   same   area,   the   country   fixed   effect   that   we   estimate   would   just   be   the   log   of   
quality-adjusted   population   density,   ignoring   the   normalization.    In   practice,   the   correlation   of   the   
fixed   effect   and   the   log   of   quality-adjusted   population   density   across   countries   is   0.98,   so   that   
the   two   measures   are   almost   interchangeable.   
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Column  5  of  Appendix  Table  B.1  shows  values  of  log   QAPD,   which  is  measured  in  units  of                   
population  per  quality-adjusted  square  kilometer.  For  the  world  as  a  whole,   QAPD  is  56.6                
people  per  square  kilometer,  which  by  our  earlier  normalization  is  the  same  as  conventional                
population  density  for  the  world  as  a  whole.  The  five  countries  with  the  highest  levels  of                  
quality-adjusted  population  density  (excluding  the  city-states  of  Hong  Kong,  Singapore,  and             
Bahrain,  as  well  as  countries  with  populations  of  less  than  one  million)  are  Rwanda  (2,419),                 
Burundi  (1,654),  Uganda  (711),  Nigeria  (507),  and  Pakistan  (496).  The  five  countries  with  the                
lowest   QAPD   are  Australia  (2.06)  New  Zealand  (3.23),  Ireland  (5.38),  Uruguay  (5.50),  and               
Latvia  (7.42).  Among  the  other  interesting  findings  in  this  table  are  that  China,  with   QAPD   2.5                  
times  the  world  average,  has  significantly  lower   QAPD   than  India,  which  is  5.3  times  the  world                  
average.  The  United  Kingdom  (28.7)  and  Germany  (48.5)  have  higher   QAPD   than  the  United                
States  (22.6),  but  the  latter  country,  despite  being  in  the  New  World,  has  higher  quality  adjusted                 
density  than  France  (18.5)  and  Spain  (14.4).  Japan,  which  is  often  thought  of  as  a  crowded                  
country,   has    QAPD    of   81.2,   which   is   only   50%   above   the   world   average.     
  

Figure   4   compares   conventional   population   density   to    QAPD    in   logs.    The   sample   is   the   same   
one   we   use   in   all   of   our   cross-country   analysis   that   follows.    Specifically,   starting   from   the   164   
countries   we   study   in   Tables   1   and   2,   we   exclude   those   with   land   area   under   1,500   km 2 ,   missing   
values   for   the   GDP   data   used   in   our   analysis,   or   missing   data   for   the   measure   of   the   native   
share   of   the   population,   from   Putterman   and   Weil   (2010),   which   is   discussed   below.   The   
remaining   sample   is   148.    As   the   figure   shows,   the   two   measures   of   density   are   highly   
correlated,   but   there   are   also   notable   deviations.   For   example,   while   Russia   is   one   of   the   lowest   
density   countries   in   the   world   and   Italy   is   one   of   the   highest,   the   two   countries   have   nearly   
identical   levels   of    QAPD .     
  
  

3. The   relationship   between   density   and   income   per   capita   
  

3.1   Reduced   form   
  

Figures   5A   and   5B   graph   the   bivariate   relationships   between   GDP   per   capita   and   (respectively)   
conventional   population   density   and   our   measure   of   quality-adjusted   population   density.    There   
seems   to   be   little   association   between   GDP   per   capita   and   conventional   population   density   in   
Figure   5A,   while   in   Figure   5B   GDP   per   capita   and   quality-adjusted   density   are   distinctly   
negatively   correlated.   We   focus   on   this   association   for   much   of   the   rest   of   the   paper.   
  

Table   3A   explores   these   same   data   in   a   bivariate   regression   context,   and   also   presents   results   
for   several   other   methods   for   adjusting   population   density.   The   column   1   elasticity,   -0.52,   is   
large   in   absolute   value.   In   column   2,   results   are   similar   when   we   use   the   fixed   effect   measure   in   
equation   (8)   as   a   variant   of    QAPD .   In   column   3   we   reconstruct    QAPD    based   on   a   version   of   
equation   (7b)   without   country   fixed   effects.   Identification   is   no   longer   based   solely   on   
within-country   variation,   so   institutions   and   other   fixed   factors   may   drive   results.   The   elasticity   
shrinks   in   magnitude   but   remains   significantly   negative.   However   no   significant   association   

12   



  

exists   between   GDP   per   capita   and   conventional   density   (column   4),   Galor   and   Ozak’s   (2016)   
measure   of   population   per   million   calories   of   agricultural   potential   
( post1500MaximumCalories0mean ;   column   5),   or   population   per   unit   land   suitable   for   
agriculture   from   Ramankutty   et   al.   2002   (column   6).     
  

Table   3B   explores   the   impact   of   adding,   as   a   control,   a   dummy   variable   for   countries   in   which   
less   than   80   percent   of   the   population   is   descended   from   people   who   lived   in   the   country   500   
years   ago   (“ Native ”   for   short),   based   on   data   from   Putterman   and   Weil   (2010).   In   the   15

regression   dataset,   35%   of   countries   (with   18%   of   total   population)   fall   into   this   category.   The   
coefficient   on   the   non-native   indicator   is   of   interest   itself,   showing   that   countries   in   which   the   
native   population   has   largely   been   replaced   over   the   last   500   years   tend   to   have   lower    QAPD   
than   those   where   such   replacement   has   not   taken   place.   Our   supposition   is   that   these   mostly   
New   World   countries   had   not   yet   reached   a   new   equilibrium   with   replacement   populations   by   
the   time   the   demographic   transition   was   complete,   an   issue   we   return   to   Section   4.   Note   that   
adding   the   control   has   little   impact   on   the   pattern   of   coefficients   for   GDP   per   capita   across   
columns.   Baseline   coefficients   in   column   1   differ   by   less   than   5%.     
  

Table   4   probes   the   robustness   of   our   result   that   quality-adjusted   population   density   is   negatively   
correlated   with   income   per   capita.   In   all   columns   we   include   the   “ Native ”   dummy   as   a   standard   
control.   Column   1   of   Table   4   shows   our   baseline   result,   where   the   elasticity   of    QAPD    with   
respect   to   GDP   per   capita   is   -0.498.   Focusing   on   this   elasticity   of    QAPD    with   respect   to   GDP   
per   capita,   in   columns   2-6   we   show   other   specifications.   Columns   2-5   correspond   to   rows   2-5   in   
Table   1.   In   column   2,   we   drop   the   6   largest   countries   in   the   grid   square   regression   (equation   
7b),   but   still   predict    QAPD    for   them   using   its   estimated   coefficients.   In   column   3   we   estimate   
grid   square   populations   for   early   agglomerators   only   and   predict    QAPD    for   all   countries   from   
those   coefficients.    Column   4   repeats   this   exercise   for   late   agglomerators,   but   here   because   the   
tundra   biome   does   not   appear   at   all   in   the   late   agglomerator   subsample,   we   cannot   form   fitted  
values   for   the   six   countries   with   tundra.   Column   5   predicts   country   population   with   the   fully   
interacted   grid   square   regression.   Finally   in   column   6,   country   observations   are   weighted   by   
land   area   (using   ‘aweights’   in   Stata).   The   idea   here   is   that   the   larger   number   of   cells   makes   
larger   countries’   measures   of    QAPD    better   measured   and   more   informative.   
  

In   all   these   specifications,   we   retain   a   highly   significant   elasticity.   Relative   to   column   1,   the   
elasticity   rises   in   magnitude   by   10-48%,   except   for   column   5   using   the   fully   interacted   version   of   
(7b),   where   it   falls   to   -0.29   .   Measuring   quality-adjusted   population   density   for   all   countries   using   
early   agglomerator   coefficients,   implying   that   grid   square   populations   are   more   sensitive   to   
agricultural   conditions,   yields   the   largest   absolute   value   elasticity,   and   dropping   the   6   largest   

15  The   cutoff   of   80   percent   native   was   chosen   to   maximize   the   R 2    of   our   basic   regression   in   column   1   of   
Table   3B.   In   practice,   the   results   are   insensitive   to   using   alternative   cutoffs   or   a   continuous   measure   
rather   than   a   dummy.   In   a   larger   sample   of   164   observations,   including   countries   for   which   the    Native   
variable   is   not   available,   the   elasticity   coefficient   (standard   error)   is   0.455   (0.071)   versus   0.521   In   Table   
3A.   
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countries   the   second   largest.   The   key   point   however   is   that   the   large   and   significant   negative   
elasticity   between   GDP   per   capita   and    QAPD    is   a   robust   result.   16

  
3.2    Productivity   and   congestion     
  

Having   established   that   there   is   a   robust   negative   correlation   between   quality-adjusted   
population   density   and   income   per   capita,   it   is   natural   to   think   about   what   causal   channels   might   
underlie   it   and   what   other   important   facts   may   emerge.   One   natural   channel   to   consider   is   
congestion   of   natural   resources.   The   idea   that   having   too   many   people   relative   to   land   will   
reduce   income   goes   back   at   least   to   Malthus.    In   a   modern   context,   research   that   argues   for   an   
operative   Malthusian   channel,   particularly   in   poor   countries,   includes   Young   (2005),   Acemoglu   
and   Johnson   (2007),   Kohler   (2012),   and   Acemoglu,   Fergusson   and   Johnson   (2019).    As   noted   
by   Das   Gupta,   Bongaarts,   and   Cleland   (2011),   discussion   of   “sustainable   development”   at   the   
country   level   is   to   a   large   extent   a   reformulation   of   the   Malthusian   concern   with   the   ratio   of   
population   to   resources.    At   the   same   time,   there   is   a   significant   body   of   work,   going   back   to   
Boserup   (1965)   and   Simon   (1976),   and   crystallized   in   the   report   of   the   National   Research   
Council   (1986),   arguing   that   population   size   does   not   represent   an   important   barrier   to   
economic   development.   17

  
Providing   a   definitive   answer   to   the   question   of   how   much   population   size   affects   income   per   
capita   would   be   a   significant   accomplishment.   We   do   not   propose   an   answer   to   that   
controversy.   Instead,   we   pursue   a   more   limited   objective:   we   ask   to   what   extent   a   negative   
causal   effect   of   population   on   income   per   capita    could    account   for   the   pattern   that   we   see   in   the   
data.   Put   differently,   we   consider   the   possibility   that   the   negative   relationship   between   income   
and    QAPD     is   driven   solely   by   the   channel   of   crowding   with   respect   to   fixed   resources.   If   under   
reasonable   modelling   assumptions   the   elasticity   implied   by   crowding   is   much   smaller   than   what   
we   find,   there   must   be   other   causal   channels   at   work.   

  
The   simplest   approach   is   to   apply   the   model   of   Section   1.2.   Equation   (3)   gives   the   level   of   
income   per   capita   in   a   grid   square   as   a   function   of   population,   geographic   attributes,   and   the   
country-level   productivity   term,     Under   the   assumption   that   people   migrate   within   countries  .  Bc  

16  In   Appendix   Table   A.2,   we   further   explore   the   robustness   of   the   specification   in   column   1   of   Table   3B.   
Specifically,   we   present   estimates   using   the   different   underlying   population   datasets   (GHS-POP,   GPWv4,   
and   LandScan)   and   specifications   (Poisson   and   log-linear),   and   also   censor   all   three   datasets   at   the   
LandScan   minimum   value,   which   at   0.0013   people   per   sq   km   is   higher   than   those   of   the   other   data   sets.   
The   take-away   from   this   exercise   is   that   the   significant   relationship   with   an   elasticity   of   about   -0.5   is   
maintained   for   any   data   set   as   long   as   we   use   a   Poisson   estimator.    The   log-linear   formulation   results   are   
highly   variable,   though   less   so   if   data   sets   are   censored   at   a   common   arbitrary   threshold.   With   a   
log-linear   formulation,   if   we   censor   GHS-POP   at   the   LandScan   minimum,   the   elasticity    is   -0.41   in   column   
(9),   close   to   the   baseline   -0.5.   Referring   back   to   the   end   of   Section   1.1,   the   consistency   of   Poisson   
estimates   across   data   sets   that   differ   enormously   in   their   treatment   of   the   huge   number   of   low   density   grid   
squares   is   a   key   reason   we   use   the   Poisson.   
17  See   Kohler   (2012)   for   a   more   extensive   review.    The   literature   discussed   here   focuses   on   population   
size.    Related   literature   looks   at   two   other   dimensions   of   population:   its   growth   rate   and   its   age   structure.   
Ashraf,   Weil,   and   Wilde   (2013)   discuss   the   magnitudes   and   interactions   of   these   various   channels.   
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to   equalize   income   across   grid   cells   as   shown   in   equation   (4),   equation   (5)   then   gives   the   
number   of   people   per   grid   cell.   Combining   equations   (3)-(5),   we   can   thus   solve   for   log   income   
per   capita   at   the   country   level:     
  

(14)          nl (y )c = (1 )− α ln n  
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Ignoring   the   normalization   factor   in   eqn.   (13)   which   is   the   same   for   all   countries,   what   we   have   
defined   as   quality-adjusted   population   density   is   the   same   as   the   second   term   in   the   large   
brackets   on   the   right   hand   side   in   (14).   We   then   decompose   the   variance   of   log   output   per   
worker   across   countries   in   (14)   into   a   piece   that   is   due   to   resource   congestion,   a   piece   that   is   
due   to   productivity,   and   a   piece   that   is   due   to   the   covariance   of   these   two   things.   This   yields   
  

(15) 
 ar(ln(y )) (1 ) var(ln(B )) (1 ) var(ln(QAPD )) (1 ) cov(ln(B ), n(QAPD ))   v c =  − α 2

c +  − α 2
c − 2 − α 2

c l c   
  

Table   5   shows   a   variance   decomposition   based   on   this   equation,   calculating   productivity   as   a   
residual   from   (14).   We   present   results   for   our   quality-adjusted   density   measure,   and   also   for   
conventional   density   to   see   the   contrast,   using   values   of   ¼   and   ⅓   for   .    Appendix   Table  1 )  ( − α  18

B.2   shows   the   same   decomposition   restricting   to   the    Native> 0.8   sample.   Results   are   very  
similar   to   those   in   Table   5.     
  

The   variance   decomposition   using   conventional   population   density   (panel   A)   may   appear   
puzzling    at   a   first   glance.   First,   it   shows   that   the   variance   of   the   log   of   productivity   term   is   
actually   larger   than   the   variance   in   income   per   capita.   This   implies   that,   overall,   variation   in   19

population   density   must   be   working   to   reduce   income   inequality   among   countries.   However,   the   
decomposition   further   shows   that   density   by   itself   raises   the   variance   of   income   by   9.5%   or   
17%,   depending   on   the   value   of   the   land   share   assumed.    The   resolution   to   this   apparent   puzzle   

18  Kremer   (1993)   uses   one   third   as   an   upper-end   estimate   of   land's   share   for   the   economy   as   a   whole,   
while   Hansen   and   Prescott   (2002)   assume   a   value   of   the   fixed   factor   share   of   30%   for   preindustrial   
economies.   Caselli   and   Coleman   (2001)   derive   a   value   of   0.19   as   land's   share   in    agriculture   in   the   United   
States   in   the   twentieth   century.   All   of   these   papers   assume   an   elasticity   of   substitution   between   fixed   
factors   and   other   inputs   (either   for   the   economy   as   a   whole,   or   within   agriculture)   of   one.    Ashraf,   Lester,   
and   Weil   (2009),   using   data   from   Caselli   and   Feyrer   (2007),   calculate   resources   shares   in   national   
income   that   are   as   high   as   25%   in   many   poor   countries,   and   exceed   30%   in   a   few.    These   data   also   show   
that   the   resource   share   is   strongly   negatively   correlated   with   income   per   capita,   suggesting   that   the   
elasticity   of   substitution   between   fixed   factors,   on   the   one   hand,   and   an   aggregate   of   physical   capital,   
human   capital,   and   technology,   on   the   other,   is   greater   than   one.   Weil   and   Wilde   (2009)   estimate   this   
elasticity   of   substitution   to   be   in   the   neighborhood   of   two.   
19  Recall   that   productivity   as   we   have   measured   it   effectively   includes   variation   in   physical   and   human   
capital   per   worker.   Breaking   these   out   separately   would   not   affect   the   fraction   of   variance   due   to   
population   density   and   its   covariance   with   other   factors.   
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is   that   there   is   a   large    positive    covariance   between   conventional   population   density   and   
productivity,   as   in   the   final   column.   
  

We   find   the   results   in   panel   B   of   Table   5,   which   uses   our   quality-adjusted   population   density   
measure,   to   be   more   enlightening.   These   results   show   that,   while   the   largest   part   of   variation   in   
income   per   capita   is   due   to   variation   in   productivity,   ,   unlike   Panel   A,   they   do   not   imply   that   Bc  
variation   in   the   productivity   term   is   larger   than   variation   in   income.    The   Malthusian   channel   of   
resource   congestion   explains   between   10.3%   and   18.3%   of   the   variation   in   income   per   capita,   
depending   on   the   value   of   land’s   share   assumed   in   the   calculation.   However   now   most   
interestingly,   not   only   is   the   covariance   of   quality-adjusted   density   and   productivity   negative,   but   
that   covariance   explains   a   fraction   of   the   variation   in   income   that   is   about   the   same   or   even   
larger   than   the   direct   Malthusian   effect.   While   the   Malthusian   channel   has   been   well   explored   by   
economists,   the   negative   covariation   at   the   country   level   between   quality-adjusted   population   
density   and   productivity   is   something   entirely   new.   In   Section   4,   we   discuss   why   this   finding   is   20

unexpected.     
  

3.3   Timing:    QAPD    before   and   after   the   start   of   modern   economic   growth   
  

To   understand   the   negative    QAPD -income   relationship,   it   is   natural   to   ask   whether   it   is   a   recent   
phenomenon,   reflecting   modern   economic   and   population   growth,   or   whether   it   holds   for   
historical    QAPD    as   well.    More   concretely,   we   can   ask   whether   currently   poor   countries   
historically   had   higher   quality-adjusted   population   densities,   or   whether   the   currently   observed   
pattern   of    QAPD ’s   results   from   population   growth   that   we   observe   in   the   data.     21

  
To   pursue   this   question,   we   consider   a   simple   decomposition   of   current    QAPD    into   past    QAPD   
and   population   growth:     
  

(16)     n(QAPD ) ln(QAPD ) ln  l current =  historical +  ( population current 
populationhistorical )  

  
We   use   Angus   Maddison’s   population   data   for   76   countries   in   1820   as   reported   on   the   
Gapminder   website.     22

20  As   noted   earlier,   spatial   work   at   the   city   level   finds   a   positive,   potentially   causal   correlation   between   
productivity   and   local   density,   where   local   land   quality   might   not   vary   much.   While   such   a   relationship   
exists   for   local   commercial   and   industrial   concentrations,   we   are   looking   at   a   different   relationship   at   a   
macro   level.  
21  In   principle   it   would   also   be   interesting   to   explore   how   changes   in   income   over   time   have   affected   the   
current   relationship.    However,   as   historical   income   data   are   of   significantly   lower   quality   than   historical   
population   data,   we   do   not   pursue   this   path.   
22   https://www.gapminder.org/tag/maddison/    .   Gapminder   also   supplies   data   for   another   63   countries   in   
1820,   and   McEvedy   and   Jones   (1978)   report   incomes   for   76   countries   in   1850,   drawing   partially   on   
Maddison.   We   focus   on   Maddison   alone   (plus   Gapminder’s   estimate   for   Sweden   from   the   Human   
Mortality   Database)   because   the   additional   Gapminder   data   appear   to   be   spatial-temporal   interpolations   
that   push   credibility   to   a   greater   degree   than   the   Maddison   data,   and   because   the   earlier   year   relative   to   
McEvedy   and   Jones   limits   the   impact   of   modern   economic   growth   and   the   demographic   transition.   For   
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Table   6   Panel   A   shows   the   results   from   regressing   the   log   of   current    QAPD    (columns   1   and   4),   
1820    QAPD    (columns   2   and   5),   and   the   historical   increase   in   population   (columns   3   and   6)   on   
the   log   of   GDP   per   capita   in   2010.   By   construction,   regression   coefficients   in   column   1   are   equal   
to   the   sum   of   the   corresponding   coefficients   in   columns   2   and   3;   the   same   property   holds   for   the   
second   set   of   columns   4-6.    For   the   first   three   columns,   we   include   the   under-80%    Native    share   
dummy.   The   second   three   columns   drop   countries   where    Native    is   less   than   80%.     
  

The   relationship   between   2010    QAPD    and   2010   GDP   per   capita   in   column   1   is   explained   in   
almost   equal   parts   by   the   1820    QAPD    (column   2)   and   population   growth   1820-2010   (column   3)   
relationships   with   income,   although   the   former   is   not   significant,   suggesting   a   weak   historical  
QADP   relationship   with   current   GDP   per   capita.   Moreover,   in   columns   4   to   6   when   we   look   at   
just   the   sample   of   countries   without   major   population   displacem ent,   the   elasticity   betwee n   1820   
QAPD    and   current   income   (column   5)   is   much   smaller,   as   well   as   insignificant.   As   a   result,   
especially   in   this   sample,   most   of   the   negative   relationship   between   2010    QAPD    and   current   
income   comes   from   the   population   growth   component   of   the   decomposition.   That   is,   poor   
countries   have   high    QAPD    mostly   because   of   population   growth   over   the   period   for   which   we   
have   data,   rather   than   because   they   historically   had   high   levels   of   quality-adjusted   density.     
  

Another   notable   finding   is   that   the    Native    <   80%   dummy   has   a   strong,   negative   relationship   with   
population   density   historically,   and   a   strong   positive   relationship   with   the   subsequent   extent   of   
population   growth.   This   is   consistent   with   a   story   in   which   countries   that   were   underpopulated   
relative   to   their   resources   as   of   500   years   ago   were   most   likely   to   see   their   native   populations   
displaced.   Many   of   these   countries   are   geographically   well-suited   to   agriculture   (using   the   
modern   portfolio   of   available   crops),   and   historically   were   occupied   to   some   degree   by   
hunter-gatherers.   The   coefficient   in   column   (2)   shows   that   as   of   1820,   these   countries   were   less   
densely   populated   than   would   be   expected   based   solely   on   geography.   The   coefficient   in   
column   (3)   shows   that   population   growth   in   such   countries   was   subsequently   particularly   high.   
However,   we   know   from   the   negative   coefficient   on    Native    <   80%   in   Table   3B   that   these   
countries   remain   less   populated   today   than   would   be   expected   based   on   their   geographic   
characteristics.   This   differential   population   history   of   countries   where   the   native   population   was   
not   largely   displaced   is   the   main   reason   that   we   find   the   results   in   columns   4-6   as   or   more   
interesting   than   those   in   columns   1-3.     
  

Before   leaving   this   topic,   we   pursue   one   further   extension.   In   addition   to   having   high    QAPD ,   
poor   countries   today   on   average   also   have   higher   rates   of   population   growth   than   do   rich   
countries.   Population   forecasts   are   obviously   not   exact,   but   because   of   demographic   

completeness,   we   ran   these   specifications   for   the   entire   Gapminder   1820   and   McEvedy   and   Jones   1850   
datasets,   obtaining   similar   results.   For   the   full   Gapminder   data   there   is   a   stronger   relationship   between   
1820    QAPD    and   2010   income   than   in   Table   7,   but   still   much   weaker   than   between   2010    QAPD    and   2010   
income.   For   the   McEvedy   and   Jones   1850   data,   the   relationship   between   1850    QAPD    and   2010   income   
is   even   weaker   than   in   Table   6.   
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momentum   and   limits   on   the   observed   rates   at   which   fertility   and   mortality   change,   such   
forecasts   are   probably   of   reasonable   quality   up   to   a   horizon   of   a   few   decades.     
  

In   Table   6   Panel   B,   we   repeat   the   exercise   from   Panel   A,   replacing   2010   population   estimates   
with   population   projections   for   2050,   when   the   demographic   transition   is   likely   to   be   further   
along   in   today’s   poor   countries.   The   negative   relationship   between   2010   income   and   2050   
QAPD ,   which   was   already   strong   using   the   2010   measure   of    QAPD,    becomes   even   stronger,   as   
measured   by   the   magnitude   of   the   coefficient,   the   t-statistic,   or   the   R-squared.   Thus   population   
growth   differentials,   rather   than   historical    QAPD,    are   driving   the   future   negative   relationship   
between    QAPD    and   income.   

  
4.   Explaining   the   relationships   among    QAPD ,   income,   and   productivity   

  
We   view   the   negative   correlations   between   quality-adjusted   population   density,   on   the   one   
hand,   and   both   income   per   capita   and   productivity,   on   the   other,   as   a   mystery.    To   see   why,   we   
start   with   a   simple   Malthusian   model   of   an   economic-demographic   equilibrium,   following   Lucas   
(2000).   Countries   produce   output   with   land   and   labor   as   in   our   equation   (1),   and   population   
growth   is   a   positive   function   of   income   per   capita   as   well   as   a   preference   parameter   :   θ   
  

(17)        (Y L, θ)L
L̇ = f /   

  
In   the   absence   of   technological   change,   the   economy   will   reach   a   steady   state   in   terms   of   
population   and   income   per   capita,   where   =   0.  L

L̇  
  

First   consider   a   world   composed   of   countries   described   by   this   model   in   which   preferences   and   
productivity   are   the   same   in   all   countries,   and   only   land   quality   differs.   In   a   steady   state,   
conventional   density   would   vary   positively   with   land   quality,   but   neither   quality-adjusted   
population   density   nor   income   per   capita   would   vary   across   countries,   and   so   there   would   be   no   
correlation   between   the   two.    Second,   if   only   preferences   differed   across   countries,   that   would   
indeed   induce   a   negative   correlation   between   income   per   capita   and   quality-adjusted   density   
such   as   is   seen   in   the   data;   but,   under   the   current   assumptions,   the   model   would   not   generate   
the   negative   correlation   between    QAPD    and   productivity   that   we   find   in   the   data.   Third,   23

suppose   that   countries   differed   only   in   their   levels   of   productivity   for   some   exogenous   reason,   
such   as   technology   or   institutions,   broadly   defined.    In   the   simple   model   described   above,   
income   per   capita   would   again   not   vary,   so   there   could   be   no   correlation   between    QAPD    and   
income   per   capita,   but   there   would   be   a    positive    correlation   between    QAPD    and   productivity   --   
the   opposite   of   what   we   see   in   the   data.   
  

23  The   same   would   be   true   if   some   countries   were   temporarily   away   from   their   steady   states   due   to   
shocks   to   population   such   as   the   Black   Death .   
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Finally,   consider   a   model   which   starts   out   with   all   countries   in   Malthusian   steady   states,   but   then   
some   take   off   into   modern   economic   growth,   as   in   Galor   and   Weil   (2000)   or   Hansen   and   
Prescott   (2002).   In   these   models,   the   Malthusian   dynamics   embodied   in   equations   (1)   and   (17)   
are   modified   so   that,   in   the   presence   of   sufficiently   rapid   productivity   growth,   income   per   capita   
can   rise   even   as   population   size   grows.    As   a   result,   countries   that   take   off   first   will   have   higher   
income,   productivity,   and   population   density   than   those   that   take   off   later   or   are   still   in   the   
Malthusian   equilibrium.    Again,   this   would   produce   a   positive   correlation   between    QAPD,    on   the   
one   hand,   and   both   income   and   productivity,   on   the   other.    This   is   the   opposite   of   the   
correlations   that   we   see   in   the   data.    One   could   similarly   pursue   a   model   in   which   there   were   
benefits   of   agglomeration,   so   that   locations   with   higher   land   quality   endogenously   had   higher   
productivity.    Again   this   would   induce   a   positive     correlation   between   income   per   capita   and   
quality-adjusted   population   density.     
  

These   models   do   not   suffice   to   explain   the   negative   correlation   between   quality-adjusted   
population   density   and   both   income   and   productivity.   An   explanation   requires   looking   in   more   
detail   at   the   process   of   development   around   the   world.   We   already   know   that   the   negative   
correlation   between   current   income   and    QAPD    is   due   to   differential   population   growth   across   
countries   since   1820,   not    QAPD    then.   Thus   it   seems   important   to   pursue   this   differential   
population   growth   aspect.   Pursuing   this   approach,   we   bring   to   bear   four   sets   of   stylized   facts   
that   are   relatively   well-established   in   the   literatures   on   long   run   growth,   demography,   and   
increased   health   over   time.   
  

First,   there   is   a   strong   correlation   between   income   per   capita   today   and   the   year   in   which   a   
country   started   to   experience   income   and   productivity   growth.   Living   standards   throughout   the   
world   were   relatively   equal   prior   to   the   onset   of   modern   economic   growth   around   the   end   of   the   
18th   century,   and   differences   in   levels   of   income   in   the   world   today   are   overwhelmingly   due   to   
differences   in   growth   since   then.   The   richest   countries   in   the   world   are   those   that   started   to   
develop   earliest.   This   regularity   is   noted   by   e.g.   Lucas   (2000).    Galor   and   Weil   (2000)   stress   the   
consistency   of   relatively   equal   living   standards   prior   to   the   takeoff   with   a   Malthusian   model   of   
population.     
  

Second,   economic   growth   in   the   last   250   years   has   been   paralleled   by   a   process   of   
demographic   transition,   from   a   regime   in   which   fertility   and   mortality   were   both   high   and   were   
roughly   equal,   toward   one   in   which   both   of   these   vital   rates   are   significantly   reduced   and   again   
roughly   equal.   The   demographic   transition   is   enormously   complex   and   not   fully   understood,   has   
varied   across   time   and   among   locations,   and   is   not   yet   complete   in   all   parts   of   the   world.   
Nonetheless,   several   important   features   stand   out.   First,   the   decline   in   mortality   temporally   
precedes   the   decline   in   fertility,   and   the   gap   between   the   two   series   is   responsible   for   the   
increase   in   population   over   the   demographic   transition.   This   idea   is   summarized   in   the   idea   of   
the   “population   multiplier,”   defined   by   Chesnais   (1990)   as   “the   number   by   which   the   population   
is   multiplied   during   the   transition   between   the   pre-transitional   phase   (high   mortality,   high   fertility)   
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and   the   post-transitional   phase   (low   mortality,   low   fertility).”   Further,   while   the   decline   in   24

mortality   is   the   result   of   both   improvements   in   income   per   capita   and   improvements   in   health   
technology,   the   latter   is   the   dominant   driver   (Deaton,   2014).   Finally,   while   some   of   the   decline   in   
fertility   is   driven   by   falling   mortality   of   children,   a   very   significant   component   of   fertility   decline   is   
due   to   a   fall   in    desired    family   size,   in   turn   resulting   from   changes   in   the   structure   of   the   
economy,   including   the   return   to   skill,   urbanization,   and   the   gender   wage   differential.   25

  
Third,   in   countries   that   started   to   develop   later,   the   rate   of   progress   in   both   income   and   health   
has   been   faster   than   it   was   in   those   that   developed   early;   further,   the   later   that   this   development   
started,   the   faster   this   progress   has   been.   Such   a   description   is   consistent   with   a   process   in   
which   technologies   (broadly   defined)   that   produce   improvements   in   income   and   health   have   
been   transferred   from   leading   countries   to   following   countries.   In   the   case   of   income-producing   
technologies   this   is   often   referred   to   as   the   “advantage   of   backwardness”   (Nelson   and   Phelps,   
1966;    Barro   and   Sala-i-Martin,   1997).   In   the   summary   of   Lucas   (2000),   leading   countries   have   
seen   income   per   capita   growing   steadily   at   a   rate   of   2%   pear   year   since   1800,   while   late   starting   
countries   have   been   able   to   grow   much   faster.   In   the   case   of   health   technologies   the   most   
prominent   example   of   technology   transfer   is   the   international   epidemiological   transition   following   
World   War   II,   which   produced   enormous   gains   in   life   expectancy   in   poor   countries.   Oeppen   and   
Vaupel   (2002)   show   that   in   leading   countries,   life   expectancy   has   increased   linearly   at   a   rate   of   
three   months   per   year   since   1840;   by   contrast,   many   late-starting   countries   have   seen   life   
expectancy   grow   at   much   higher   speeds.   
  

Fourth,   the   transfer   of   health   technologies   has   been   faster   than   the   transfer   of   the   other   
elements   that   led   to   higher   income   per   capita.    For   example,   Acemoglu   and   Johnson   (2007)   
show   that   convergence   of   life   expectancy   among   countries   is   much   faster   than   convergence   of   
income   per   capita.   “Health   miracles”   in   developing   countries   have   been   far   more   common   than   
“growth   miracles”   (Deaton,   2014).   
  

The   interaction   of   these   four   component   pieces   produced   the   relationship   between   
quality-adjusted   density   and   income   that   we   observe   today.   Prior   to   the   takeoff   in   growth,   most   
of   the   world   was   well   described   by   a   Malthusian   model   in   which   there   were   relatively   small   
differences   among   countries   in   income   per   capita,   and   population   size   was   roughly   proportional   
to   agricultural   potential   of   a   region.   In   the   countries   that   started   growing   first,   beginning   around   26

1800,   technological   change   drove   a   slow   but   steady   growth   in   income.   Growth   in   income,   along   
with   improvements   in   health   technology   that   flowed   out   of   the   same   scientific   progress   that   
allowed   for   higher   productivity,   in   turn   led   to   increased   life   expectancy,   triggering   the   first   part   of   

24  Above   we   looked   at   data   starting   in   1820,   which   was   after   the   beginning   of   the   demographic   transition   
in   a   few   European   countries.   More   significantly,   a   good   number   of   countries   have   not   completed   their   
transitions   as   of   today.   Thus   the   change   in   log   population   that   we   measure   understates   the   true   
population   multipliers.   
25  Galor   and   Weil   (2000),   Dyson   (2011),   Galor   and   Weil   (1996).   
26  In   terms   of   the   Lucas   (2000)   discussed   above,   this   means   that   variation   in   the   fertility   preference   
parameter   was   relatively   small.   
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the   demographic   transition.   Over   the   next   century   or   more,   the   processes   of   income   growth,   
declining   mortality,   and,   with   a   lag,   declining   desired   fertility   played   out,   to   the   point   where  
further   increases   in   life   expectancy   did   not   affect   population   growth   (because   almost   all   women   
lived   through   their   child   bearing   years)   and   desired   fertility   had   fallen   to   near   the   replacement   
level.   In   the   countries   that   started   growing   first,   this   produced   population   multipliers   on   the   order   
of   five   or   six.   
  

In   countries   that   started   growing   later,   this   process   was   partially   reproduced,   but   with   important   
differences.   As   discussed   above,   transfer   of   broadly-construed   technology   from   leaders   to   
followers   allowed   for   more   rapid   growth   of   both   income   and   health,   but   particularly   health.   This   
produced   a   demographic   transition   in   which   mortality   fell   both   more   quickly,   and   at   at   far   lower   
income   levels,   than   had   been   the   case   in   early   developing   countries.   The   gap   between   fertility   
and   mortality   that   opened   up   was   larger   in   the   late   starters   than   it   had   been   in   the   first   countries   
to   develop.   As   a   consequence,   late-developing   countries   experienced   larger   population   
multipliers   (or   will   have   experienced   larger   multipliers   once   their   demographic   transitions   are   
complete)   than   did   early   developers.     
  

4.1 Illustrative   data     
  

In   the   rest   of   this   section,   we   examine   several   pieces   of   evidence   that   are   consistent   with   the   
story   just   laid   out.   In   Table   6   we   already   showed   that   countries   with   higher   levels   of   modern   
QAPD    have   experienced   faster   population   growth   over   the   past   two   centuries.   This   was   
particularly   clear   in   looking   at   countries   where   the   native   population   was   not   displaced.   Here   we   
establish   several   related   facts.   
  

To   examine   the   relationship   between   the   beginning   of   economic   growth   and   our   variables   of   
interest,   we   use   data   from   Costa,   Kehoe,   and   Raveendranathan   (2016).   In   their   classification   
scheme,   a   country   moves   from   stage   0   (Malthusian)   to   stage   1   (first   time   sustained   growth)   
when   it   has   experienced   a   25   year   period   of   income   per   capita   growth   averaging   1%   per   year.   
Countries   can   revert   from   stage   1   to   stage   0   if   they   have   25   years   of   slow   growth,   and   can   then   
take   off   again.   We   look   at   the   first   episode   of   takeoff.   
  

Figure   6   shows   the   relationship   between   takeoff   date   and   current   GDP   per   capita.   Figure   7,   in   
turn,   shows   the   relationship   between   takeoff   date   and    QAPD .   In   Table   7,   we   show   the   same   
data   in   regression   form.   We   experiment   with   controlling   for   the    Native <80%   dummy,   and   with   
excluding   countries   where   the   local   population   was   replaced.   The   table   shows   that   an   earlier   
takeoff   is   associated   with   higher   income   and   lower   quality-adjusted   density   today.    Specifically,   
for   column   3,   taking   off   one   century   earlier   leads   to   being   7.1   times   richer,   and   having   69%   
lower   density.   Taking   the   ratio   of   the   coefficients   on   takeoff   year   in   columns   (6)   and   (3),   implies  27

that   a   1%   increase   in   GDP   per   capita   would   be   associated   with   a   decrease   of   0.59%   in    QAPD .   

27  Galor   (2011)   similarly   shows   that   there   is   a   strong   positive   relationship   across   countries   between   time   
elapsed   since   the   demographic   transition   and   current   income.     
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This   is   fairly   similar   to   the   direct   GDP   per   capita- QAPD    elasticities   of   -0.52   and   -0.50   in   column   
(1)   of   Tables   3A   and   3B.     
  

We   next   turn   to   the   population   dynamics   underlying   these   relationships.   Table   8   shows   
regressions   of   the   change   in   log   population   since   1820   on   the   year   of   takeoff.   As   in   the   28

previous   table,   we   experiment   with   including   a   control   for    Native <.8   or   dropping   observations   in   
which   the   native   population   was   replaced.   The   coefficient   on    Native <.8   is   large   and   significant,   
showing   that   population   growth   has   been   faster   in   countries   where   the   native   population   was   
largely   displaced.   Further,   the   fit   of   the   regression   is   much   better   in   the   subsample   of   countries   
where   the   native   population   was   not   displaced,   which   is   not   surprising,   given   that   these  
countries   have   more   similar   population   histories.   For   this   sample   in   column   3,   the   coefficient   on   
takeoff   year   implies   that   delaying   a   country’s   takeoff   by   one   century   raises   its   expected   
population   increase   by   a   factor   of   2.1.   
  

To   probe   more   deeply   into   the   source   of   the   increase   in   population,   we   calculate   a   rate   of   
natural   increase   ( RNI )   for   a   global   panel   of   countries   as   the   difference   between   crude   birth   
( CBR )   and   death   rates   ( CDR )   estimated   by   Delventhal,   Guner,   and   Fernández-Villaverde   
(2019).   Our   motivation   for   examining   the    RNI    rather   than   the   growth   rate   of   population    per   se   29

is   that   the   former   is   not   affected   by   migration.   Figure   8   shows   the   relationship   between   the   peak   
value   of   the    RNI    and   the   takeoff   date   of   income   per   capita,   while   Table   9   shows   the   same   thing   
in   the   form   of   a   regression.   A   one   century   delay   in   the   date   of   takeoff   is   associated   with   a   
maximum   rate   of   natural   increase   that   is   1.4%   per   year   higher.   
  

Finally,   we   examine   the   speed   of   the   health   transition   and   its   relationship   to   population   growth.   
Figure   9   looks   at   the   length   of   time   it   took   countries   to   go   from   life   expectancy   at   birth   of   35   
years   to   50   years.   Countries   that   reached   life   expectancy   of   35   in   the   19th   century   generally   
took   more   than   100   years   to   reach   life   expectancy   of   50;   those   that   reached   35   in   the   middle   of   
the   20th   century   took   less   than   half   as   long.   We   then   look   at   the   relationship   between   the   time   30

that   a   country   took   to   get   from   life   expectancy   of   35   to   50   and   its   population   growth.   Results   are   
presented   in   Table   10.   Using   the   estimate   in   column   3   for   the    Native    population   countries,   a   one   

28     Similar   patterns   hold   if   we   use   all   Gapminder   countries   in   1820   rather   than   just   those   coming   from   
Madisson   or   the   1850   McEvedy   and   Jones   data.     
29  Delventhal,   Guner,   and   Fernández-Villaverde   (2019)   start   by   assembling   panel   data   on   crude   birth   
( CBR )   and   death   rates   ( CDR )   for   188   countries   going   back   as   far   as   250   years.   For   each   country   and   
each   vital   rate   they   fit   a   three   state   model   that   allows   for   constant   pre-   and   post-transition   levels,   and   a   
linear   transition   between   them;   the   fit   of   the   model   is   maximized   by   searching   over   potential   starting   and   
ending   dates   for   the   transition.   
30  In   fact,   the   data   as   shown   actually   understate   this   effect,   since   a   number   of   countries   had   already   
passed   life   expectancy   of   35   years   by   1800,   which   is   when   our   data   begin.   A   related   fact   is   that   increases   
in   life   expectancy   have   been   achieved   at   lower   and   lower   levels   of   income   over   time.    This   is   generally   
discussed   under   the   rubric   of   the   Preston   Curve.   See   Preston   (1975)   and   Deaton   (2014).   Weil   (2014),   
figure   3.7,   shows   that   over   the   course   of   the   20th   century,   life   expectancy   at   a   fixed   level   of   income   per   
capita   rose   by   approximately   20   years.   
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century   speed-up   in   the   time   it   took   to   get   from   life   expectancy   of   35   to   life   expectancy   of   50   
leads   to   a   population   increase   that   was   larger   by   a   factor   of   approximately   2.8.   31

  
Of   course   the   brief   narrative   presented   here   leaves   out   many   considerations   that   would   have   to   
be   addressed   in   a   full   fledged   model   of   take-off   and   transition   to   the   modern   world.    Why   did   
some   countries   start   growing   earlier   than   others?    Was   there   an   important   effect   of   geography   
on   entry   into   modern   growth?   Why   did   health   technology   transfer   more   effectively   than   income   
producing   technology?   We   see   these   are   important   issues   for   future   research.   

  
  

5.   Conclusion     
  

The   idea   that   population   density   will   be   responsive   to   geographic   characteristics   is   hardly   
radical,   nor   is   it   novel.    Giovanni   Battista   Riccioli,   an   Italian   Jesuit   who   published   the   first   
serious   and   systematic   attempt   to   estimate   the   world’s   population   in   1661,   employed   as   one   of   
his   techniques   extrapolation   of   density   based   on   geographic   characteristics.    For   example,   
although   he   knew   Africa   was   more   than   twice   as   large   as   Europe,   he   estimated   its   population   to   
be   smaller   because   “its   interior   is   full   of   enormous   wastelands”   ( Korenjak,   2018) .     
  

The   observation   that   population   density   is   frequently   responsive   to   geographic   characteristics   
suggests   in   turn   that   it   can   be   useful   to   assess   population   density   in   a   particular   place   in   light   of   
these   same   characteristics.    A   given   number   of   people   living   in   a   given   area   might   be   
considered   to   have   lower   effective   density   if   that   area   is   flat,   fertile,   and   near   a   coast   than   if   it   is   
rugged,   barren,   and   landlocked.    Given   how   ubiquitous   is   the   use   of   the   idea   of   population   
density   in   economics   as   well   as   related   fields,   it   is   desirable   to   improve   its   measurement   by   
taking   these   considerations   into   account.    
  

Pursuing   this   goal,   we   estimated   a   set   of   coefficients   from   a   global   Poisson   regression   of   
population   density   on   geographic   and   climatic   characteristics,   controlling   for   country   fixed   
effects.    Fitted   values   from   this   exercise   allow   us   to   create   measures   of   land   quality   at   the   
grid-cell   level,   and   similarly   to   calculate   average   land   quality,   total   quality-adjusted   area,   and   
quality-adjusted   population   density   at   the   country   level.     
  

We   certainly   don’t   expect   that   our   measure   of   quality-adjusted   density   will   displace   
conventionally-measured   population   density;   rather,   we   see   it   as   giving   a   complementary   
perspective.    For   example,   if   one   is   interested   in   Marshallian   externalities   or   agglomeration   
effects,   then   a   conventional   measure   of   (local)   density   is   appropriate   since   that   tells   us   how   far   
apart   people   live   from   each   other   and   how   easy   it   is   for   them   to   interact.    The   same   would   be   

31  These   findings   match   results   from   Chesnais   (1990),   who   showed   the   relation   of   the   population   
multiplier   to   the   speed   of   transition   and   the   gap   between   birth   and   death   rates.   He   notes   that   countries   
and   regions   that   went   through   the   transition   later   in   time   tended   to   reach   higher   maximal   rates   of   
population   growth,   and   also   (in   his   limited   data)   showed   that   on   average   countries   that   started   the   
transition   later   had   larger   multipliers.  
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true   if   one   were   concerned   about   disease   transmission.    By   contrast,   if   one   is   interested   in   the   
ecological   services   provided   by   the   geo-physical   environment,   then   an   adjusted   measure   like   
ours   is   more   useful.   Among   other   issues,   our   measure   could   be   relevant   for   studying   the   effects   
of   population   pressure   on   outcomes   like   political   conflict   or   migration   both   within   and   between   
countries.   
  

In   the   second   part   of   the   paper,   we   pursued   a   novel   finding   that   our   new   measure   facilitated:   
that   across   countries   there   is   a   strong   negative   correlation   between   GDP   per   capita   and   
quality-adjusted   population   density.    This   is   surprising,   because   there   is   no   such   correlation   
between   GDP   per   capita   and   population   density   as   conventionally   measured.    We   showed   that   
this   finding   was   robust   to   alterations   in   the   dataset   and   specification   used   to   estimate   the   
underlying   weights   on   geographic   characteristics.   This   relationship   is   primarily   a   modern   
phenomena   resulting   from   population   growth   over   the   last   two   centuries,   particularly   in   countries   
where   the   local   population   was   not   displaced   over   the   last   500   years.   Finally,   although   we   do   
not   have   the   ability   to   estimate   the   effect   of   population   and   income,   by   bounding   the   magnitude   
of   this   effect   we   showed   that   the   negative   correlation   between   income   per   capita   and   
quality-adjusted   population   density   is   not   simply   the   result   of   resource   congestion.   
  

In   the   last   part   of   the   paper,   we   argued   that   the   negative   correlation   between   income   and   
quality-adjusted   density   is   best   understood   by   looking   back   at   variation   among   countries   in   the   
processes   of   economic   takeoff   and   demographic   transition,   and   the   transfer   of   the   productive   
and   health   technologies   that   underlay   these   processes.    The   fact   that   health   technology   diffused   
more   quickly   than   productive   technology   from   early-   to   late-takeoff   countries   led   the   latter   to   
experience   larger   population   multipliers   in   the   process   of   demographic   transition   than   did   the   
early   takeoff   countries,   which   remain   wealthier   on   average   today.     
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Table 1. Goodness of Fit Under Alternative Samples

Country Only Geography Only Both N

Full Sample 0.344 0.377 0.536 237, 051
Exclude Six Large Countries 0.317 0.284 0.453 108, 881
Early Agglomerators Only 0.328 0.417 0.516 134, 230
Late Agglomerators Only 0.264 0.361 0.495 102, 628

Fully Interacted 0.344 0.517 0.625 237, 051

Note: All regressions use the GHS dataset and Poisson specification. Goodness of fit measure is R2
DEV .

1



Table 2. Grid square results on the geographic determinants of population

No country fixed effects Baseline

Ruggedness −1.23e-06∗∗∗ −2.9e-06∗∗∗

(1.42e-07) (1.19e-07)
Malaria Ecology −0.018∗∗∗ −0.039∗∗∗

(2.76e-03) (2.87e-03)
Temperature 0.115∗∗∗ 0.087∗∗∗

(4.61e-03) (4.71e-03)
Precipitation −0.086∗∗∗ −0.102∗∗∗

(8.97e-03) (7.58e-03)
Growing Days 6.44e-04∗∗∗ 4.45e-03∗∗∗

(1.96e-04) (1.88e-04)
Land Suitability 1.523∗∗∗ 0.741∗∗∗

(0.041) (0.037)
Latitude 0.032∗∗∗ 0.045∗∗∗

(2.28e-03) (3.12e-03)
Elevation 1.21e-04∗∗∗ 1.37e-04∗∗∗

(3.8e-05) (3.25e-05)
Coastal dummy 0.751∗∗∗ 0.726∗∗∗

(0.034) (0.026)
Distance to Coast −4.65e-07∗∗∗ −8.39e-07∗∗∗

(3.64e-08) (3.44e-08)
Harbor dummy 0.694∗∗∗ 0.791∗∗∗

(0.036) (0.027)
Navigable River dummy 0.909∗∗∗ 0.69∗∗∗

(0.042) (0.032)
Large Lake dummy 0.548∗∗ 0.916∗∗∗

(0.224) (0.166)
Tropical and Subtropical Moist Broadleaf Forests 0.631∗∗∗ 0.652∗∗∗

(0.102) (0.077)
Tropical and Subtropical Dry Broadleaf and Coniferous Forests 0.181∗ 0.313∗∗∗

(0.109) (0.084)
Temperate Broadleaf and Mixed Forests 0.707∗∗∗ 1.14∗∗∗

(0.113) (0.087)
Temperate Coniferous Forests 0.119 0.713∗∗∗

(0.137) (0.106)
Boreal Forests/Taiga −1.26∗∗∗ −0.874∗∗∗

(0.177) (0.137)
Tropical, Subtropical, and Flooded Grasslands, Savannas, and Shrublands −0.565∗∗∗ 0.262∗∗∗

(0.11) (0.085)
Temperate Grasslands, Savannas, and Shrublands −0.332∗∗∗ 0.999∗∗∗

(0.12) (0.096)
Montane Grasslands and Shrublands 0.643∗∗∗ 0.925∗∗∗

(0.138) (0.109)
Tundra −2.924∗∗∗ −2.682∗∗∗

(0.418) (0.307)
Mediterranean Forests, Woodlands, and Scrub 0.288∗∗ 1.756∗∗∗

(0.115) (0.101)
Deserts and Xeric Shrublands −0.558∗∗∗ −0.092

(0.114) (0.087)

R2
dev 0.377 0.536

Observations 237051 237051

Note: The omitted biome is Mangroves. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3. Income vs. Density for Alternative Measures

A.

(1) (2) (3) (4) (5) (6)

Dependent
Variable:

log QAPD
country

fixed effects

log QAPD,
no fixed
effects

log
Density

log
population
per million

calories

log suitability
adjusted

population
density

log GDP per Capita -0.521∗∗∗ -0.504∗∗∗ -0.181∗ 0.00783 0.117 0.200
2010 (0.0817) (0.0854) (0.0724) (0.0825) (0.0832) (0.112)

Constant 8.747∗∗∗ 4.937∗∗∗ 5.514∗∗∗ 4.014∗∗∗ -5.921∗∗∗ 3.668∗∗∗

(0.735) (0.760) (0.669) (0.740) (0.741) (0.966)
Observations 148 148 148 148 146 148
R-squared 0.249 0.241 0.0451 0.0000605 0.0141 0.0308

Notes: Column (3) uses the analogue of our QAPD measure, but constructed from a grid-cell regression that does not include county
fixed effects. Column (5) calculates population density per million calories of agricultural production potential at intermediate input
technology, from Galor and Ozak (2016). Column (6) calculates population density per unit of land suitability, from Ramankutty
et al. (2002). Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

B.

(1) (2) (3) (4) (5) (6)

Dependent
Variable:

log QAPD
country

fixed effects

log QAPD,
no fixed
effects

log
Density

log
population
per million

calories

log suitability
adjusted

population
density

log GDP per Capita -0.498∗∗∗ -0.484∗∗∗ -0.148∗ 0.0347 0.142 0.227∗

2010 (0.0799) (0.0834) (0.0690) (0.0800) (0.0798) (0.111)

Native<80% -0.553∗∗ -0.456∗ -0.767∗∗∗ -0.640∗∗ -0.737∗∗∗ -0.658∗∗

(0.191) (0.189) (0.167) (0.217) (0.216) (0.251)

Constant 8.731∗∗∗ 4.924∗∗∗ 5.492∗∗∗ 3.996∗∗∗ -5.891∗∗∗ 3.650∗∗∗

(0.731) (0.759) (0.651) (0.723) (0.726) (0.987)
Observations 148 148 148 148 146 148
R-squared 0.291 0.271 0.167 0.0608 0.100 0.0808

Notes: Column (3) uses the analogue of our QAPD measure, but constructed from a grid-cell regression that does not include county
fixed effects. Column (5) calculates population density per million calories of agricultural production potential at intermediate input
technology, from Galor and Ozak (2016). Column (6) calculates population density per unit of land suitability, from Ramankutty
et al. (2002). Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 4. Income and Quality Adjusted Population Density across Countries

Dependent Variable: log QAPD
(1) (2) (3) (4) (5) (6)

Grid cell regression Baseline
Drop 6
Largest

Early Ag-
glomerators

Late Agglom-
erators

Fully Interact
Geog.

Baseline

log GDP per Capita -0.498∗∗∗ -0.613∗∗∗ -0.739∗∗∗ -0.548∗∗∗ -0.290∗∗∗ -0.567∗∗∗

2010 (0.0799) (0.0909) (0.108) (0.0908) (0.0832) (0.112)

Native<80% -0.553∗∗ -0.362 -0.424 -0.525∗ -0.713∗∗∗ -0.814∗∗

(0.191) (0.225) (0.252) (0.206) (0.189) (0.295)

Constant 8.731∗∗∗ 10.09∗∗∗ 11.25∗∗∗ 9.271∗∗∗ 6.924∗∗∗ 9.252∗∗∗

(0.731) (0.815) (1.023) (0.818) (0.758) (1.023)
Observations 148 148 148 142 148 148
R-squared 0.291 0.290 0.312 0.292 0.192 0.481

Note: We restrict the sample in these regressions to exclude countries with areas below 1,500 km2. In column (4), late agglomerators
are missing the tundra biome, so we cannot estimate a grid square population coefficient from late agglomerators for tundra and
thus cannot predict population for the 6 countries with tundra. Column (6) weights country observations by land area. Standard
errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 5. Variance Decomposition

A. Using Conventional Population Density

(1 − α) var(ln(y)) (1 − α)2var(ln(Bc)) (1 − α)2var(ln(densityc)) −2(1 − α)2cov(ln(Bc), ln(densityc))
1/4 1.511 1.612 0.096 -0.197
1/3 1.511 1.689 0.170 -0.348

B. Using Quality Adjusted Population Density

(1 − α) var(ln(y)) (1 − α)2var(ln(Bc)) (1 − α)2var(ln(QAPDc)) −2(1 − α)2cov(ln(Bc), ln(densityc))
1/4 1.511 1.220 0.103 0.188
1/3 1.511 1.169 0.183 0.159
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Table 6. Current QAPD, Historical QAPD, and Population Growth

A. Using 1820 population

Dependent Variable
log

QAPD
(2010)

log
QAPD
(1820)

∆ log
population
1820-2010

log
QAPD
(2010)

log
QAPD
(1820)

∆ log
population
1820-2010

(1) (2) (3) (4) (5) (6)
Sample all exclude native< 80%
log GDP per Capita -0.539∗∗∗ -0.300 -0.240∗∗ -0.480∗∗ -0.111 -0.369∗∗∗

2010 (0.127) (0.156) (0.0704) (0.145) (0.158) (0.0659)

Native<80% -0.472 -2.070∗∗∗ 1.598∗∗∗

(0.240) (0.303) (0.162)

Constant 9.087∗∗∗ 4.845∗∗ 4.242∗∗∗ 8.529∗∗∗ 3.064 5.465∗∗∗

(1.226) (1.497) (0.662) (1.405) (1.524) (0.627)
Observations 76 76 76 48 48 48
R-squared 0.261 0.437 0.603 0.223 0.0128 0.301

Note: Observations include only values that have not been modified from original source by Gapminder.

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

B. Using 1820 and 2050 populations

Dependent Variable
log

QAPD
(2050)

log
QAPD
(1820)

∆ log
population
1820-2050

log
QAPD
(2050)

log
QAPD
(1820)

∆ log
population
1820-2050

(1) (2) (3) (4) (5) (6)
Sample all exclude native< 80%
log GDP per Capita -0.687∗∗∗ -0.300 -0.387∗∗∗ -0.649∗∗∗ -0.111 -0.539∗∗∗

2010 (0.123) (0.156) (0.0835) (0.145) (0.158) (0.0763)

Native<80% -0.400 -2.070∗∗∗ 1.670∗∗∗

(0.240) (0.303) (0.183)

Constant 10.70∗∗∗ 4.845∗∗ 5.851∗∗∗ 10.34∗∗∗ 3.064 7.276∗∗∗

(1.198) (1.497) (0.783) (1.403) (1.524) (0.716)
Observations 76 76 76 48 48 48
R-squared 0.335 0.437 0.576 0.324 0.0128 0.381

Note: Observations include only values that have not been modified from original source by Gapminder.

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 7. The Effect of Takeoff Year on Income and Density

(1) (2) (3) (4) (5) (6)
Dependent Variable log GDP per capita 2010 log QAPD
Takeoff year -0.0167∗∗∗ -0.0169∗∗∗ -0.0196∗∗∗ 0.0117∗∗∗ 0.0120∗∗∗ 0.0116∗∗∗

(0.00144) (0.00145) (0.00161) (0.00214) (0.00205) (0.00244)

Native< 80% 0.452∗ -0.622∗∗

(0.179) (0.210)

Constant 41.34∗∗∗ 41.54∗∗∗ 46.78∗∗∗ -18.55∗∗∗ -18.82∗∗∗ -18.05∗∗∗

(2.738) (2.776) (3.070) (4.128) (3.937) (4.671)
Observations 120 120 78 120 120 78
R-squared 0.449 0.480 0.591 0.211 0.265 0.228

Note: Robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Columns (3) and (6) restrict the
sample to countries where Native is greater than or equal to 80%.
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Table 8. The Effect of Takeoff Year on Population Growth

(1) (2) (3)
Dependent Variable ∆ log population 1820-2010
Takeoff year 0.00491 0.00423∗∗ 0.00718∗∗∗

(0.00252) (0.00152) (0.00173)

Native< 80% 1.628∗∗∗

(0.161)

Constant -6.824 -6.138∗ -11.78∗∗∗

(4.853) (2.920) (3.322)
Observations 73 73 46
R-squared 0.0495 0.604 0.218

Note: Robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001. Column(3) restricts the sample to countries where Native is greater
than or equal to 80%.
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Table 9. The Effect of Takeoff Year on Peak Rate of Natural Increase

(1) (2) (3) (4) (5) (6)
Dependent Variable Peak Rate of Natural Increase
Takeoff year 0.000118∗∗∗ 0.000116∗∗∗ 0.000136∗∗∗

(0.0000114) (0.0000103) (0.0000119)

log QAPD 0.00282∗∗∗ 0.00337∗∗∗ 0.00370∗∗∗

(0.000510) (0.000498) (0.000625)

Native< 80% 0.00410∗∗∗ 0.00577∗∗∗

(0.00105) (0.00127)

Constant -0.201∗∗∗ -0.200∗∗∗ -0.238∗∗∗ 0.0142∗∗∗ 0.00993∗∗∗ 0.00854∗∗

(0.0222) (0.0202) (0.0234) (0.00240) (0.00251) (0.00309)
Observations 119 119 77 146 146 94
R-squared 0.507 0.564 0.639 0.174 0.268 0.255

Note: Robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Columns (3) and (6) restrict the
sample to countries where Native is greater than or equal to 80%.
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Table 10. Speed of Life Expectancy Improvement and Population Growth

(1) (2) (3)
Dependent Variable ∆ log population 1820-2010
Life-expectancy -0.0108∗∗∗ -0.00743∗∗∗ -0.0104∗∗∗

improvement time (0.00254) (0.00147) (0.00154)

Native< 80% 1.434∗∗∗

(0.162)

Constant 3.147∗∗∗ 2.439∗∗∗ 2.619∗∗∗

(0.161) (0.144) (0.152)
Observations 76 76 48
R-squared 0.226 0.652 0.418

Note: Robust standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗

p < 0.001. Column (3) restricts the sample to countries where Native is
greater than or equal to 80%.
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Figure 1. Population Density and Land Quality
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Figure 2. Country Level Quality Adjusted Area

A. Countries by Land Area

B. Countries by Quality Adjusted Area
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Figure 3. Top 80 Countries by Fitted Population
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Figure 4. Conventional and Quality Adjusted Population Density Across Countries
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Figure 5. Density and GDP per Capita

A. Conventional Population Density and GDP per Capita

B. Quality Adjusted Population Density and GDP per Capita
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Figure 6. Takeoff Date and Current GDP per Capita
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Figure 7. Takeoff Date and QADP
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Figure 8. Takeoff Year vs. Maximum Rate of Natural Increase
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Figure 9. Time to Get from Life Expectancy of 35 to 50
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Appendix   A:   Comparison   of   population   datasets   and   cell-level   specifications   
  

In   this   appendix   we   first   compare   the   distribution   of   population   density   in   our   main   population   
data   source,   GHS-POP,   to   two   alternatives   (GPWv4   and   LandScan).   We   then   compare   
regression   results   using   our   baseline   Poisson   specification   and   a   log-linear   alternative,   using   all   
three   datasets   --   a   total   of   six   variants.    Specifically,   we   compare   goodness   of   fit   and   fitted   
values   in   a   regression   of   population   on   geographic   characteristics.   We   also   show   the   
robustness   of   our   key   result,   the   negative   correlation   between   Quality   Adjusted   Population   
Density   and   income   per   capita,   to   the   choice   of   dataset   and   specification.     

  
We   consider   three   global   datasets   all   reporting   population   counts   for   30-arc-second   by   30   
arc-second   pixels   in   Plate   Carrée   (latitude/longitude)   projection.   The   area   of   a   pixel   is   0.86   
square   km   at   the   equator,   decreasing   with   the   cosine   of   latitude.   
  

The   Gridded   Population   of   the   World   version   4   (GPWv4;   CIESIN   2017)   is   the   simplest   of   the   
three.   The   underlying   data   are   population   estimates   for   administrative   regions   (polygons)   from   
censuses   circa   2010.   When   there   is   no   census   in   exactly   2010,   values   are   extrapolated   or   
interpolated   from   multiple   censuses.   Population   is   assumed   to   be   distributed   evenly   within   an   
administrative   region.   GPWv4’s   effective   spatial   resolution   thus   depends   on   what   information   
individual   countries   provide,   with   richer   countries   typically   providing   data   for   finer   regions,   down   
to   enumeration   units,   or   even   block   level   data   .   There   is   substantial   variation   within   countries   as   
well,   with   higher   resolution   in   more   densely   populated   regions.   Of   12.9   million   input   polygons   
worldwide,   only   2.4   million   are   from   outside   the   United   States.   A   grid   cell   crossing   a   polygon   
boundary   is   assigned   a   population   density   that   is   the   areally-weighted   average   of   its   constituent   
polygons.   

  
The   European   Union’s   Global   Human   Settlements   population   layer   (GHS-POP;   Schiavina   et   al.   
2019;   Freire   et   al.   2016)   reallocates   GPWv4   estimates   within   administrative   polygons   based   on   
a   companion   dataset,   GHS-BUILT   (Corbane   et   al.,   2018,   2019)   that   defines   built-up   pixels   as   
seen   in   Landsat   30-meter   resolution   satellite   data   circa   2015.   In   the   rare   cases   where   there   is   
no   built-up   area   visible   in   a   region,   it   reverts   to   the   GPWv4   estimates.   Its   land   area   measures   
are   taken   directly   from   GPWv4.   More   information   about   the   GHS   data   can   be   found   in   Florczyk   
et   al.   (2019).   

  
LandScan   uses   a   proprietary   algorithm   to   provide   population   estimates   based   on   a   much   wider   
set   of   inputs   that   include   census   population   data   and   satellite   imagery   at   higher   resolution   than   
Landsat.   While   the   algorithm   is   not   publicly   documented   and   changes   from   year   to   year,   in   the   
recent   past   input   data   have   also   included   information   on   elevation,   slope,   and   land   cover,   as   
well   as   locations   of   road   and   rail   networks,   hydrologic   features   and   drainage   systems,   utility   
networks,   airports,   and   populated   urban   places.   LandScan   reports   estimates   of   ambient   
population   averaged   throughout   the   day,   whereas   the   other   two   datasets   report   nighttime   
(residential)   population   estimates.   A   recent   explanation   of   LandScan   for   an   academic   audience   
can   be   found   in   Rose   and   Bright   (2014).     
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We   rely   on   GHS-POP   as   our   primary   source,   and   consider   GPWv4   and   LandScan   for   
robustness   here.   GHS-POP’s   use   of   building   cover   to   redistribute   people   within   census   units   is   
very   likely   to   provide   more   accuracy   than   GPWv4’s   assumption   of   uniform   density   within   large   
administrative   units.     
  

LandScan   aims   to   achieve   the   same   goal   of   redistributing   population   based   on   built   cover.   
However,   as   noted,   it   uses   other   information   in   making   assessments,   including   higher   resolution  
satellite   imagery.   LandScan   may   thus   do   a   better   job   of   finding   the   built   environment   in   rural   
locations   and   it   may   have   greater   accuracy   in   dense   but   low   income   cities   with   coarse   
population   data.   
  

However   LandScan   has   four   main   drawbacks.   First,   it   has   historically   used   coarse   census   data   
as   a   benchmark   outside   of   the   United   States.   While   better   satellite   imagery   can   better   define   32

the   built   environment,   to   convert   that   to   population   one   still   needs   fine   grained   census   
population   data.   Second   and   more   importantly,   LandScan’s   algorithm   uses   physical   features   like   
elevation   directly   to   predict   population   density.   This   raises   the   possibility   that   our   regressions   
will   end   up   simply   predicting   LandScan’s   algorithm   rather   than   true   population   density.   Third,   
LandScan’s   algorithm   changes   from   year   to   year   and   is   not   documented.   Finally   LandScan   
measures   the   ambient   population   over   the   24   hours   of   a   day,   making   inferences   about   where   
people   work   and   for   how   many   hours   of   the   day,   without,   as   we   understand   it,   much   if   any   
spatial   economic   census   data   which   are   unavailable   for   many   developing   countries   anyway.   
This   seems   likely   to   add   error   without   benefit   for   our   purposes.   
  

Figure   A.1   Panel   A   reports   the   cumulative   distribution   function   (CDF)   of   log   population   density   
according   to   the   three   datasets,   with   zeros   in   each   dataset   replaced   with   that   dataset’s   
minimum   nonzero   value   before   logging.   In   this   and   all   other   subnational   empirical   work,   our   unit   
of   analysis   is   a   quarter-degree   grid   square,   a   30-by-30   array   of   30-arc-second   pixels.   
The   Figure   shows   that   the   three   data   sets   treat   grid   squares   with   tiny   densities   very   differently   
For   example   GHS-POP   registers   about   40%   of   cells   as   having   no   people,   with   nonzero   
densities   starting   at   0.0000000033/km 2 ,   while   LandScan   registers   only   about   24%   of   grid   
squares   at   0,   with   non-zero   densities   starting   at   about   0.0013/km 2 .   By   about   50/km 2    (exp(3.9)),   
the   three   lines   converge,   at   which   point   about   85%   of   pixels   have   been   accounted   for.   Panel   B   
of   Figure   A.1   analogously   reports   cumulative   population   by   density.   It   shows   that   less   than   10%   
of   world   population   lives   at   a   density   under   50/km 2 .   However,   since   our   unit   of   analysis   is   the  
grid   square,   these   tiny   densities   potentially   play   an   important   role.   
  

32  LandScan   has   not   released   details   about   its   current   census   data,   but   as   of   its   2009   version   "Globally,   
LandScan   uses   8,285,172   census   inputs,   whereas   GPW   v.3   uses   399,747   units....   Outside   the   USA   
LandScan   used   79,590   administrative   units   for   ambient   modeling.   By   contrast,   GPWv3   uses    338,863   
units   outside   of   the   US."   Source:   
https://sedac.uservoice.com/knowledgebase/articles/41665-what-are-the-differences-between-gpw-grump 
-and-la   
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We   now   further   flesh   out   the   log-linear   specification,   in   order   to   compare   it   to   our   main   Poisson   
specification.   Given   the   log-linear    specification   from   (7a)   ,   

 ,   the   corresponding   OLS   estimate   of   the   country  Z ) C  β  ln(Li,c/ i, c =  c + X  
i,c′ + εi,c  

constant   is   

(A.1)     .   C ĉ  = 1
N c

n(∑
 

i∈c
l ( Li,c

Z i,c) −  β(∑
 

i∈c
X  
i,c′

︿

OLS))  

Our   OLS   estimate   of   cell    i ’s   log   population   density   when   setting   all   the   country   fixed   effects   to   

zero   to   equalize   all   factors   that   vary   at   the   country   level   is   .    The    βln( Li,c
Z i,c)

︿
= X  

i,c′
︿

OLS  

analogous   estimate   of   population   density   level   is    where      is   xp  
Li,c
Z i,c

︿
= e X  β(  

i,c′
︿

OLS + 2
s︿2 )   s︿2  

the   variance   of   the   error   term   in   the   estimated   equation   (which   we   assume   to   be   homoskedastic   
across   countries).    Fitted   national   population   is   then:   

(A.2)     .  xp  Lc
︿ = ∑

 

i∈c
e X  β(  

i,c′
︿

OLS + 2
s︿2 )Z i,c  

Finally,   we   can   calculate   the   ratio   of   actual   to   expected   population,   where   the   latter   is   based   on   
the   fitted   value   suppressing   country   fixed   effects.    This   is   what   we   have   been   calling   
quality-adjusted   population   density.   

(A.3)      APD  Q c =
∑
 

i
Li,c

xp X  β + Z∑
 

i∈c
e (  

i,c′
︿

OLS 2
s︿2) i,c

 

  
An   obvious   problem   with   this   approach   is   that,   as   discussed   above,   there   are   a   significant   
number   of   grid   cells   with   zero   measured   population   in   our   data.    In   implementing   the   log-linear   
specification,   we   assigned   to   such   cells   the   population   density   of   the   least   dense   non-zero   cell   
in   the   dataset   before   logging.   We   also   experimented   with   creating   versions   of   the   logged   
GPWv4   and   GHS-POP   datasets   in   which   cells   with   zero   density   are   assigned   the   minimum   
nonzero   density   value   in   LandScan.    As   shown   in   Figure   A.1,   LandScan’s   minimum   value   is   
much   larger   than   the   minimum   non-zero   density   in   the   other   two   datasets.   
  

Figure   A.2   compares   cell-level   predicted   values   across   the   three   datasets.   Using   the   Poisson   
specification   (Equation   7b),   Panel   A   shows   that   all   three   data   sets   give   very   similar   predicted   
values.   This   is   because   the   Poisson   specification   makes   little   distinction   between   cells   that   have   
moderately   low   density   and   those   that   have   extremely   low   density.   By   contrast,   in   Panel   B,   there   
are   large   differences   across   datasets   when   using   the   log-linear   specification   (Equation   7a),   
driven   by   the   differing   treatments   of   low   density   regions.   
  

Table   A.1   reports   goodness   of   fit   measures   for   geographic   variables,   country   fixed   effects,   and   
both,   analogously   to   Table   1,   Row   1,   for   the   six   variants.   In   the   first   3   rows   zeros   are   assigned   
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their   dataset-specific   minimum   non-zero   value.   In   rows   4   and   5   zeros   in   GHS-POP   and   GPWv4   
are   assigned   the   LandScan   minimum   value.   Results   across   all   data   sets   and   specifications   are   
generally   similar.     
  

Table   A.2   reports   ten   variants   of   Table   2,   Panel   B,   column   1,   each   corresponding   to   a   variant   
reported   in   Table   A.1.   Log-linear   results   in   columns   1,   3   and   5   vary   enormously   across   datasets,   
while   Poisson   results   in   columns   2,   4   and   6   do   not.   Columns   7-10   censor   at   the   Landscan   
minimum.   Poisson   results   (columns   8   and   10)   are   also   insensitive   to   this,   while   log-linear   results   
(columns   7   and   9)   are   much   more   sensitive.   
  

Appendix   B:   Other   results   
  

Table   B.1   reports   log   Average   Land   Quality   ( ALQ ),   log   conventional   area,   log   Quality-adjusted   
Area   ( QAA ),   log   conventional   population   density,   and   log   Quality-adjusted   population   density   
( QAPD ),   for   each   country   in   the   grid-cell-level   estimation   (Tables   1   and   2).   It   also   reports   
whether   they   appear   in   the   country-level   sample   (Tables   3-5)   and   the   1820   sample   (Table   6),   
and   their   value   of    1(Native<0.8) .   
  

Table   B.2   shows   an   alternative   version   of   the   equation   (15)   decomposition   reported   in   Table   5,   
restricted   to   the   sample   of    Native>0.8    countries.   Results   are   generally   quite   similar   to   those   in   
Table   5.   
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Table A.1. Goodness of Fit for Grid Cell Level Regressions

Log-linear Specification Poisson Specification
Country Only Geography Only Both Country Only Geography Only Both

GHS 0.359 0.470 0.567 0.344 0.377 0.536
GPW 0.551 0.430 0.736 0.390 0.419 0.590

LandScan 0.482 0.564 0.712 0.364 0.398 0.562
GHS Censored 0.411 0.509 0.628 0.344 0.377 0.536
GPW Censored 0.557 0.519 0.775 0.390 0.419 0.590

Note: The table reports R2 values for the log-linear regressions and R2
DEV for the Poisson specification.
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Table B.1. Country-Level Measures

Country Name
log
ALQ

log Area
(conventional)

log
QAA

log Population
Density

(conventional)

log
QAPD

Country-
level

Sample

Pop.
1820

Native
< 0.8

Afghanistan -1.610 13.372 11.762 3.935 5.545 1 1 0
Albania 1.911 10.223 12.135 4.637 2.725 1 1 0
Algeria -0.289 14.656 14.366 2.841 3.130 1 1 0
Angola -0.953 14.046 13.094 3.007 3.960 1 0 0
Argentina 0.898 14.826 15.724 2.761 1.863 1 1 1
Armenia -0.038 10.309 10.272 4.650 4.687 1 0 0
Australia 0.414 15.850 16.264 1.136 0.722 1 1 1
Austria 0.376 11.295 11.671 4.624 4.248 1 1 0
Azerbaijan -0.021 11.308 11.287 4.710 4.731 1 0 0
Bangladesh 1.167 11.833 13.000 7.059 5.893 1 1 0
Belarus 0.960 12.234 13.194 3.837 2.877 1 0 0
Belgium 1.717 10.365 12.082 5.891 4.174 1 1 0
Belize 0.987 10.047 11.034 2.661 1.674 1 0 1
Benin -0.960 11.672 10.712 4.569 5.528 1 0 0
Bhutan -1.564 10.530 8.967 3.425 4.988 1 0 0
Bolivia -0.389 13.873 13.485 2.308 2.697 1 1 1
Bosnia and Herzegovina 1.206 10.844 12.050 4.283 3.078 1 0 0
Botswana -1.355 13.260 11.906 1.380 2.734 1 0 1
Brazil -0.141 15.948 15.807 3.202 3.343 1 1 1
Brunei 0.567 8.761 9.328 4.227 3.660 0 0
Bulgaria 1.075 11.607 12.683 4.154 3.078 1 1 0
Burkina Faso -1.674 12.521 10.848 4.204 5.878 1 0 0
Burundi -1.343 10.137 8.793 6.068 7.411 1 0 0
Cambodia 0.296 12.091 12.387 4.464 4.168 1 1 0
Cameroon -0.846 13.032 12.186 3.909 4.755 1 0 0
Canada -1.189 15.985 14.797 1.341 2.530 1 1 1
Central African Republic -1.789 13.347 11.558 2.115 3.904 1 0 1
Chad -1.806 14.058 12.252 2.425 4.231 1 0 0
Chile 0.599 13.469 14.068 3.230 2.631 1 1 1
China 0.038 16.034 16.072 5.008 4.969 1 1 0
Colombia -0.178 13.938 13.760 3.742 3.920 1 1 1
Costa Rica 0.166 10.839 11.005 4.548 4.382 1 1 1
Croatia 2.403 10.946 13.349 4.357 1.953 1 0 1
Cuba 1.440 11.589 13.029 4.649 3.209 0 0 1
Czech Republic 0.906 11.291 12.197 4.901 3.995 1 0 0
Democratic Republic of the Congo -1.514 14.648 13.135 3.506 5.020 1 0 0
Denmark 2.666 10.641 13.307 4.935 2.268 1 1 0
Djibouti -1.609 10.009 8.400 3.752 5.361 0 0
Dominican Republic 1.390 10.778 12.168 5.396 4.006 1 1 1
Ecuador -0.189 12.419 12.230 4.174 4.363 1 1 1
Egypt -0.856 13.794 12.938 4.533 5.389 1 1 0
El Salvador 0.340 9.981 10.321 5.647 5.307 1 1 1
Equatorial Guinea -0.490 10.129 9.638 3.245 3.736 1 0 1
Eritrea -1.072 11.694 10.622 3.737 4.809 1 0 0
Estonia 1.398 10.624 12.022 3.473 2.076 1 0 1
Ethiopia -0.943 13.935 12.993 4.475 5.417 1 0 0
Finland -0.621 12.620 11.999 2.885 3.505 1 1 0
France 1.858 13.200 15.057 4.775 2.917 1 1 0
French Guiana -0.025 11.332 11.307 1.166 1.190 0 0
Gabon -0.688 12.493 11.804 1.928 2.617 1 0 1
Gambia -0.358 9.206 8.848 5.189 5.547 1 0 0
Georgia 0.697 11.145 11.842 4.058 3.361 1 0 0
Germany 1.551 12.780 14.331 5.433 3.882 1 1 0
Ghana -0.748 12.351 11.603 4.825 5.573 1 0 0
Greece 2.214 11.628 13.842 4.483 2.269 1 1 0
Guatemala 0.490 11.561 12.051 5.050 4.560 1 1 1
Guinea -0.857 12.431 11.574 3.924 4.781 1 0 1
Guinea-Bissau -0.477 10.359 9.882 4.065 4.542 1 0 0
Guyana 0.426 12.242 12.668 1.271 0.846 1 0 1
Haiti 0.839 10.152 10.991 5.993 5.154 1 1 1
Honduras 0.256 11.610 11.866 4.275 4.019 1 1 1
Hong Kong 1.953 6.637 8.590 9.002 7.048 0 0 1
Hungary 1.229 11.400 12.629 4.673 3.444 1 1 0
Iceland -1.036 11.315 10.279 1.271 2.307 0 0
India 0.345 14.951 15.295 6.043 5.698 1 1 0
Indonesia 0.042 14.329 14.371 4.925 4.884 1 1 0
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Iran -0.708 14.294 13.586 3.882 4.591 1 1 0
Iraq -0.121 12.998 12.877 4.416 4.537 1 1 0
Ireland 2.544 11.136 13.680 4.227 1.683 1 0 0
Israel 1.393 9.967 11.361 5.998 4.605 1 0 1
Italy 2.195 12.503 14.698 5.310 3.115 1 1 0
Ivory Coast -0.722 12.683 11.961 4.257 4.979 1 0 1
Japan 1.450 12.788 14.238 5.847 4.397 1 1 0
Jordan -0.294 11.366 11.072 4.470 4.764 1 1 1
Kazakhstan -1.216 14.780 13.564 1.897 3.114 1 0 1
Kenya -1.379 13.262 11.883 4.372 5.750 1 0 1
Kuwait 0.035 9.789 9.824 5.386 5.350 1 0 1
Kyrgyzstan -2.535 12.149 9.614 3.531 6.065 1 0 0
Laos -0.208 12.347 12.139 3.447 3.655 1 1 0
Latvia 1.443 11.055 12.498 3.447 2.004 1 0 1
Lebanon 1.909 9.286 11.195 6.324 4.414 1 1 1
Lesotho -0.805 10.318 9.513 4.105 4.910 1 0 0
Liberia -0.577 11.472 10.895 3.860 4.436 1 0 0
Libya -0.661 14.298 13.637 1.351 2.012 1 1 0
Liechtenstein -1.464 6.267 4.803 5.042 6.505 0 0
Lithuania 1.382 11.043 12.424 3.832 2.451 1 0 0
Luxembourg 1.173 7.822 8.995 5.094 3.921 1 0 0
Macedonia 0.495 10.056 10.551 4.464 3.969 1 0 0
Madagascar 0.104 13.287 13.390 3.712 3.609 1 1 0
Malawi -0.507 11.437 10.930 5.156 5.663 1 0 0
Malaysia 0.238 12.697 12.935 4.527 4.289 1 1 1
Mali -1.479 14.043 12.564 2.636 4.116 1 0 0
Mauritania -0.768 13.858 13.090 1.418 2.186 1 0 0
Mexico 0.029 14.480 14.509 4.169 4.140 1 1 1
Moldova 0.999 10.490 11.488 4.740 3.742 1 0 1
Mongolia -1.892 14.254 12.362 0.629 2.521 1 1 0
Montenegro 1.432 9.499 10.931 3.848 2.416 0 0
Morocco 0.607 13.437 14.044 3.932 3.325 1 1 0
Mozambique -0.215 13.565 13.351 3.580 3.795 1 1 0
Myanmar 0.398 13.401 13.799 4.391 3.993 1 1 0
Namibia -1.117 13.617 12.500 0.989 2.106 1 0 1
Nepal -0.867 11.842 10.974 5.337 6.205 1 1 0
Netherlands 2.479 10.413 12.892 6.197 3.718 1 1 0
New Zealand 1.675 12.478 14.153 2.846 1.171 1 1 1
Nicaragua 0.227 11.677 11.904 3.919 3.691 1 1 1
Niger -1.626 13.989 12.364 2.857 4.483 1 0 1
Nigeria -0.927 13.710 12.783 5.301 6.228 1 0 0
North Korea 0.808 11.725 12.534 5.283 4.474 0 0 0
Norway -0.740 12.622 11.882 2.812 3.552 1 1 0
Oman -0.819 12.646 11.826 2.690 3.510 1 1 1
Pakistan -0.815 13.660 12.845 5.392 6.207 1 1 0
Palestine 1.172 8.655 9.827 6.555 5.383 0 0
Panama 0.514 11.221 11.735 3.949 3.436 1 0 1
Papua New Guinea -0.155 12.897 12.742 2.780 2.934 1 0 0
Paraguay 0.361 12.890 13.252 2.829 2.467 1 1 1
Peru -0.404 14.063 13.659 3.196 3.600 1 1 1
Philippines 0.929 12.446 13.374 5.900 4.971 1 1 0
Poland 1.500 12.628 14.128 4.832 3.332 1 1 0
Portugal 2.217 11.383 13.599 4.709 2.492 1 1 0
Qatar 0.096 9.404 9.500 5.211 5.115 1 0 1
Republic of Congo -0.942 12.742 11.800 2.466 3.408 1 0 0
Romania 1.067 12.377 13.444 4.431 3.364 1 1 0
Russia -1.123 16.591 15.468 2.187 3.310 1 0 0
Rwanda -1.617 10.082 8.465 6.174 7.791 1 0 0
Saudi Arabia -0.875 14.469 13.594 2.794 3.669 1 1 0
Senegal -0.768 12.170 11.402 4.343 5.110 1 0 0
Serbia 0.929 11.415 12.344 4.593 3.664 0 0
Sierra Leone -0.841 11.186 10.345 4.418 5.259 1 0 1
Singapore 1.883 6.358 8.241 9.103 7.220 0 0 1
Slovakia 0.585 10.827 11.412 4.693 4.108 1 0 0
Slovenia 0.971 9.893 10.865 4.642 3.670 1 0 0
Somalia -1.240 13.368 12.128 2.853 4.093 0 0 0
South Africa -0.132 14.017 13.885 3.805 3.936 1 1 1
South Korea 1.312 11.456 12.768 6.261 4.950 1 1 0
Spain 1.795 13.109 14.903 4.464 2.670 1 1 0
Sri Lanka 0.582 11.077 11.659 5.758 5.177 1 1 0
Sudan -1.476 14.735 13.259 3.046 4.522 1 0 0
Suriname 0.294 11.888 12.183 1.385 1.091 0 0
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Swaziland -0.151 9.757 9.606 4.315 4.466 1 0 1
Sweden 0.659 12.927 13.586 3.151 2.493 1 1 0
Switzerland 0.091 10.554 10.645 5.263 5.172 1 1 0
Syria 0.934 12.134 13.068 4.591 3.657 0 0 0
Taiwan 0.799 10.489 11.288 6.470 5.671 0 0
Tajikistan -1.844 11.809 9.965 4.104 5.948 1 0 0
Tanzania -0.720 13.684 12.964 4.059 4.779 1 0 0
Thailand 0.133 13.140 13.274 4.894 4.761 1 1 0
Timor-Leste -0.149 9.643 9.494 4.432 4.581 1 0 0
Togo -0.824 10.996 10.171 4.566 5.390 1 0 1
Trinidad and Tobago 1.091 8.488 9.578 5.583 4.493 1 1 1
Tunisia 1.177 11.957 13.134 4.262 3.085 1 1 0
Turkey 1.094 13.551 14.645 4.608 3.514 1 1 0
Turkmenistan -1.383 13.041 11.658 2.471 3.854 1 0 0
Uganda -1.331 12.207 10.875 5.235 6.566 1 0 0
Ukraine 1.078 13.277 14.355 4.336 3.257 1 0 0
United Arab Emirates -0.524 11.182 10.658 4.831 5.356 1 0 0
United Kingdom 2.270 12.362 14.633 5.621 3.350 1 0 0
United States 0.448 16.013 16.461 3.568 3.120 1 1 1
Uruguay 1.300 12.073 13.373 3.004 1.704 1 1 1
Uzbekistan -1.483 12.947 11.464 4.248 5.731 1 0 0
Venezuela 0.121 13.712 13.833 3.530 3.409 1 1 1
Vietnam 0.337 12.692 13.029 5.657 5.319 1 1 0
Yemen -1.512 13.021 11.509 4.083 5.595 1 1 0
Zambia -1.222 13.518 12.296 3.139 4.361 1 0 1
Zimbabwe -0.989 12.869 11.880 3.688 4.677 1 0 0
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Table B.2. Variance Decomposition, excluding countries with Native<80.

A. Using Conventional Population Density

(1 − α) var(ln(y)) (1 − α)2var(ln(Bc)) (1 − α)2var(ln(densityc)) −2(1 − α)2cov(ln(Bc), ln(densityc))
1/4 1.614 1.751 0.080 -0.217
1/3 1.614 1.833 0.142 -0.361

B. Using Quality Adjusted Population Density

(1 − α) var(ln(y)) (1 − α)2var(ln(Bc)) (1 − α)2var(ln(QAPDc)) −2(1 − α)2cov(ln(Bc), ln(densityc))
1/4 1.614 1.269 0.094 0.251
1/3 1.614 1.196 0.168 0.250
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Figure A.1. Population Distributions by Grid Square Worldwide
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Figure A.2. Predicted Values

A. Poisson Fit Across Datasets
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B. Log-linear Fit Across Datasets
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