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Abstract

We develop a novel method for assessing the effect of constraints im-
posed by spatially-fixed natural resources on aggregate economic out-
put. We apply it to estimate and compare the projected effects of cli-
mate change and population growth over the course of the 21st century,
by country and globally. We find that standard population growth pro-
jections imply larger reductions in income than even the most extreme
widely-adopted climate change scenario (RCP8.5). Climate and popu-
lation impacts are correlated across countries: climate change and pop-
ulation growth will have their most damaging effects in similar places.
Relative to previous work on macro climate impacts, our approach has
the advantages of being disciplined by a simple macro growth model that
allows for adaptation and of assessing impacts via a large set of climate
moments, not just annual average temperature and precipitation. Fur-
ther, our estimated effects of climate are by construction independent
of country-level factors such as institutions.

*Henderson: London School of Economics. Jang: Brown University. Storeygard: Tufts
University. Weil: Brown University. We are grateful to Lint Barrage, Eric Galbraith, and
Zeina Hasna for helpful advice; to William Yang and Raymond Yeo for research assistance;
and to seminar audiences at the University of Chicago, University of Chile, Korea Univer-
sity, Lahore School of Economics, NYU Abu Dhabi, Osaka University, RIDGE forum on
Sustainable Growth, Sungkyunkwan University, University of Tokyo, and the World Bank
for useful feedback. Research was supported by the Population Studies and Training Cen-
ter at Brown University through the generosity of the Eunice Kennedy Shriver National
Institute of Child Health and Human Development (P2C HD041020 and T32 HD007338).



1 Introduction

Climate change over the coming decades will affect the ability of land to sup-
port the lives and livelihoods of much of the world’s population. In some cases,
climate change will literally make land unlivable, for example by putting it un-
derwater. Far more frequently, however, climate change will make land less
livable or productive. This is most obvious in the case of agricultural produc-
tivity, which will be strongly affected by changes in rainfall and temperature.
In addition, climate change may lower the quality of life in given regions or
require the expenditure of additional resources to maintain a specific quality
of life. Beyond reductions in the standard of living, these changes are expected
to impact the frequency of conflict as well as flows of population, including
migrants and refugees.

Many, though not all, of the economic and social effects of climate change
can be understood through the lens of population pressure on fixed local factors
of production. The distribution of population in space reflects heterogeneity
in these factors: some places are more productive and easier to live in than
others, and the places where life and production are easier tend to be where
people concentrate. Climate change will alter some of these characteristics,
making some locations more attractive and others less so. A decline in the
services provided by local fixed factors, what we call the “quality” of land,
means that the standard of living will decline or that some of people in a
location will be induced to move elsewhere.

In this paper, we introduce a new methodology for projecting the economic
impact of forecast changes in climate. Our methodology takes advantage of
spatial variation in characteristics that will be altered by climate change in
order to estimate weights on different climate components. Notably, we use
a large set of climate indicators from global climate models that goes beyond
simple annual averages of temperature and precipitation used in most existing
research, to include intra-annual variation in both temperature and precipi-
tation, frequency of temperature extremes, and suitability for many specific
crops, among other measures. We econometrically assign weights to these
multiple dimensions based on their effects on the within-country spatial distri-
bution of population observed today. We pair the results of this econometric
exercise with a macroeconomic growth model, which allows us to examine,
among other things, the effects of within-country labor mobility.

Our paper makes two contributions. This first is the production of a new
set of projections of the economic impact of climate change, at the grid cell,
country, and world levels. The general tenor of the projections that we produce
is in line with a good deal of previous work, specifically in finding that negative



economic effects of climate change will be most severe in poorer and hotter
countries, while several colder regions may benefit. But there are significant
quantitative differences between our findings and previous research.

The second contribution is to bring together the analysis of climate change
and population growth into a single framework, through the lens of popula-
tion pressure on local resources. Population pressure rises when land quality
declines or when population size rises. Our framework allows us both to study
the combined impact of these two forces, and to compare their relative mag-
nitudes. Many of the countries expected to suffer degradation in land quality
due to climate change are also expected to see large increases in the population
that will be reliant on that land, and the increase in population pressure due
to having more people to support is on average larger than the increase due
to degradation of land quality. Similarly, looking across the range of popula-
tion and climate projections, uncertainty regarding the effect of population on
economic outcomes appears to be bigger than uncertainty regarding the effect
of climate.

The rest of this paper is structured as follows. Section [2| briefly reviews
the literatures on the effects of both climate change and population growth on
economic outcomes. Section [3| discusses our methodology for estimating land
quality and how it will be affected by projected climate change. In section[d] we
present our estimates of climate effects on land quality at the world, continent,
and country levels. Section [5]lays out the economic model that is used to map
from changes in climate and population into changes in GDP per capita, and
also discusses the role of within-country labor mobility as means of adapting to
climate change. Then section [6] presents projected country-level impacts from
climate change alone as well as from climate and population combined. This
section also discusses variability across climate and population projections.
Section [7] aggregates projected damages from climate change to the world
level, to facilitate comparison with other estimates. Section || concludes.

2 Previous Literature

2.1 Climate change

The economic effects of climate change are frequently summarized in the form
of a damage function that relates the loss in GDP relative to what it would
have been in the absence of climate change, on the one hand, to the extent of
climate change, as summarized by as the increase in atmospheric carbon diox-
ide or the global rise in mean surface temperature, on the other. Broadly, there



are two approaches to estimating the damage function (Hsiang, 2016; Massetti
and Mendelsohn, 2018). The first looks cross-sectionally to compare economic
outcomes in locations with different climates in the present, and then interacts
the estimated effects of climate differences with projected changes in climate in
the future. This approach has the advantage of incorporating any adaptations
to climate that are embodied in the current cross section. However, it faces
the challenge that cross sectional variation in climate may be correlated with
unobserved variables, such as institutions, that impact the economy. For this
reason, research in this line tends to use within-country variation as a source
of identification. Mendelsohn and Massetti (2017) review a large number of
studies that use this approach in the case of agriculture, mostly looking at
variation within a single countries. In the work most closely related to ours,
Nordhaus (2006) applies this approach more broadly, regressing total GDP in
grid cells covering the whole world on annual mean temperature and precip-
itation, geographical controls, and country fixed effects. His estimate is that
in the scenario where global mean surface temperature rises by 3 degrees C,
global output damage would be 3.0%[T In our estimation of climate damages
we differ from Nordhaus (2006) in four dimensions: deploying more spatially
disaggregated climate scenarios, considering changes in a broader set of climate
attributes, using population rather than GDP as our dependent variable, and
estimating a Poisson rather than long-linear model to relate geographic at-
tributes to economic outcomes.

The alternative approach to estimating the damage function looks at the
relationship between changes in outcomes such as temperature and precipita-
tion, on the one hand, and output or other economic or social outcomes, on the
other. The advantage of this approach is that it differences out any unobserved
characteristics that may be correlated with climate. The greatest challenge it
faces is dealing with adaptation. Hsiang (2016) and Lemoine (2021) discuss
the assumptions required to estimate the effects in climate change through
variation in weather [

Dell, Jones, and Olken (2012) examine the effects of current and lagged
annual average temperature on income growth in a panel data. They find a
negative effect of temperature shocks on income growth in poor but not rich
countries. They caution that, because their results are for short run fluctu-
ations, they are not necessarily applicable to analyzing the effects of climate
change, although they do find similar results in a medium-run analysis that

1See also Costinot, Donaldson and Smith (2016), who focus on agriculture.
2Waldinger (2022) accounts for long run adaptation in a panel framework by using an
historical event, Europe’s Little Ice Age of the 16th and 17th centuries.



looks at 15 year differences. Burke, Hsiang, and Miguel (2015A) regress an-
nual GDP growth on average annual temperature and its square in a panel
of countries over the period 1960-2010. Plugging in projected future temper-
atures, they calculate income in each country-year relative to a baseline in
which warming does not take place. They find dramatic effects. World GDP
in 2100 is 23% lower than in the absence of warming. In almost all tropical
countries, the projected shortfall larger than 80%, and in several (including
India, Pakistan, and Nigeria) it is larger than 90%. Meanwhile Russia and the
Nordic countries all experience gains of over 200%.E|

Cruz and Rossi-Hansberg (2023) use a similar empirical strategy in esti-
mating the damage function that serves as an input to their dynamic climate
assessment model. Their starting point is a set of location-specific produc-
tivity and amenity values, which are derived from solving and inverting a
spatial growth model that includes trade, migration, and local innovation, us-
ing grid cell data on wages, population, land, and energy prices. To separate
productivity from amenities, they need to impose a particular cardinal util-
ity function. These derived productivity and amenity values computed for
4 historical time periods, each five years apart, are then used as dependent
variables in a panel regression. Climate variation is represented by the single
variable of temperature (average January temperature in the northern hemi-
sphere and average July temperature in the southern) for these time periods.
It is not clear these short run fluctuations capture much in the way of how
local productivity adapts to climate change.

A number of papers have compiled damage function estimates from sev-
eral different sources and estimated an average worldwide damage function
from them. For example, the DICE 2016 model (Nordhaus, 2018) embeds a
damage function relating lost GDP to the square of the deviation of global
average surface temperature from its historical mean. The damage coefficient
is derived from fitting this model to 36 existing estimates of damages under
different climate change scenarios. The coefficient implies that a rise in mean

3Kahn et al. (2021) use a similar dataset to estimate autoregressive distributed lag models
of the effect of temperature and precipitation deviations from their long run averages on
annual income growth. Their central projection is that warming by 2100 under RCP 8.5
would reduce world GDP per capita by 7.2% relative to baseline. Tol (2021) uses a stochastic
frontier model that allows for separate effects of weather shocks, on the one hand, and long-
run climate change, on the other. These effects are estimated in 65 years of panel data
on output per worker at the country level, with climate variation being estimated as the
effect of changes in the thirty year averages of temperature and precipitation. He finds
that a 3 degree C warming reduces global output by 5%. Most warm weather countries
experience reductions in income of 10 to 20%, while many cold and temperate countries
benefit. Russia’s income rises by 60%. See also Newell, Prest, and Sexton (2021).



temperature of 3 degrees C would reduce world GDP by roughly 2.1%, and a 6
degree rise would reduce global income by 8.5%f_f] According to IPCC (2013),
the rise in mean surface temperature by the period 2081-2100 is likely to fall
into the range of 2.6-4.8 degrees under the RCP 8.5 emissions pathway where
there is continuing high use of fossil fuels worldwide. Tol (2019) similarly
pulls together 27 estimates of the damage function. For a 6 degree warming,
the damage is 5% of welfare equivalent income. However, neither the Tol nor
the Nordhaus compilations include the projections from Burke et. al (2015A),
which are far larger. Tol and Nordhaus also both discuss the large uncertainty
associated with damage function estimates.

Much of the recent literature discussing climate change in a spatial frame-
work depends on these damage functions to incorporate warming in models.
Desmet and Rossi-Hansberg (2015) uses a similar damage function to that
of the DICE model in their spatial framework to examine the distribution of
economic activity in the face of global warming. Krusell and Smith (2022)
likewise embed climate change into their model as a U-shaped damage func-
tion representing the effect of temperature on total factor productivity. They
calibrate their model at the regional level to match the global damage function
estimate of Nordhaus.

In addition to the expected effects on GDP, research has also looked at im-
pacts of climate change in many other dimensions, with two of the most notable
being conflict and migration. Burke, Hsiang, and Miguel (2015B) and Harari
and La Ferrara, (2018) examine the effect of climate on civil conflict. McGuirk
and Nunn (2021) show that climate change has already driven increasing con-
flict between transhumant pastoralists and sedentary agriculturalists in Africa.
Rigaud et al. (2018) project that as of 2050, 2.8% of the population in the
group of developing countries that they study, or 143 million people, will have
had to migrate internally. Similarly Burzynski et al. project that 62 million
working age adults will have to move, most of them within their own countries,
because of climate during the 21st centuryf| A 2021 U.S. government report
predicted that over time an increasing fraction of this migration will be across
national borders (White House, 2021).

4A full welfare analysis would include non-market effects, for example species extinction.
Nordhaus (2013), as a rough and ready approximation, adds 25% to the loss of GDP from
climate change to account for these additional damages.

®See also Lustgarten (2020A, 20208, 2020C).



2.2 Population Pressure

The literature studying the economic and social effects of climate change de-
scribed above is mostly a product of the last several decades. By contrast, lit-
erature on the effects of natural resource congestion due to population growth
is far older, going back at least to Malthus (1798). Authors such as Hardin
(1968), and Ehrlich (1968) focused on the inability of existing natural resources
to support ever-growing populations. More recent literature arguing that the
resource congestion channel has an important impact on economic outcomes,
particularly in poor countries, includes Young (2005), Acemoglu and John-
son (2007), and Kohler (2012). Das Gupta, Bongaarts, and Cleland (2011)
point out that discussion of “sustainable development” at the country level
is to a large extent simply a reformulation of the Malthusian concern with
the ratio of population to resources. Paralleling the more recent literature on
climate change and conflict, Acemoglu, Fergusson and Johnson (2020) show
that higher growth in population resulted in increases in civil wars and other
measures of social conflict. Similarly, pressure on natural resources due to
population growth is a hypothesized driver of both internal and international
migration.

Although research on this topic does not use the terminology of a damage
function, there is no barrier to applying the same concept. For example, the
IV estimates in Acemoglu and Johnson (2007) imply that a change in life
expectancy that raised population by 1% would lower GDP per capita by
0.79%E] Similarly Ashraf, Weil, and Wilde (2013), using a simulation model
parameterized to match Nigeria, find that an increase in fertility that raised
population by 16.6% would reduce income per capita by 10.6%[]

Existing literature does not address the relative magnitude of economic
stress due to climate change, on the one hand, and population growth, on the
other. To the extent that the two issues are discussed together, it is often
in the context of how population affects carbon emissions, and through this
channel climate (Casey and Galor, 2017) ]

6Tables 8 and 9, column 1.

"Values for the year 2060, comparing the UN low and medium fertility projections.

8Vorosmarty et al. (2000) discuss the interaction of climate change and population
growth in the particular case of demand placed on local freshwater resources.



3 Projecting Climate Impacts on Land Qual-
ity
Our approach follows broadly in the mode of the cross section approach dis-
cussed above, most notably Nordhaus (2006). The key insight is that one can
infer the characteristics that affect land quality, and the appropriate weights
to apply to them, by looking at current settlement patterns. In order to assess
the effects of changes in land quality due to climate change and the effects of
population pressure on both resource congestion and growth, we gather infor-
mation for two periods: roughly current day, encompassing data from 1980

to 2010, and the future, for which we use projections for 2071 to 2100. For
convenience, we refer to the former as 2010 and the latter as 2100.

3.1 Empirical Model

We outline a simple model of population allocation within a country that leads
directly to our econometric specification. Production in grid cell ¢ of country
c is given by

Y;,c = (Cgi,cZi,c)d)-[(rf:{C(l—/z',ch)liaiq5 (1)

where (); . is a measure of land quality, Z, . is land area, B. is a country-level
measure of productivity due to non-land factors (institutions, technology, etc.),
K; . is physical capital, and L;. is labor. Differences in human capital per
worker could also be incorporated into B.. Similarly, allowing for agglomera-
tion economies would not affect the key results of the model for our purposes.ﬂ
Although the regions that we use are all quarter-degree squares of latitude
and longitude, they differ in their land areas both because lines of longitude
converge away from the equator and because parts of some grid squares are
covered with water.

Labor and capital are assumed to be perfectly mobile within countries
to equalize their marginal products across grid cells. This implies that in
equilibrium, within a country, grid cell density, L; ./Z; ., will be proportional

9Tf we think that agglomeration economies come from density as in the classic Ciccone
and Hall (1996) paper or more modern papers such as Combes et al. (2017) and Henderson,
Kriticos and Nigmatulina (2020), then there should be a multiplicative argument on the
right hand side of equal to (L; ./Z;)". In this case, equation is the same, except
instead of estimating S, we are estimating S¢/(¢ — n). Using a typical value of 0.25 for (¢)
as discussed below and n = 0.04 from the literature (see Rosenthal and Strange, 2004, or
Combes and Gobillon, 2015), this factor is 1.19. While this affects the interpretation of the
estimated coefficients in , it does not affect the fitted values from this equation that we
focus on below.



to the quality of the land in the grid cell. Quality in turn is postulated to
be a function of the vector of geographic characteristics, x; ., of the grid cell,
Qi = exp(x;.f). Thus

Lic)Zi e = exp(;.8)C., (2)

where C. is a country fixed effect that ensures that we are identifying quality
exclusively from variation in population density that is within-country and
therefore not driven by differences across countries in institutions, technology,
culture, or historical development.

Estimated land quality for each grid cell is the fitted value from , ex-
cluding country fixed effects. That is, we define

Z Zi,c ]
Z eXp(xi,cﬁ>Zi,c
where 3 is the vector of estimated coefficients from equation (2). The term in

brackets is a normalization such that the worldwide sum of quality-adjusted
area (Q; .Z;. is equal to the actual area of the World

Qi = exp(wi cf) (3)

3.2 Data and Specification

For the dependent variable in , we use the European Union’s Global Hu-
man Settlements population layer (GHS-POP). In Appendix [Al we discuss the
comparison of results using this population dataset with those obtained using
two others: the Gridded Population of the World version 4 and LandScan.
Geographic characteristics, x; ., include elevation, latitude, ruggedness, dis-
tance to the coast, and a set of four dummies indicating the presence of a coast,
a navigable river, a major lake, and a natural harbor within 25 km of a cell
centroid, all from Henderson et al. (2018). From the U.N. Food and Agricul-
tural Organization’s Global Agro Ecological Zones v4 dataset (FAO’s GAEZ)
we add a selection of 33 characteristics that provide information on the ther-
mal regime, moisture regime, and growing period of each grid square as well as
suitability indices of 11 major crops for the time period 1981—2010H To assess

01t is straightforward to extend the model so that the vector of land characteristics
affects not only the productivity but also the amenity value of a location. Let the amenity
value of a grid square be given by A, . = exp(z; .y) and assume that mobility within a
country equalizes the product of the average product of labor and amenities. In this case
E(B) =B+

"The FAO’s GAEZ dataset can be accessed at: https://gaez.fao.org/. The 33 vari-
ables we use comprise the majority of continuous variables from Theme 2: Agro-climatic


https://gaez.fao.org/

the effect of climate variability, we include a measure of year-to-year volatility
of daily temperatureE These data are collected for 237,023 quarter-degree
grid squares in 164 countries.

Previous work (Nordhaus, 2006; Henderson, et al., 2018) estimated the
parameters in equation by taking logs and including an additive error
term. There are three key problems with this log-linear specification, how-
ever. First, 40% of grid squares in our data have zero reported population.
While a strict application of the model suggests there should be no zeros, we
believe the volume of zeros largely reflects measurement error (discussed in
the appendix) as well as restrictions on where people are permitted to livem
A common approach to this problem is to replace these zeros with a small
NoN-zero ValueE Unfortunately, parameter estimates can be sensitive to the

resources. We exclude variables that overlap in definition, are linearly dependent, assume ir-
rigation, indicate beginning dates, are missing data for a significant area of the world, or have
a value of 0 for more than 95 percent of observations. The variables that are dropped under
these conditions are: annual temperature amplitude, quarterly P/PET ratios, net primary
production with irrigation, beginning date of the longest component length of growing pe-
riod, the beginning date of the earliest growing period, reference evapotranspiration deficit,
snow stock at the end of calendar year, soil moisture condition at the end of the calendar
year, and number of days with a maximum temperature of 45 degrees Celsius. We further
exclude the number of consecutive days with average precipitation over 45 mm and the
average annual sum of precipitation on such days; variation in these two measures is over-
whelmingly concentrated in small regions of developing countries. The 11 crops (banana,
cassava, maize, sweet and white potato, dryland and wetland rice, soybean, sorghum, wheat,
and yam) are largest in terms of worldwide calorie production. GAEZ only provides crop
suitability index projections assuming “high input,” or commercialized agriculture, and so
for consistency we use “high input” crop suitability indices for both periods.

12To construct this variable, we calculate the standard deviation of the linearly detrended
daily average temperature over a 30-year period for each day in the calendar year. We then
take the average of these 365 standard deviation values. Temperature values from 1981 to
2010 were used to calculate the 2010 variable, while projected values from 2071 to 2100
were used for the 2100 variable. This mimics measures of volatility used in environmental
science papers such as Chan et al. (2020) while avoiding concerns about the difference in
seasons between the northern and southern hemispheres. Other aspects of volatility are
captured by variables in GAEZ: the number of days above 30, 35 and 40 degrees and below
15, 10 and 0 degrees; Annual temperature amplitude; Longest period of consecutive dry
days in temperature growing period; Number of consecutive days with average precipitation
over 30 mm; and maximum sum of precipitation on consecutive days when average daily
precipitation is over 30 mm.

13 According to the United Nations Environment Programme (2016), 14.7% of the world’s
land area is in “protected areas” such as national parks.

“4For example, Henderson, et al. (2018), which examined lights data, assigned to every
reported zero observation the minimum non-zero value in the dataset. In Nordhaus (2006),
where output per square kilometer is the dependent variable, 3,170 of 17,409 grid squares
in the regression sample have zero values for the dependent variable. Nordhaus imputes



value used for imputation, and are also sensitive to simply dropping zeros.

Second, as seen in Figures A1.A and A1.B, many grid cells in the world
have extremely low population densities. For example, in the GHS data 75%
have density less than 12 people per square kilometer, while 98.5% of the
world’s population lives in grid squares with density above this level. As
discussed in Appendix [A] data construction issues are likely to introduce a
good deal of measurement error in sparsely populated regions, and even to the
extent that density in these regions is correctly measured, its determinants are
conceptually of less interest than the determinants of density in regions where
most people live. The log-linear specification, however, ends up putting a lot
of weight on regions with extremely low population densities.

Third, Santos, Silva, and Tenreyro (2006) show that OLS estimates of a
log-linear version of (2)) are inconsistent (and NLS inefficient) in the presence
of heteroskedasticity, which is likely in our context. These issues are discussed
more extensively in Appendix [A]

For these reasons we estimate a Poisson model. The specific functional
form is

E(Li,C/Zi,c ‘ Oca xz}C) = e:vp(C’c + in,cﬁ) (4)

The Poisson specification is well-suited for outcome measures with many zeros
and tiny values. As shown in Appendix Figure[A2] predicted values of density
from a Poisson specification are remarkably robust to using the two alternative
population datasets noted above, while log-linear predicted values are not.
The stochastic component of the Poisson model is crucial for addressing
the contingent nature of human settlement. There is a vast literature on mul-
tiple equilibria and accidents of history with agglomeration (e.g. Krugman,
1991; Arthur, 1989; Davis and Weinstein, 2002). More recent work has focused
on dynamic development subject to stochastic processes that yield particular,
unique equilibria as a way of encapsulating these accidents (Michaels, Rauch,
Redding, 2012; Desmet and Rappaport, 2017). For example, in a model similar
to ours but with a more complex production process, Desmet and Rappaport
envision regions as being subject to initial large productivity /resource shocks
and then to a series of accumulating independent draws over time. These acci-
dents are important to understanding why, for example, the centre of Kolkata
is not 50 kilometers further up or down the Hugli River or on a completely
different river in historical Bengal. In that particular case, an initial arbitrary
choice of a British East India Company employee, Job Charnock, and then a
history of other choices and accumulations over 300 years, anchored that lo-

values for 618 of these cells based on neighbors, and then assigns the remainder a value of
one before taking logs.

10



cation and induced high density. Our reduced form specification summarizes
the cumulative impact of such a succession of shocks. Since we are assuming
a Poisson specification overall, we effectively assume that these shocks are a
series of Poisson draws.

The country fixed effects in control for factors like technology and
national population relative to national land area. Identification of the deter-
minants of land quality comes solely from within-country variation. In other
words, (3 is not estimated by comparing the land characteristics of more and
less densely populated countries, but rather by comparing variation in land
characteristics and population density within countries.

3.3 Projecting Climate Impacts

Climate change will alter many of the characteristics that determine our mea-
sure of land quality. A key innovation in the present paper is to substitute
projections of future characteristics into equation , allowing us to calculate
expected future land quality at the grid cell level:

[ Z Zi,c i|
S exp(2;,0.90108) Zied

A

Qi,c,2100 = eﬁp(%c,zmoﬁ)

(5)

In essence, to calculate grid-cell land quality for 2100, we apply the B coeffi-
cients from estimated on 2010 data to future projections of the geographic
characteristics. The term in brackets maintains the 2010 normalization from
equation , so that global average () in year 2100 is measured relative to
2010.

Projections of future climatic conditions are generated by global climate
models. These are numerical representations of the earth’s climate, in which
future states of the world are derived from initial conditions using physical
laws. As such, the outputs of these models are highly dependent on the as-
sumed trajectory of carbon emissions from current day to the date of the
projection. To ensure that these outputs are comparable, the Intergovernmen-
tal Panel on Climate Change (IPCC) has established four scenarios of future
greenhouse gas concentrations, called Representative Concentration Pathways
(RCPs), as standard inputs for the various models. The four scenarios are
RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, where the number represents the
increase in radiative forcing (in watts per square meter) relative to preindus-
trial conditions by 2100; RCP 2.6 traces the best-case trajectory while RCP
8.5 depicts conditions from sustained aggressive fossil fuel use. GAEZ pro-
vides projections for all four scenarios from five different climate models used

11



in the IPCC’s fifth assessment report[l’] Our main results rely on the grid-cell
level mean of this five-model climate ensemble["’| In Appendix [B, we compare
our predictions for changes in land quality between 2010 and 2100 under the
5 climate models with each other and with the ensemble mean. They are
highly correlated with each other and, then, obviously with the mean. The
larger deviations occur in countries where land quality is expected to improve
dramatically, rather than in countries where land quality will deteriorate. We
focus on the latter group, which includes nearly all poor and middle-income
countries.

Our measure of quality is based on a worldwide grid square regression. A
potential concern is that the value of specific land characteristics in determin-
ing economic outcomes may be a function of the level of a country’s develop-
ment. For example, a reduction in rainfall in an already dry climate could be
devastating in a region reliant on smallholder agriculture, but in a richer region
that imports its food from elsewhere it would have only a marginal effect. We
address this concern in Appendix , where we estimate equation (4] using a
sample of grid squares solely from countries with below-median income. We
then compare land quality predictions between this and our baseline. The
results are highly correlated among the sample of below median income coun-
tries; larger deviations occur for countries where land quality is expected to
improve dramatically.

4 Projected Effects of Climate Change on Land
Quality

This section begins by reporting the estimated effects of climate change on land
quality at the grid square level and then aggregates up to look at world, region,
and country impacts on average land quality. Impacts are heterogeneous across
the world: Some countries will experience improvements, while many others,
especially poorer ones, will see significant deterioration.

4.1 Grid Cell, Global, and Regional Results

We start at the grid square level. The first panel of Figure [1| shows our esti-
mated values of log 2010 land quality. The second panel then shows projected

15The climate models available in GAEZ are HadGEM2, GFDL, IPSL, MIROC, and
NorESM.

16Multi-model ensemble means tend to improve accuracy (Frankcombe et al., 2018) and
are used to generate headline predictions of climate change for IPCC assessment reports.

12



changes in land quality between 2010 and 2100 under RCP 8.5. In general,
the areas with improvements in land quality are mountainous and/or distant
from the equator. Land quality declines in almost all of Africa and Australia
as well as large parts of South America and central, south, and southeast
Asia. The northernmost parts of Europe are projected to benefit, along with
most of Canada and Russia. There is a good deal of internal variation within
larger countries. For example, within the United States, the Gulf coast suffers
declines in land quality while in much of the mountain west it improves.

Figure 1: Log Land Quality

(a) Historical Log Land Quality

Notes: Data are censored at -6 and 4 and at -2 and 2 in the top and bottom panels, respectively, for
visualization. Plate Carrée projection.

To examine heterogeneity in the distribution of projected changes in land

quality, we plot in Figure [2| histograms for grid cells in countries whose 2010
GDPs were either above or below the median. In the left column, the vertical

13



axis represents the percentage of the country group’s total land area that falls
into each bin; in the right, it represents the percentage of the country group’s
total population. Among countries with below-median GDP per capita, 73%
of the land area, hosting 84% of the current population, is expected to see
a decrease in land quality. By contrast, among countries with above-median
GDP per capita, only 48% of land area, hosting 55% of the population is
expected to see such a decrease.

Figure 2: Histograms of Changes to Log Land Quality
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Notes: This figure depicts the distribution of cells in countries with above-median (left column) and
below-median GDP (right column) in 2010. The histograms in the first row weight the cells by the
percentage of total land area in their respective country group; the X axis is censored at -2 and 5. The
histograms in the second row weight the cells by the percentage of total GHS population in their
respective country group; the X axis is censored at -2 and 3.

To characterize global and regional impacts of climate change more for-
mally, we define (area-weighted) Average Land Quality (ALQ) of region r
as,

ALQ’/‘,t ZQZ’I‘t ““ (6)
iEr

Thus, ALQ,; is the sum of the quality index in equation for each grid
square multiplied by that grid square area, Z;,, all divided by regional land
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area. A region can be a province, a country, a continent or the world. As we
discuss below in section [5 area-weighting AL(Q is what matters for income
when labor is mobile.

The first column of Table [I} Panel (a) reports world- and continent-level
ALQ. As noted above, world average land quality for 2010 is normalized to be
one by construction from equation . Africa and Asia’s AL(Q) are below the
world average while Europe, the Americas, and Oceania’s are above it.

In the remaining columns of Table [1} Panel (a), we repeat this exercise
for 2100 under the four different RCP emissions scenarios. Here we keep the
weights in Equation and simply change the characteristics x according to
each RCP scenario. At the world level, the change in average land quality
is modest. Under all scenarios ALQ) rises; and it rises across scenarios as we
move from strong action on climate change mitigation (RCP 2.6) to continued
aggressive use of fossil fuels (RCP 8.5). This overall world increase is driven
by the rise of average land quality in Europe (including all of Russia), which
increases by 30% in RCP 2.6 and 80% in RCP 8.5. There is little average
change in the Americas, while there are modest declines in Asia and Oceania.
Africa is the big loser, with a decline in average land quality of 13% in RCP
2.6 and 45% in RCP 8.5.

Table 1: World AL Change

(a) Area~-weighted ALQ

Continent | Historical | RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5
World 1.000 1.015 1.040 1.046 1.049
Africa 0.722 0.627 0.555 0.521 0.395
Americas 1.133 1.073 1.085 1.072 1.078
Asia 0.755 0.731 0.709 0.691 0.656
Europe 1.305 1.701 1.954 2.076 2.352
Oceania 1.489 1.393 1.403 1.421 1.299
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(b) 2010 Population-weighted ALQ

Continent | Historical | RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5
World 3.064 2.881 2.829 2.799 2.623
Africa 1.686 1.420 1.247 1.163 0.878
Americas 3.760 3.357 3.406 3.326 3.067
Asia 2.595 2.337 2.218 2.156 1.960
Europe 6.447 7.252 7.629 7.906 8.253
Oceania 18.025 15.626 16.281 17.190 14.524

The second panel of Table [I| repeats the analysis using population rather
than area weights, replacing the Z’s in equation @ with 2010 populations.
This allows us to look at how climate change will affect land quality experi-
enced in the places where people currently live.

As would be expected, population-weighted ALQ at either the world or
continent level in 2010 is far higher than area-weighted AL(), given that people
disproportionately live in higher-quality areas. The effects of climate change
are noticeably different from this perspective. Weighted by where people cur-
rently live, worldwide average land quality declines by 14% by 2100 under
RCP 8.5, rather than increasing as in the first panel. For Europe, the increase
in population-weighted ALQ is only 28%, which is only about one-third as
large as in the area-weighted case. The other regions see projected declines in
ALQ) that are larger than in the area-weighted case.

4.2 Country Level Results

Figure [3| shows that there is a strong relationship between countries’ current
levels of GDP per capita and projected changes in (area-weighted) land quality.
Among countries with below-median GDP per capita, the average expected
change in area-weighted land quality under RCP 8.5 is -27%; for those in the
top half, the expected change is 41%. There is a good deal of variation among
the richer countries, with some, such as Israel, Portugal, Greece, and the Gulf
states doing poorly, while the Nordic countries, Japan, and New Zealand as
well as Russia and Canada all do well. By contrast, among poor countries the
projection is almost universally bad, with a few exceptions such as Lesotho,
Tajikistan, and Moldova.
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Figure 3: 2010 GDP and Future AL Changes
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Note: Figure plots the percentage change in baseline area-weighted ALQ from 2010 to 2100 in RCP 8.5 in
log scale against log 2010 GDP for the 156 countries with both values.

Taken by itself, this strong relationship between current income and ex-
pected effects of climate change on land quality would be a force pushing
toward increased inequality among countries. If we instead look at population-
weighted land quality, the average expected change remains steady at -28%
for countries with below-median GDP per capita, while for the top half the
increase in land quality shrinks dramatically to 17%. This suggests that in-
creases to land quality in countries projected to benefit overall are concen-
trated in sparsely populated cells; internal migration will thus play a large
role in determining whether actual gains are realized from these changes.

4.2.1 Population Growth

Declining land quality due to climate change is expected to have economic
and social effects because it will mean a decline in the ability of the physical
environment to provide support for the people who live in it. A moment’s
thought suggests that another contributor to this problem is changes in the
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number of people. To a first approximation, we would expect a decline in land
quality by 50%, holding constant the number of people living on it, to have
the same economic effect as a doubling of the number of people, holding land
quality constant.

Assessing this issue requires projections of future population. Unlike changes
in ALQ), these are available only at the level of countries, not grid cells. We
use population projections from the by the United Nations Population Division
(UNPD, 2019). The UNPD provides a central forecast (the medium variant)
as well as a range of probabilistic forecasts for each country. In this section,
we use the medium variant projection for the year 2100, while in a later part
of the paper we explore the full probabilistic range.

Figure 4: 2010 GDP and Future Population Growth
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Note: Figure plots the percentage change in population from 2010 to 2100 in the U.N. medium variant
projection using log scale against log 2010 GDP for the 156 countries with both values.

Figure [4] shows the relationship between current GDP per capita and ex-
pected population growth between 2010 and 2100 in the UNDP medium pro-
jection. The negative relationship is even more pronounced than the positive
relationship between current GDP and expected changes in land quality shown
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in Figure 4l Many wealthy and middle income countries have negative pro-
jected population growth, and among the wealthy countries, those that do
have positive projected growth generally have projected values of less than
half a percent per year. The exceptions are mostly oil producers. By contrast,
there are a significant number of poor countries where expected growth over
this 90-year period is more than one percent per year, and many with expected
growth near 1.5%. We now turn to analyzing the effects on expected economic
growth of population pressure on land versus the impact of climate change on
land quality.

5 Mapping Land Quality Changes and Popu-
lation Growth into Income: Methodology

Changes in land quality and in the size of the population both act to change
the degree of population pressure on natural resources. Following the existing
literature on damage functions, our goal is to construct a quantitative measure
of how income per capita in countries would differ in 2100 as a result of these
changes, from what it would have been in their absence. Although the damage
function approach is much more commonly applied in the case of climate
change than in the case of population, we show that the two effects can be
treated in parallel.

To measure the impacts of climate change and population growth we con-
sider the comparison of specified baseline and alternative scenarios. Let X; pase
and X; 4, be the 2100 values of quality-adjusted land in grid cell 7 under these
two scenarios, with L; pese and L; 4 defined analogously. The choice of what
baseline and alternative values to use will depend on the scenario being ad-
dressed. All other exogenous factors for each country, such as productivity,
are assumed to evolve the same way in the two scenarios.

We analyze a simple growth model. Assume that output in grid cell ¢ is
produced with capital (K;), labor (L;), and quality-adjusted land, X; = Z;Q;.
The production function is

Y, = X7K{(eLy)' 7, (7)

We suppress the country subscript when there is no ambiguity. e is productiv-
ity that is the same throughout a country. We do not explicitly include human
capital, but one can think of this as being incorporated into the productivity
term.

We need to aggregate from this grid cell production term into a national
output equation. To do so, we assume that capital is perfectly mobile, so that
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the marginal product of capital is equalized across grid cells. It is simple to
show that this leads to the capital-output ratio of each grid cell equaling the
nationwide capital-output ratio. That is,

K, K
L 8
Y; Y’ ( )
where K and Y are national magnitudes. We use equation to write as
X\ ¢/(=a) K\ /(1)
Y, = Li(—Z> (_) (1-a=¢)/(1-a)
L % ‘ )

5.1 Labor Mobility

As shown above, climate change will have heterogeneous effects within coun-
tries. The extent to which this heterogeneity of climate impacts matters for
aggregate output in a country depends on two factors. The first is the degree to
which the spatial distribution of population can change in response to climate,
which we refer to as labor mobility. The second is the empirical relationship
between where population is located in the period prior to climate change, on
the one hand, and the spatial distribution of climate impacts, on the other.
This second factor is captured in the measure of population-weighted change
in AL() that we presented above.

We consider three cases. In the first (“mobile labor”), labor is perfectly
mobile and thus the average product of labor is equalized across grid cells
in both in the present and the future. In this case the distribution of land
qualities within a country turns out to be irrelevant; all that matters is a
country’s total quality-adjusted area. The change in this area is captured by
the area-weighted change in AL(Q) that we constructed above.

An issue with the approach in the mobile labor case is that the observed
distribution of population in the initial period does not match the distribution
predicted by our land quality measure. In the second case we address this
issue by assuming that there are location-specific attributes that produce this
residual variation in density, and further that these attributes will persist into
the future. We thus call this case “perfect mobility with unmeasured quality.”

Comparing the first and second cases gives insight into the importance of
the heterogeneity of climate impacts. Some countries will turn out to be lucky
in the sense that they have an unexpected concentration of population (beyond
what would be predicted by pure geography) in regions that are expected to
do unusually well as a result of climate change, while other countries have bad
luck in this respect.
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The third case is considered to highlight the importance of population mo-
bility in response to heterogeneity of climate change impacts within a country.
The starting point is the same as in the second case, specifically, we assume
that there are unmeasured location-specific characteristics that, along with
observed geographic attributes, perfectly explain the distribution of popula-
tion in the initial period. Unlike the second case, however, we then assume
that the relative populations of grid cells remain fixed over time. We call this
case “prefect mobility today with unmeasured quality; no mobility going for-
ward.” Comparing the second and third cases, we can characterize the benefit
of internal migration as a form of adaptation.

5.2 Mobile Labor

Equating the marginal product of labor across grid cells within a country
implies that the ratio of labor to quality-adjusted land is equalized across grid
cells, and is equal to this same ratio measured at the national level:

L, L

Il —— 10
XX (10)
Substituting equation (10]) into @D, grid square output per worker is
Y, Y X\e/-e) (KNe/0-a) (o
(2 — a @, 11
L, L (L) (Y) ¢ (11)

Through labor and capital mobility, grid-cell level output per capita is a func-
tion of national magnitudes and thus is constant across grid cells. We can
aggregate labor, quality-adjusted land, and capital to the country-level in
each period by simply summing. This corresponds to what we called the
area-weighted case in calculating changes in land quality above.

Using we can compare output per capita in the baseline and alternative
scenarios:

<%)alt _ ( >, exp(wianl) Zi )1% (ﬂ)¢ (w) (12)

<%> Ez exp<xi,baseB)Zi LBase (K/Y)base
base

The last term in this equation is derived as follows. We assume that capital
is accumulated in the usual Solow model fashion

K = sY — 0K, (13)
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where ¢ is the rate of depreciation and the saving rate s is assumed to be
fixed. Romer (2012) shows that if the rates of saving, depreciation, popula-
tion growth, and technological progress are constant, then along the balanced
growth path the capital-output ratio, which is the second term in equation
, converges to a constant. Taking logs of 7 differentiating with respect
to time, and then rearranging, we can solve for the growth rate of total output:

~

PX +(1—a—o)e+ L]

Y = 14
T (14)
We can similarly write the equation for the growth rate of capital as
- Y
K= (—) — 5. 15
s( (15)

Equating (15) to , the capital-output ratio along the balanced growth path
is thus

K S
Y T ¢X+<1—lc_v—¢)[é+il' (16)
Thus
< (K/Y>alt ) _ 5(]- - O./) + (1 - = gb)[é + IA/Base]qbXBase (17>
(K/Y>base (5(1—0&)—|—(1—Oé_¢)[é+i/141t]+¢XAH

L and X are the annualized growth rates between 2010 and 2100 of popula-
tion and aggregate land quality in either the baseline or alternative scenariom

In the language of the climate change literature, is one minus the
damage function. Of the three terms on the right hand side of the equation,
the first two have obvious interpretations in terms of population pressure on
natural resources: output in the alternative case is lower than in the base case
to the extent that land quality in the alternative is lower or that population
is higher than in the base. The third term is a more complicated: it shows
that to the extent that there is either land quality degradation (i.e. X an <
X Base) Or population decline (i.e. Lan < ﬁBase) the capital/output ratio in
the alternative case will be higher than in the base case. This effect operates
via the growth rate of total (not per capita) output along the balanced growth
path. Below we show that quantitatively of very small importance.

ITThis further assumes that growth of population and land quality are both constant on
the balanced growth path.
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5.3 Perfect Mobility with Unmeasured Quality

In this case, we continue to assume that labor is perfectly mobile in the present
and the future. However, rather than assuming, as in the previous case, that
year 2010 population is distributed according to our fitted measure of land
quality, we instead assume that there is an unobserved dimension of land
quality that explains the current population distribution.

Specifically, we define the multiplicative residual €; that makes our equation
for land quality fit the distribution of population in every country exactly:

L; . .
# = exp(C; + z;0)¢;. (18)

(2

We assume that this residual ¢; represents unmeasured land quality, and that
it is time invariant.

Our new measure of land quality for every grid square is then the fitted
value from this equation, suppressing the country fixed effect:

Qic = exp(ziB)e;. (19)

The change in aggregate land quality is now

( Xan ) _ ZZ €$p($i,a1tB)EiZi (20)
XBase Zz exp(xi,baseB)EiZi
This in turn can be rewritten as

XAlt Lz base eafp(% altB)
— i ) 21
(XBase) Z: < Lbase ) ( )

exp(mi,baseg)

This is a weighted average of grid-cell specific changes in land quality, where
the weights are the population of each grid cell in the baseline.
Equation can now be rewritten as

<Z> ~ % =% _a
L)aw _ Z (Li,base) exp(; qu) ( Ly )1‘1 ( (K/Y ) ait )1‘1
(%) i Lbase 633]7(.1’1',1,,1565) LBCLS@ (K/Y)base .

Base

(22)

23



5.4 Perfect Mobility Today with Unmeasured Quality;
No Mobility Going Forward [incomplete]

We present one more case, which is useful for demonstrating the role of mobility
in mitigating the effects of climate change. Our starting point is the same
as in the previous case, which is specifically that the observed population
distribution in 2010 is such that the average product of labor is equalized across
grid cells, with unobserved quality ¢; explaining the deviation of the observed
distribution from what would be explained by observed land characteristics
and our estimated coefficient vector 3. Unlike the previous case, however, we
now assume that there is no population mobility in the face of heterogeneous
impact from climate change. More specifically, we assume that population in
each grid cell in a country grows (or shrinks) at the same rate:

Liaw  Lau

(23)
Li,Base LBase
Unlike the previous two cases, output per worker will not be equalized
across grid squares in the alternative case.
Aggregate output per worker is given by summing equation @D:

l—a—¢
o 1—

() s = (Lb“56> ( (K/Y )a )1‘“ i Liai” [exp(xi,altB)ZiEi]% (24)
() s \ Lar ) \E/Y )pase e

5 _¢
Zi L'L,l}a_soé [exp(‘ri,baseﬁ)ziei] 1-a

This can be rewritten (skipping several steps) as

~ % =% _a
(%)alt _ Z Li,base exp(xi,altﬁ) ' < Lalt ) 1o < (K/Y>alt ) 1o
(%)Base i Lbase €{L’p($i7base/3) Lbase (K/Y>base
(25)
The second and third terms of are the same as in equation (22)) above.
The first term, representing the effect of the change in land quality, looks

almost the same, except that the change in quality for each grid cell is raised
to a power before being summed rather than after.
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6 Mapping Land Quality Changes and Popu-
lation Growth into Income: Results

Equations (12), (22), and provide parallel structures for estimating the
effects of projected climate change and population growth under different as-
sumptions about future labor mobility.

We start by examining the pure effect of climate change. After this, we
examine the combined effects of climate change and population growth. For
brevity we don’t look at effects of different population growth scenarios, absent
climate change.

To apply this framework, we need values for the production function param-
eters. A commonly used estimate for the natural resource share in production,
¢, is 0.25. While this is probably too high for wealthy countries, we view it as
reasonable for poorer countries, which are mostly reliant on local resourceslr_g]
If we assume a one-third share for capital among inputs other than natural
resources, we get o = 0.25. We further assume that the annual growth rate
of productivity, é, is 1% and depreciation, ¢, is 5%. However, these last two
parameters are only relevant for the calculation of the offset terms in equations
(12), ([22)), and (25). Appendix Table[E3|shows that the offset term contributes
extremely little to variation across countries in projected climate impacts, and
is very insensitive to the choice of é.

6.1 Climate Change Effects

To assess the pure effect of climate change, we project outcomes for 2100 under
different climate scenarios, allowing for the same expected population growth.
For all three equations, we set X; pqse equal to its 2010 value and X; 4 equal
to its 2100 value for each specified climate scenario. We set Lp.s. and L4y
equal to the UN’s 2100 median population forecast.ﬂ Thus we are comparing
balanced growth outcomes in 2100 under different climate scenarios holding
population growth constant across scenarios.

Appendix Table shows country-level impacts calculated using our first
two assumptions about labor mobility for all four RCPs. For comparison,

18Hansen and Prescott (2002) assume a value of the fixed factor share of 30% for prein-
dustrial economies. Cruz and Rossi-Hansberg (2023) use 0.20 as the natural resource share
in production, although they also allow for a congestion cost in amenities. Ashraf, Lester,
and Weil (2009), using data from Caselli and Feyrer (2007), calculate resources shares in
national income that are as high as 25% in many poor countries, and exceed 30% in a few.

9Later, when aggregating to the world level, we will use 2100 populations from the Shared
Socioeconomic Pathways to allow for comparisons with previous work.
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the table also shows the RCP 8.5 projections from Burke et. al (2015A),
which is probably the best known application of the panel-weather approach to
estimating the impact of climatem Since the Burke et al. results are based on
population-weighted changes in climate, we compare them to our results under
the assumption of perfect mobility with unmeasured quality. The correlation
between their projections and ours (expressed in percent changes) is 0.76.
However, the magnitudes are very different. In the Burke et al. projection, 20
counties suffer damage to GDP per capita of more than 90%, and 72 countries
more than 80%. By contrast, our maximum loss is 32%. Similarly, in Burke
et al. climate change increases GDP per capita in four countries by more than
300%, while in our estimates the biggest increase is 88%.

Figure 5: Country-Level Impacts from Climate Change with Mobile Labor
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Notes: Countries are binned by the difference between GDP per capita under RCP 8.5 and no climate
change under the assumption of mobile labor.

Figure |5/ shows our results graphically for RCP 8.5 under the mobile labor
assumption, i.e. equation . As expected, Nordic countries, Canada, and
Russia gain while countries in or near the tropics typically lose. Among the
most extreme projections, GDP per capita is respectively 31.0% and 32.1%
below what it would be in the absence of climate change in Zimbabwe and
Paraguay, with losses of over 25% in many African countries. On the other
end, GDP per capita is 54.2% and 88.2% above baseline in Russia and Finland
respectively.

20Country-level projected per capita GDP with and without climate change from Burke,
Hsiang, and Miguel (2015A) is provided |here.
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In Figure [6] we compare country level outcomes under the mobile labor
assumption to that under the assumption of perfect mobility with unmeasured
quality. It is immediately apparent that, while the two sets of predictions are
highly correlated, points are scattered on both sides of the 45 degree line.
These deviations from the 45 degree line are result from the unevenness of
climate change impacts within a country and the extent to which particularly
strong impacts take place in regions that are more or less populated than
would be expected based on current land quality. Countries whose land quality
increases the most in currently sparsely populated areas see far lower gains to
output when unmeasured quality is taken into account; this is the case for
Canada, Norway, and Iceland. The reverse holds true for countries like Peru
and Bolivia, where for historical reasons many people live in mountainous areas
and climate changes favor the places where economic activity is clustered. The
estimated overall effect on GDP per capita for Bolivia is -16% under the mobile
labor assumption and 20% under the unmeasured quality assumption.@

While the deviations from the 45 degree line of Figure[0] are interesting ob-
jects for study, we think that the most notable message of from this analysis
is that for most countries, and certainly for most countries that are expected
to suffer negative consequences for climate change, the assumption made re-
garding labor mobility makes little difference regarding the projected effect of
climate change on GDP per capita. For that reason, in what follows we mostly
present results for the mobile labor case, although the full set of results for
alternate cases are given in the appendix.

Below, in Section 7, we calculate the world damage function by aggregating
these country-level damages of climate change using projections of country-
level GDP in 2100.

21The vertical distance of countries from the 45 degree line in panel (a) of Figure |§| is
closely related to the difference between the area-weighted and population-weighted change
in ALQ discussed above (correlation coefficient of 0.62).
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Figure 6: Comparisons of Country-Level Impacts from Climate Change

Climate Change Impact, RCP 8.5
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Note: Figure compares the percentage impact of climate change in 2100 under mobile labor assumptions
against that under perfect mobility with unmeasured quality. RCP 8.5 and the U.N. medium variant
population projection are used for each case; 164 countries are depicted in each panel.

6.2 Combined Impacts from Climate Change and Pop-
ulation Growth

In this section we look at the combined effects of climate change and popu-
lation growth. In the next one, we then compare their relative magnitudes.
Concretely, we will set X; pose and L; pase to their 2010 values and then use
different combinations of projections to 2100 for X; 4;; and L; 4. In both
sections, we do our analysis only for the case of mobile labor, although results
for the other case of labor mobility is shown in the appendix. As in Figure [6]
the results are highly correlated.

Figure [7| shows the combined impacts from climate change under RCP 8.5
and population growth under the UNDP medium projection, against a base
of no population growth and no climate change.

Because countries that are projected to suffer land degradation from cli-
mate change tend to also be the ones where population is growing fastest,
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the size of impacts in Figure [7| tend to be much larger than those in Figure
where population growth does not differ between the base and alternative
cases. Many countries, mostly poorer ones, experience losses well over 35%
and many even over 50% in GDP under the combined population growth
and climate deterioration, while with only climate change the maximum loss
was under 32%. For example, Angola is projected to experience an impact
of -20.6% from climate alone, but an impact of -63.4% from climate change
combined with population growth. By contrast, many wealthy countries, par-
ticularly in northern Europe, are projected to see GDP per capita rise as a
result of both climate change and falling population. The cross-country cor-
relation between current log GDP of per capita and the projected impact of
climate alone is 0.41, while the correlation between current log GDP and the
the projected combined effects of climate and population is 0.55.

Figure 7: Impacts from Climate Change and Population Growth
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Note: The Y axis plots the percentage impact of climate change in 2100 using RCP 8.5 and the U.N.
medium variant population projection under mobile labor assumptions in log scale. The X axis plots log
2010 GDP. 156 countries are shown.
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6.3 Relative Importance of Climate Change and Popu-
lation Growth

The analysis above naturally raises the question of the relative magnitude of
effects from climate change and population growth. In equation , we want

R _o =0
to compare the first term, % l_a, to the second, (%) " How-
i i,base 7 ase

ever, a complete answer to this question is complicated by the fact that both
of these effects enter the third term in equation . Fortunately, in practice,
as noted above and in Appendix Table [E3|this third term is of relatively minor
importance.

Figure [§| looks at how these two terms vary across countries. Each country
is represented by a dot, with red dots indicating countries with GDP per capita
below the median. The horizontal axis measures the first term (i.e. the impact
of land quality change on GDP per capita) and the vertical axis measures the
second (impact of population change on GDP per capita). A full set of country
values appears in Appendix [E]
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Figure 8: Changing AL(Q and Population
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Note: Figure compares the effect of the the second term in equation , which represents the impact of
population growth, against the first term, which represents the impact of climate change in 2100. Impacts
are calculated in percentages under mobile labor assumptions using RCP 8.5 and the U.N. medium variant
population projection; 164 countries are shown.

Countries on the 45 degree line are those for which the impacts of changes
in land quality and population growth are equal. Countries below the 45 degree
line have either more positive or less negative impacts of climate change than
population growth, and vice versa for those above. Those negatively affected
by climate change are to the left of the vertical line at 0 and are mostly low
income countries, while those to the right of that line are disproportionately
high income. Similarly looking at the horizontal line at 0, those countries

31



negatively affected by population growth are disproportionately low income
countries. That is, low income countries tend to suffer losses from both popu-
lation growth and climate change. Quantitatively, climate losses are all under
35%, while many countries have losses from population growth that are that
in the 40-50% range. These countries are mostly poor and agricultural—that
is to say, more prone to suffer from congestion and declining land quality, and
in a worse position to deal with the consequences of these changes. Finally we
note that the gains from climate change tend to exceed gains from population
decline.

Figure [§] makes clear that for most of countries projected to experience
high levels of damage from climate and population growth taken together, the
biggest source of that damage is population growth. There are a few specific
countries such as Paraguay and Morocco where effects from projected popu-
lation increases are much smaller than for projected declines in land quality.
But for the majority of countries, the major culprit is population growth. To
give a typical example, in Tanzania, the impact of declining land quality is
projected to be -18%, while the impact due to rising population is projected
to be -46%.

It is worth recalling that all of this analysis is done using RCP 8.5, the
most extreme climate scenario. As we explore further below, using projections
from a less dire climate projection further elevates the relative importance of
population growth as a driver of damages.

6.4 Variation Across Projections

In the analysis above, we focused on RCP 8.5, the most extreme of the four
climate scenarios, along with the UN medium population projections. The
fact that organizations like IPCC and the UNDP produce ranges of scenarios is
indicative of the uncertainty regarding these projections. A natural implication
of this is that one can learn something about the range of possible outcomes
by looking at the range of scenarios.

In the case of the UNDP, they explicitly state that:

In projecting future levels of fertility and mortality, probabilistic
methods were used to reflect the uncertainty of the projections
based on the historical variability of changes in each variable. The
method takes into account the past experience of each country,
while also reflecting uncertainty about future changes based on
the past experience of other countries under similar conditions.
The medium-variant projection corresponds to the median of sev-
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eral thousand distinct trajectories of each demographic component
derived using the probabilistic model of the variability in changes
over time. Prediction intervals reflect the spread in the distribu-
tion of outcomes across the projected trajectories and thus provide
an assessment of the uncertainty inherent in the medium-variant

projection. [

Unlike the UNDP data, there are no probabilities assigned to the different
RCPs used to assess the effects of changing climate, nor is there any claim
that the actual path of climate change will fall within the span of the four
commonly used RCPs. There is an additional layer of uncertainty in that
RCPs only describe the path of radiative forcing values (in watts per square
meter), while it then takes an entire climate model to generate projections of
the physical outcomes of any RCP path.

All that being said, we would argue that there is still some information in
the range of projections for each source. One might claim that in looking across
the four RCPs, and similarly in comparing, say, the 5th to the 95th percentile
probability population projections, one is in each case looking across the range
of likely outcomes, and possibly getting some sense for the range of outcomes
that different policies could achieve.

In conducting this analysis, we restrict ourselves to looking at individual
countries, rather than trying to aggregate to the level of the world as a whole.
We start with an example for a single country, India. Table[2|shows the percent
change of GDP per capita in 2100, relative to a scenario where population and
climate are unchanged. We consider four climate scenarios and five population
scenarios, all under perfect population mobility.

Using the median UN forecast, India’s GDP will be around 20% lower in
RCP 8.5 than if both population and climate had remained the same. The
main result in the table, however, is that moving across climate scenarios has
a much smaller effect on the expected change in GDP per capita than does
moving across population scenarios. For any given population scenario, the
difference between the total impact of climate and population on GDP, com-
paring the most extreme climate scenarios, is about 10 percentage points. By
contrast, for a fixed climate scenario, the range of impacts on GDP comparing

22Tn addition to these probabilistic projections, the UNDP also provides “high” and “low”
variant projections, which differ from the medium variant only setting the terminal level of
the total fertility rate to be 0.5 above or below it. The relationship between these high and
low variants, on the one hand, and the probabilistic bounds, on the other, varies by country.
In general, in countries with high current fertility, the high and low projection variants fall
within the 95% probability bounds, while the opposite it true in countries with low current
fertility.
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the highest to the lowest population growth scenarios is roughly 30 percentage
points. Even comparing the 20th to the 80th percentile population growth
number gives a range of impacts on GDP per capita of roughly 20 percentage
points.

Table 2: Impact of Climate Change and Population on GDP per Capita in
India

Climate Scenarios
% Change in QAA, 2010-2100
RCP 2.6 | RCP 4.5 | RCP 6.0 | RCP 8.5
-15.96 -16.95 -29.89 -38.45
£ | 8| 5th Percentile | -28.14 7.35 6.95 1.48 -2.53
£l a
S
E § 20th Percentile | -14.44 0.48 0.11 -5.02 -8.78
HE:
> | & Median 17.24 -10.78 1111 -15.68 -19.03
58
()
%"smh Percentile | 51.74 -19.03 -19.33 -23.48 -26.53
<
O
X | 95th Percentile | 76.75 -23.53 -23.81 27.74 -30.62

Note: The numbers in bold in the first numerical column provide the percent change in population from
2010 to 2100 for each of the five population projections provided by the UNPD. The bold numbers in bold
in the first numerical row provide the percent change in ALQ from 2010 to 2100 corresponding to each
RCP. The 5x4 matrix provides the percent change to GDP per capita for each population
projection-climate scenario pair according to equation )

In the perfect mobility case, we can use equation to separate out vari-
ation in climate change and population growth in the total impact. As before,
we ignore the small offset term.ﬁ Figure |§] expands this analysis graphically
to look at 10 particularly interesting countries. Each country is represented
by a colored rectangle. The horizontal dimension of the rectangle shows the
range in projected impacts from land quality change (the first term in equation
), looking across all four RCPs. The vertical dimension of the rectangle is
the range of the impact from population growth (the second term of equation

23Values for country level damages inclusive of this term under all RCPs and population
scenarios can be found in Appendix
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(12))) going from the 5th to the 95th probability percentile estimate of the
change in log population between 2010 and 2100.

Figure 9: Range of Impacts from Climate Change and Population for Selected
Countries
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Note: This plot depicts the minimum and maximum impacts from climate change and population across
different scenarios, represented by the first and second terms of equation ) as percent changes. The
contribution from impacts attributed to climate change come from four RCP scenarios, and scenarios for
log impacts from population comprise the 95th and 80th percent confidence intervals as well as the median
from UN population projections.

As an illustrative example, for Malawi, the rectangle showing the range of
GDP per capita losses is much taller than it is wide, indicating that there is
less uncertainty regarding the effect of climate change than there is regarding
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the effect of population change. The rectangle for Malawi is also entirely
in the lower-left quadrant (rising population, falling land quality), indicating
that, within the range of these estimates, all scenarios will lead to an increase
in population pressure on quality-adjusted land. By contrast, the rectangle
for Russia is wider than it is tall, i.e. there is more uncertainty about the
effect of climate than about population. Russia also sits largely in the upper
right quadrant, indicating that both forces will be pushing toward reduced
population pressure on land.

Although we display only a limited number of countries in Figure [J for
illustrative purposes, looking over all poor countries there is a strong empir-
ical regularity: Not only is expected damage from population growth larger
than expected damage from climate change, but variation in damage among
population scenarios is also larger than variation in damage across climate
scenarios [

7 The World Damage Function

In this section, we assess the damage from climate change aggregated to the
world level. Our motivation for doing this is largely for comparability with
existing literature.

Aggregating the country-level climate damages calculated in Section 6 to
the world level requires an additional piece of information, which is the level
of total output in each country in 2100 in the absence of climate change. So
far we have avoided this issues of levels, and calculated percent losses or gains
from whatever the level might be. Now we need the actual level to be com-
parable to the literature. Following other work in this area, we rely on the
Shared Socioeconomic Pathways (SSPs; O’Neill et al., 2014; Riahi et al., 2017)
for these projections. These are scenarios for how the world economy might
evolve in the absence of both climate change and climate mitigation or adap-
tation policies. The different pathways embed particular assumptions about
technological change, population and economic growth, and cross-country in-
come convergence, among other dimensions. For example, SSP 5 features the
following: rapid income growth at the world level combined with a large de-
cline in income gaps among countries, and world population peaking around
the year 2060 and then declining to around 7 billion in 2100. By contrast, in
SSP 3, world income growth is slow, cross-country inequality falls only slightly,
and high population growth in poor countries drives the world population to

24Results for all countries can be accessed interactively at https://bjang.shinyapps.
io/appendix_countries/.
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12.6 billion in 2100. SSP 2 represents a continuation of historical social, eco-
nomic, and technological trends, and falls roughly in the center of the range
of the other pathways in terms of income and population growth ]

Table |3| shows the damage function at the world level, which aggregates
country losses weighted by their 2100 GDP in the absence of climate change.
These GDP weights vary considerably across the SSPs. The top rows show
world GDP and population under the different SSP scenarios, as well as 2010
numbers. Then, in panels A and B, each entry shows the percentage change
in world total GDP going from the case when climate change has no economic
effects to the case where climate follows a specified RCP. Specifically, in Panel
A, each entry is the weighted average of country-specific percentage changes
in GDP under the particular SSP-RCP scenario assuming population mobility
within countries as in equation (12)) calculated above, where the weights are
2100 country values of total GDP under the specified SSP. Panel B shows
analogous numbers for the case where there is an unobserved dimension of
land quality that explains the current population distribution, as represented

by equation .

Table 3: 2100 Impacts as Percentage of World GDP (OECD Env-Growth)

Year 2100 2010
Scenario SSP 1 SSP 2 SSP 3 SSP 4 SSP 5
Sustainability — Middle of the Regional Rivalry Inequality — A Fossil-fueled Historical Data
Taking the Green Road — A Rocky Road Road Divided Development —
Road Taking the
Highway
World GDP 5.65e+14 5.38e+14 2.78e+14 3.53e+14 1.02e+15 6.73e+13
World Pop. 6.87e+09 8.98e+09 1.26e+10 9.25e+09 7.35e+09 6.85e+09
A. % Impacts: Mobile Labor
RCP 2.6 -1.165 -1.088 -0.853 -0.162 -0.674 1.771
RCP 4.5 -1.588 -1.514 -1.260 -0.117 -0.796 2.768
RCP 6.0 -2.783 -2.661 -2.295 -0.878 -1.768 3.066
RCP 8.5 -5.278 -5.114 -4.566 -2.296 -3.727 3.584
B. % Impacts: Perfect Mobility, Unmeasured Quality
RCP 2.6 -0.836 -0.731 -0.461 0.189 -0.404 2.032
RCP 4.5 -1.080 -0.958 -0.631 0.494 -0.372 3.285
RCP 6.0 -2.216 -2.047 -1.597 -0.258 -1.311 3.545
RCP 8.5 -4.821 -4.565 -3.866 -1.789 -3.509 3.706

Note: ”World GDP” aggregates 160 countries for all SSP scenarios in 2100 and 143 countries for the 2010
column.

25Projections of population, urbanization, and GDP that quantify the narratives of the
Shared Socioeconomic Pathways are available in a database hosted by the International In-
stitute for Applied Systems Analysis (ITASA) Energy Program at https://tntcat.iiasa.
ac.at/SspDb. We use the projections of the Organization for Economic Co-operation and
Development (OECD; Dellink et al., 2017), considered the ”illustrative” case. Population
projections for each SSP are from Samir and Lutz (2017).
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In each panel, RCP 8.5 unsurprisingly yields the most negative impacts to
world GDP in the year 2100. Within each SSP, we see that the magnitude
of impact increases moderately from RCP 2.6 to RCP 6.0, then jumps with
RCP 8.5. It is worth noting that not all RCPs are plausible in each SSP. For
example, it is highly unlikely that RCP 2.6 or even RCP 4.5 will be reached
under the baseline SSP5 scenario. Comparison of RCPs across different SSPs
must therefore be done with care. Impacts as percentage of world GDP in
RCP 8.5 are higher in SSP1, the sustainability-focused scenario, than SSP5,
the fossil fueled development scenario, due to the differences in convergence of
world incomes under each narrative.

To compare these results to existing literature, Burke et al. (2015A) focus
on the case of RCP 8.5 and SSP 5 to estimate that average global incomes
would be reduced around 23%. By contrast, our projection is that world level
GDP would fall by only 3.7% using the same scenarios and assuming perfect
labor mobility. In Panel B, where unobserved quality is taken into account,
these losses are slightly smaller at 3.5%.

8 Conclusion

This paper quantifies the projected effects of established climate change sce-
narios on characteristics that affect the carrying capacity of land, which we
call land quality. Land quality tends to increase for select countries in cur-
rently colder climates and decreases in the tropics. Using this measure in a
model of economic growth, we assess the effects of climate change against a
counterfactual in which land quality is unchanged. Under the most extreme
scenario of RCP 8.5, we estimate country-level impacts ranging from -32% to
88%, with a positive correlation between log GDP and climate change impact
so that richer countries on average experience more positive impacts.

We further compare the effects of climate change against the effects of pro-
jected population growth, finding that the impact of the latter is consistently
the larger of the two. Further, the difference in economic outcomes comparing
the most extreme to the most modest climate scenarios is, for most countries,
smaller than the difference in economic outcomes comparing the highest to the
lowest population growth scenarios.

Our analysis of climate damages is closely tied to the output of global
climate models, and thus shares any limitations that are present in these mod-
els. Notably, this means that our analysis may under weigh the importance of
natural disasters that are likely to become more frequent with global warming.

One of our crucial findings is that climate change will make the natural
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environment less supportive of human habitation in exactly the places where
population growth is already working to raise the burden on that land. The in-
tensification of population pressure disproportionately affects more vulnerable
regions, becoming another driver for inequality in economic development.

A notable aspect of our analysis is that we allow for within-country labor
mobility in response to climate change, but not for similar mobility between
countries. While it is true that climate change will ceteris paribus raise the
gap in income between rich and poor countries, the observable fact is that the
income gap between these country groups is already quite large, and migration
flows between them are relatively small. Further, while climate change will
work to raise the income gap between rich and poor, other economic processes
(embodied in the SSP scenarios discussed above) will lower the gap.@

A simple reading of our results would say “Don’t worry about climate
change-the bigger issue is population growth.” This is not our interpretation,
for several reasons. First, even a finding that population growth is a larger
driver of environmental stress than climate change does not in any way lessen
the damage being done by that climate change. Second, unlike the effects of
population growth, the effects of climate change largely result from decisions
and behaviors outside the country that is impacted. More concretely, in poor
countries that will suffer the most from climate change, the vast majority of
relevant emissions causing that climate change were the result of economic
activity elsewhere in the world. Third, nothing in our analysis addresses the
relative costs and unintended consequences of reducing population growth ver-
sus mitigating climate change. Finally, the welfare calculus regarding popu-
lation growth differs markedly from that regarding climate change: having
more warming, holding population constant, reduces the average welfare of a
fixed set of people. By contrast, reducing population growth, holding climate
constant, may raise welfare per capita but lower then number of people who
experience that welfare.

References

Acemoglu, Daron, and Simon Johnson. “Disease and development: the effect
of life expectancy on economic growth.” Journal of Political Economy
115.6 (2007): 925-985.

26Conte (2022) estimates that climate-induced international migration within sub-Saharan
Africa between 200 and 2080 will be only 4 million individuals under the current regime
of migration barriers. Absent those barriers, international migration within sub-Saharan
Africe would increase by more than 100 million people.

39



Acemoglu, Daron, Leopoldo Fergusson, and Simon Johnson. 2020. “Popula-
tion and Conflict,” The Review of Economic Studies, 87(4): 1565—1604.

Ashraf, Quamrul, Ashley Lester, and David N. Weil. 2009. “When Does
Improving Health Raise GDP?” in Acemoglu, Rogoff, and Woodford, eds.,
NBER Macroeconomics Annual 2008, Volume 23.

Ashraf, Quamrul, David N. Weil, and Joshua Wilde. 2015. “The Effect of
Fertility Reduction on Economic Growth,” Population and Development
Review, 39(1), 97--130.

Burke, Marshall, Solomon M. Hsiang, and Edward Miguel. 2015A. “Global
non-linear effect of temperature on economic production.” Nature 527.7577:
235-239.

Burke, Marshall, Solomon M. Hsiang, Edward Miguel. 2015B. “Climate and
Conflict,” Annual Review of Economics, 7:1, 577-617

Burzynski, Michat , Christoph Deuster, Frédéric Docquier, Jaime de Melo “Cli-
mate Change, Inequality, and Human Migration” Journal of the Furopean
Economic Association, 20(3), June 2022, 1145—1197.

Casey, Gregory and Oded Galor (2017). “Is faster economic growth compatible
with reductions in carbon emissions? The role of diminished population
growth.” Environmental Research Letters. 12.

Caselli, Francesco, and James Feyrer. 2007. “The Marginal Product of Capi-
tal,” The Quarterly Journal of Economics, 122(2): 535—568.

Chan, D., Cobb, A., Zeppetello, L. R. V., Battisti, D. S., and Huybers, P.
2020. “Summertime temperature variability increases with local warming
in midlatitude regions”. Geophysical Research Letters, 47, e2020GL087624.

Conte, Bruno, 2022, “Climate Change and Migration: The Case of Africa,”
CESifo Working Paper No. 9948.

Costinot, Arnaud, Dave Donaldson, and Cory Smith. 2016. “Evolving Com-
parative Advantage and the Impact of Climate Change in Agricultural
Markets: Evidence from 1.7 Million Fields around the World” Journal of
Political Economy 124:1, 205-248.

Cruz, Jose-Luis and Esteban Rossi-Hansberg. 2023. “The Economic Geogra-
phy of Global Warming.” Review of Economic Studies, forthcoming.

Das Gupta, M., Bongaarts, J. and Cleland, J. C. 2011. “Population, poverty,
and sustainable development: A review of the evidence.” Policy Research
Working Paper 5719, World Bank.

Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken. 2012. “Tem-
perature shocks and economic growth: Evidence from the last half cen-
tury,” American Economic Journal: Macroeconomics 4(3), 66-95.

Dellink, Rob, Jean Chateau, Elisa Lanzi, Bertrand Magné, Long-term eco-
nomic growth projections in the Shared Socioeconomic Pathways, Global

40



Environmental Change, 42(2017): 200-214.

Deschénes, Olivier, and Michael Greenstone (2007), “The Economic Impacts of
Climate Change: Evidence from Agricultural Output and Random Fluctu-
ations in Weather,” Ameican Economic Review 97:1, March, pp. 354-385.

Desmet, Klaus, and Rossi-Hansberg, Esteban. 2015. “On the spatial economic
impact of global warming,” Journal of Urban Economics 88: 16-37.

Ehrlich, Paul R. 1968. The population bomb. New York, Ballantine Books.

Frankcombe, L. M., England, M. H., Kajtar, J. B., Mann, M. E., and Stein-
man, B. A. (2018). On the Choice of Ensemble Mean for Estimating the
Forced Signal in the Presence of Internal Variability, Journal of Climate,
31(14), 5681-5693.

Hansen, Gary D., and Edward C. Prescott. 2002. “Malthus to solow.” Amer-
1can Economic Review 92.4: 1205-1217.

Harari, Mariaflavia , Eliana La Ferrara. 2018. “Conflict, Climate, and Cells: A
Disaggregated Analysis,” The Review of Economics and Statistics 100(4):
594—608.

Hardin, Garrett. “The Tragedy of the Commons.” Science, vol. 162, no. 3859,
1968, pp. 1243--48.

Henderson, J. Vernon, Tim Squires, Adam Storeygard and David N. Weil.
2018. “The Global Distribution of Economic Activity: Nature, History,
and the Role of Trade,” The Quarterly Journal of Economics 133(1): 357—
406.

Henderson, J. Vernon, Adam Storeygard and David N. Weil. 2022. “Land
Quality.” Processed, Brown University,

Hsiang, Solomon “Climate Econometrics” Annual Review of Resource FEco-
nomacs 2016 8:1, 43-75.

IPCC, 2013. “Summary for Policymakers.” In: Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change
[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung,
A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA.

Kahn, M. E., et al. 2021. “Long-Term Macroeconomic Effects of Climate
Change: A Cross-Country Analysis,” FEnergy Economics, Vol 104.

Krusell, Per, and Anthony A. Smith, Jr. 2022. “Climate Change Around the
World,” NBER Working Paper No. 30338.

Lemoine, Derek, “Estimating the Consequences of Climate Change from Vari-
ation in Weather,” NBER Working Paper 25008, May 2021.

Lustgarten, Abrahm, “The Great Climate Migration” 2020A, The New York
Times Magazine

41



Lustgarten, Abrahm, “How Climate Migration will Reshape America” 2020B,
The New York Times Magazine

Lustgarten, Abrahm, “How Russia Wins the Climate Crisis” 2020C, The New
York Times Magazine

Malthus, Thomas Robert, 1798. An Essay on the Principle of Population.

Massetti, E. and R. Mendelsohn. 2018. “Measuring Climate Adaptation:
Methods and Evidence.” Review of Environmental Economics and Policy,
12(2): 324-341.

Mendelsohn, R. and E. Massetti. 2017. “Using Cross-Sectional Analysis to
Measure the Impact of Climate on Agriculture.” Review of Environmental
Economics and Policy, 11(2): 280—298.

McGuirk, Eoin F. and Nathan Nunn, 2021, " Transhumant Pastoralism, Cli-
mate Change, and Conflict in Africa,” NBER Working Paper 28243.

Newell, RG, BC Prest, SE Sexton (2021), “The GDP-temperature relation-
ship: implications for climate change damages,” Journal of Environmental
Economics and Management 108.

Nordhaus, William. 2006. “Geography and macroeconomics: New data and
new findings,” Proceedings of the National Academy of Sciences, 103(10):
3510-3517.

Nordhaus, William. 2018. “Projections and uncertainties about climate change
in an era of minimal climate policies.” American Economic Journal: Eco-
nomic Policy 10, 333—60.

O’Neill, Brian C., et al. “A new scenario framework for climate change re-
search: the concept of shared socioeconomic pathways.” Climatic change
122.3 (2014): 387-400.

Riahi, Keywan, et al. 2017. “The Shared Socioeconomic Pathways and their
energy, land use, and greenhouse gas emissions implications: An overview,”
Global Environmental Change 42: 153-168, January 2017.

Rigaud, Kanta Kumari, et al. 2018. “Groundswell: Preparing for Internal
Climate Migration,” Working Paper, World Bank, Washington, DC.

Romer, David, 2012, Advanced Macroeconomics, New York: McGraw-Hill Ir-
win.

Samir KC, Wolfgang Lutz, “The human core of the shared socioeconomic
pathways: Population scenarios by age, sex and level of education for all
countries to 2100,” Global Environmental Change, 42(2017): 181-192.

Tol, Richard. 2019. Climate Economics: Economic Analysis of Climate, Cli-
mate Change and Climate Policy. Edward Elgar Pub; 2nd edition.

Tol, Richard, 2021. “The Economic Impact of Weather and Climate,” Working
Paper.

42



Vorosmarty, CJ, P Green, J Salisbury, RB Lammers. 2000. “Global water re-
sources: vulnerability from climate change and population growth,” Science
289:5477, 284-288.

Waldinger, Maria, 2022. “The Economic Effects of Long-Term Climate Change:
Evidence from the Little Ice Age” Journal of Political Economy 130:9,
2275-2314.

White House 2021 Report on the Impact of Climate Change on Migration,
Washington, DC.

Young, Alwyn. “The gift of the dying: The tragedy of AIDS and the welfare
of future African generations” The Quarterly Journal of Economics 120.2
(2005): 423-466.

43



Appendices

A Comparison of Population Datasets and Cell-
Level Specifications

In this appendix we first compare the distribution of population density in
our main population data source, GHS-POP, to two alternatives, GPWv4 and
LandScan. We then compare regression results using our baseline Poisson
specification and a log-linear alternative, using all three datasets—a total of
six variants. Specifically, we compare goodness of fit and fitted values in a re-
gression of population on geographic characteristics. All three global datasets
report population counts for 30-arc-second by 30 arc-second pixels in Plate
Carrée (latitude/longitude) projection. The area of a pixel is 0.86 square km
at the equator, decreasing with the cosine of latitude.

The Gridded Population of the World version 4 (GPWv4; CIESIN 2017)
is the simplest of the three. The underlying data are population estimates
for administrative regions (polygons) from censuses circa 2010. When there
is no census in exactly 2010, values are extrapolated or interpolated from
multiple censuses. Population is assumed to be distributed evenly within an
administrative region. GPWv4’s effective spatial resolution thus depends on
what information individual countries provide, with richer countries typically
providing data for finer regions, down to enumeration units, or even block
level data. There is substantial variation within countries as well, with higher
resolution in more densely populated regions. Of 12.9 million input poly-
gons worldwide, only 2.4 million are from outside the United States. A grid
cell crossing a polygon boundary is assigned a population density that is the
areally-weighted average of its constituent polygons.

The European Union’s Global Human Settlements population layer (GHS-
POP; Schiavina et al. 2019; Freire et al. 2016) reallocates GPWv4 estimates
within administrative polygons based on a companion dataset, GHS-BUILT
(Corbane et al., 2018, 2019) that defines built-up pixels as seen in Landsat
30-meter resolution satellite data circa 2015. In the rare cases where there is
no built-up area visible in a region, it reverts to the GPWv4 estimates. Its
land area measures are taken directly from GPWv4. More information about
the GHS data can be found in Florczyk et al. (2019).

LandScan uses a proprietary algorithm to provide population estimates
based on a much wider set of inputs that include census population data and
satellite imagery at higher resolution than Landsat. While the algorithm is not
publicly documented and changes from year to year, in the recent past input
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data have also included information on elevation, slope, and land cover, as
well as locations of road and rail networks, hydrologic features and drainage
systems, utility networks, airports, and populated urban places. LandScan
reports estimates of ambient population averaged throughout the day, whereas
the other two datasets report nighttime (residential) population estimates. A
recent explanation of LandScan for an academic audience can be found in Rose
and Bright (2014).

We rely on GHS-POP as our primary source, and consider GPWv4 and
LandScan for robustness here. GHS-POP’s use of building cover to redis-
tribute people within census units is very likely to provide more accuracy than
GPWv4’s assumption of uniform density within large administrative units.

LandScan aims to achieve the same goal of redistributing population based
on built cover. However, as noted, it uses other information in making assess-
ments, including higher resolution satellite imagery. LandScan may thus do a
better job of finding the built environment in rural locations and it may have
greater accuracy in dense but low income cities with coarse population data.

However LandScan has four main drawbacks. First, it has historically used
coarse census data as a benchmark outside of the United StatesP’l While bet-
ter satellite imagery can better define the built environment, to convert that
to population one still needs fine grained census population data. Second and
more importantly, LandScan’s algorithm uses physical features like elevation
directly to predict population density. This raises the possibility that our re-
gressions will end up simply predicting LandScan’s algorithm rather than true
population density. Third, LandScan’s algorithm changes from year to year
and is not documented. Finally LandScan measures the ambient population
over the 24 hours of a day, making inferences about where people work and
for how many hours of the day, without, as we understand it, much if any spa-
tial economic census data which are unavailable for many developing countries
anyway. This seems likely to add error without benefit for our purposes.

Figure Panel A reports the cumulative distribution function (CDF)
of log population density according to the three datasets, with zeros in each
dataset replaced with that dataset’s minimum nonzero value before logging.
The figure shows that the three data sets treat grid squares with tiny densi-
ties very differently. For example GHS-POP registers about 40% of cells as
having no people, with nonzero densities starting at 0.0000000033/km?, while

2"LandScan has not released details about its current census data, but as of
its 2009 version: "Outside the USA LandScan used 79,590 administrative units
for ambient modeling. By contrast, GPWv3 uses 338,863 units outside of the
US.” Source:  https://sedac.uservoice.com/knowledgebase/articles/41665-what-are-the-
differences-between-gpw-grump-and-la
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Figure A1l: Population Distributions by Grid Square Worldwide

A. CDFs of Grid-square Log Population Density
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LandScan registers only about 24% of grid squares at 0, with non-zero densi-
ties starting at about 0.0013/km2. By population densities of about 50/km?
(exp(3.9)), the three lines converge, at which point about 85% of pixels have
been accounted for. Panel B of Figure analogously reports cumulative
population by density. It shows that less than 10% of the world population
lives at a density under 50/km?. However, since our unit of analysis is the
grid square, these tiny densities potentially play an important role.

In implementing the log-linear specification, we assigned to such cells the
population density of the least dense non-zero cell in the dataset before log-
ging. We also experimented with creating versions of the logged GPWv4 and
GHS-POP datasets in which cells with zero density are assigned the minimum
nonzero density value in LandScan. As shown in Figure LandScan’s min-
imum value is much larger than the minimum non-zero density in the other
two datasets.

Figure compares cell-level predicted values across the three datasets.
Using the Poisson specification (Equation (4))), Panel A shows that all three
data sets give very similar predicted values. This is because the Poisson speci-
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Figure A2: Predicted Values

(a) Poisson Specification
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fication makes little distinction between cells that have moderately low density
and those that have extremely low density. By contrast, in Panel B, there are
large differences across datasets when using the log-linear specification, driven
by the differing treatments of low density regions.

Table reports goodness of fit measures for the log linear and Poisson
specifications. In the first 3 rows zeros are assigned their dataset-specific
minimum non-zero value. In rows 4 and 5 zeros in GHS-POP and GPWv4 are
assigned the LandScan minimum value.

Table Al: Goodness of Fit for Grid Cell Level Regressions

Log-linear  Poisson

GHS 0.597 0.567
GPW 0.758 0.621
LandScan 0.737 0.594
GHS Censored 0.659 0.567
GPW Censored 0.800 0.621

Note: The table reports R? values for
the log-linear regressions and R% ., for
the Poisson specification.

Finally, Table reports the main grid square Poisson estimation of equa-
tion for a single climate model. Across climate models, historical values
are identical for all but one variable: year-to-year volatility of daily tempera-
ture. Because we calculate year-to-year volatility using daily data from climate
model historical backcasts, we run a regression for each climate model. Here
we show the coefficients of the GFDL climate model; the results do not change
noticeably across climate models.

Table A2: Grid Square Regression Coefficients

Models
GFDL
Ruggedness (000s) —1.88e-06***
(1.24e-07)
Abs(Latitude) 0.029***
(3.84¢-03)
Elevation (m) —1.89e-04***
(4.26¢-05)
Distance to coast (000 km) —7.15e-07***
(3.4¢-08)
Coast dummy 0.408***
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Harbor dummy

Navigable river dummy

Lake dummy

Adjusted LGP for evaluating agro-climatic constraints

Length of longest component LGP

Longest consecutive dry days in LGPt=5

Number of dry days during LGPt=5

Total number of growing period days

Total number of LGP days in component LGPs > 20 days

Net primary production (rain-fed)

Annual P/PET ratio (*100)

P/PET (*100) for days with mean temperature > 5 deg. C
Seasonal P/PET ratio (*100) in summer

Seasonal P/PET ratio (*100) in winter

Number of consecutive days with average precipitation > 30 mm
Total number of rain days (days with precipitation > 1 mm)
Modified Fournier Index (mm)

Annual precipitation (mm)

Mean max. sum of precip. on consec. > 30 mm av. daily precip. days
Reference actual evapotranspiration (using AWC=100 mm/m)
Reference potential evapotranspiration (using AWC=100 mm/m)
Number of days with max temperature > 35 deg. C

Number of days with max temperature > 40 deg. C

Number of days with min temperature < 0 deg. C
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(0.028)
0.831***
(0.025)
0.751***
(0.029)
0.706***
(0.147)
5.59e-03***
(5.62e-04)
2.26e-03***
(3.97¢-04)
—8.33e-04**
(3.9¢-04)
—8.8e-03***
(1.49¢-03)
5.28e-03***
(1.366-03)
—7.7e-03"**
(1.1e-03)
—4.53e-05%**
(3¢-06)
4.41e-03
(2.75¢-03)
—0.021***
(2.2e-03)
—2.41e-03***
(6.31e-04)
—1.32e-03***
(3.85¢-04)
0.111
(0.122)
—7.53e-03***
(1.4¢-03)
2.77e-04***
(3.44e-05)
2.61e-04**
(1.31e-04)
—3.46e-03
(4.08¢-03)
9.91e-04***
(1.81e-04)
—1.9e-03"**
(1.08¢-04)
—1.22e-03***
(4.28¢-04)
3.92e-03***
(7.74e-04)
—1.24e-03



Number of days with min temperature < 10 deg. C

Number of days with min temperature < 15 deg. C

Number of days with mean temperature > 10 deg. C (LGPt=10)
Number of days with mean temperature > 5 deg. C (LGPt=5)
Annual temperature amplitude (deg. C)

Mean annual temperature (deg. C)

Snow-adjusted cold temperature limit

Temperature of coolest month (deg. C*100)

Annual temperature sum for days with mean temperature > 10 deg. C
Annual temperature sum for days with mean temperature > 5 deg. C
Air frost number

Snow-adjusted air frost number

Maize suitability index; high input, rain-fed, CO2 fertilization
Dryland rice suitability index; high input, rain-fed, CO2 fertilization
Wetland rice suitability index; high input, rain-fed, CO2 fertilization
Wheat suitability index; high input, rain-fed, CO2 fertilization
Cassava suitability index; high input, rain-fed, CO2 fertilization
Soybean suitability index; high input, rain-fed, CO2 fertilization
White potato suitability index; high input, rain-fed, CO2 fertilization
Sorghum suitability index; high input, rain-fed, CO2 fertilization
Sweet potato suitability index; high input, rain-fed, CO2 fertilization
Yam suitability index; high input, rain-fed, CO2 fertilization

Banana suitability index; high input, rain-fed, CO2 fertilization

Year-to-year volatility of daily temperature

50

(8.33¢-04)
—8.3e-04"*
(3.96¢-04)
2.31e-03***
(3.47¢-04)
—4.09¢-03
(2.79¢-03)
0.019***
(3.15¢-03)
—0.046**
(0.013)
0.514***
(0.035)
5.63e-04***
(2.16e-04)
—1.4e-03***
(2.97¢-04)
1.42¢-03***
(3.75¢-04)
—2.666-03"**
(3.83¢-04)
—0.381
(2.407)
0.627
(2.521)
—6.25¢-05"**
(9.71e-06)
5.83¢-06
(5.94¢-06)
—2.03e-06
(6.31e-06)
7.75¢-06
(8.42¢-06)
—2.52e-05"
(1.01e-05)
8.72e-05***
(8.8¢-06)
3.85¢-05***
(9.69¢-06)
6.76e-05***
(7.99¢-06)
5.65e-05***
(8.52¢-06)
—9.58¢-05"**
(9.75¢-06)
2.48e-05***
(8.35¢-06)
—0.2047**



(0.024)

R3., 0.567
Observations 237023

Note: LGP is the length of the growing period; LGPt=n is the temperature growing period,
which provides the number of days with mean temperature over n degrees Celsius. P/PET is
the ratio of precipitation to potential evapotranspiration. Goodness of fit measure is R% . .
*p<0.1; **p<0.05; ***p<0.01

B Variation Across Climate Models

As mentioned in the methodology, the main results in this paper rely on the ensemble mean
of five climate model forecasts. Here we discuss the variation in projections across these
forecasts in more detail. Appendix Figure shows the grid-level standard deviation of our
projected land quality measure across the five climate models included in this paper.

Figure B1: Changing AL(Q) and Population

(a) RCP 2.6

(b) RCP 4.5

0123
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(c) RCP 6.0

0123

(d) RCP 8.5

Note: Values are censored to 3 for visualization.

In general, the largest variation among models is in the northern part of the Northern
hemisphere as well as the Sahara Desert, although there are other, more localized areas of
disagreement as well in specific climate scenarios. Specifically, we see high variation in the
Western Ghats for RCP 6.0 and in Minas Gerais in Brazil for RCP 8.5. Both of these are
driven by unusually negative values from a single model (MIROC).

For each climate model we also calculate country-level projected changes in average
land quality over the period 2010-2100 under the RCP 8.5 scenario. These are presented in
Appendix Figure where Panel (a) uses area-weighted ALQ, while (b) uses population-
weighted ALQ. The two panels are similar. In general, these country level projections are
highly correlated among the different climate models and each is well correlated with the
ensemble mean. However, there are notably larger cross-models differences in projections
for countries that are expected to have improved average land quality in the north-east of
each graph, which also tend to be richer countries. Among countries where land quality is
expected to decline, there is more accord among the models.

While within-model uncertainty—either from parameters or initial conditions—must also
be acknowledged for each climate model, we are not equipped to address this additional
source of uncertainty@

28The IPCC Assessment Report 4 discusses these issues and the degree of uncertainty
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Figure B2: Comparison of changes to ALQ by Climate Model

(a) Area-weighted ALQ

Note: Each cell of this matrix depicts a scatterplot comparing the log difference in ALQ from 2010 to 2100
projected by two different models. The range of each axis is fixed at -1.65 to 2.67. The diagonal represents
the 45 degree line.

they impart in section 10.5. The confidence intervals reported for projections in IPCC
Assessment Report 5 are estimated by assuming each model’s point estimate is pulled from
one normal distribution with same mean and standard deviation.
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(b) 2010 Population-weighted ALQ
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-

Note: Each cell of this matrix depicts a scatterplot comparing the log difference in ALQ from 2010 to 2100
projected by two different models. The range of each axis is fixed at -1.71 to 2.05. The diagonal represents
the 45 degree line.

C Robustness of Measured AL() Changes to
Choice of Sample Countries.

One concern regarding our grid-cell regression is that countries may value the land charac-
teristics included in our regression differently depending on their stage of development. As
a robustness check, we replicate our main results on the effect of projected climate change
on land quality, focusing on a sample of poor countries. Specifically, we re-estimate our
grid-cell level Poisson regressions for measuring land quality on the sample of all countries
with below-median GDP per capita, and then use estimated coefficients to form projections
of the change in land quality due to climate change for this subsample of countries. The
logic behind this exercise is that the value of specific land characteristics in determining
economic outcomes may be a function of the level of a country’s development. Correspond-
ingly, the effect of a change in a particular characteristic will have a different effect in poor
vs. rich countries. For example, a reduction in rainfall in an already dry climate could be
devastating in a region reliant on smallholder agriculture, but in a developed region that
imports its food from elsewhere it would have only a marginal effect.
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The analysis above showed that it is generally in poor countries that climate change
is expected to have the most negative effects. Furthermore, poor countries generally have
fewer opportunities to substitute production away from climate-affected sectors, since they
are heavily reliant on agriculture and primarily consume domestically produced food. Fi-
nally, large fractions of the populations of poor countries face high transportation costs in
interacting with the broader world economy.

Figure C1: Log Land Quality, Countries with Below-Median GDP Only

(a) Historical Log Land Quality

Note: Data are censored at -6 and 4 and at -2 and 2 in the top and bottom panels, respectively, for

visualization. Plate Carrée projection.

Figure [C]] is analogous to Figure[l] except that it bases estimates on and looks only at
countries with current GDP per capita below the world median of $9,698. The first panel
shows estimated values for grid-cell level land quality using this new estimation sample,
while the second panel shows projected changes in land quality between 2010 and 2100
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under RCP 8.5. For the relevant countries, the (b) panels of Figures [I| and seem very
similar, with improvements in the Tibetan Plateau and parts of China and deterioration for
most Africa and South and South-East Asia.

Figure shows data on changes in land quality over the period 2010-2100 under RCP
8.5, comparing projections based on coefficients derived from the full sample (horizontal
axis) and from the sample of below-median income countries (vertical axis). The data are
aggregated to the country level using area weights. Doing this comparison using population-
weighted projections yields a very similar result.

Figure C2: Comparing Change of Baseline ALQ and Below-Median GDP ALQ

o
8_
[

100
|
[ ]

(/]

0
!

% Change in Low GDP ALQ, RCP 8.5
-50
1

T
-75 -50 0 100 300
% Change in Baseline ALQ, RCP 8.5

-75

Note: Figure plots the percent change in baseline ALQ from 2010 to 2100 in RCP 8.5 against that of ALQ
estimated using only countries with below-median GDP for the 78 countries with both values.

Overall, Figure shows that the predicted effects of climate change are fairly similar
using the two different approaches. There are 10 countries that are projected to have
decreased ALQ using the full sample estimates but increased ALQ using the below-median
sample estimates, and 3 countries that are expected to have the reverse. However in almost
all of these cases, the projected changes in ALQ are not far from zero. Most countries that
are projected to suffer severe declines in land quality under one measure are projected to
suffer similar declines under the other. The correspondence between the two projections
is fairly tight for the majority of countries that will experience deterioration, but more
scattered among those where land quality will improve.
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Given this result, we use projections of the effect of climate change based on full-sample
estimates for the main body of the paper.

D Mapping Land Quality Changes and Popu-
lation Growth into Income: Perfect Mobil-
ity with Unobserved Quality

This section provides figures and tables under the assumption of perfect mobility with
unobserved quality that are analogous to Section [6]

Figure D1: Country-Level Impacts from Climate Change: Perfect Mobility
with Unobserved Quality

Notes: Countries are binned by the difference between GDP per capita under RCP 8.5 and no climate
change under the assumption of perfect mobility with unobserved quality.
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Figure D2: Impacts from Climate Change and Population Growth
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Note: The Y axis plots the percentage impact of climate change in 2100 using RCP 8.5 and the U.N.
medium variant population projection in log scale assuming perfect mobility with unobserved quality. The
X axis plots log 2010 GDP. 156 countries are shown.
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Figure D3: Changing AL(Q) and Population
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Note: Figure compares the effect of the the second term in equation , which represents the impact of
population growth, against the first term, which represents the impact of climate change in 2100. Impacts
are calculated in percentages assuming perfect mobility with unobserved quality using RCP 8.5 and the
U.N. medium variant population projection; 164 countries are shown.
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Table D1: Impact of Climate Change and Population on GDP per Capita in
India

Climate Scenarios
% Change in pop. wt. QAA, 2010-2100
RCP 2.6 RCP 4.5 RCP 6.0/ RCP 8.5

-21.51 | -21.95 | -32.03 | -43.41

80th Percentile | 51.74 -18.91 -19.11 -23.51 -26.21

2|S| 5th Percentile | -28.14 | 7.50 7.24 1.44 2.11
o | Tt
32
§§20th Percentile | -14.44 || 0.63 0.38 -5.06 -8.39
54
> | Median 17.24 || -10.65 | -10.87 | -15.72 | -18.68
St

Q

Ty

=]

«©

<

@)

I

95th Percentile | 76.75 || -23.41 -23.60 -27.77 -30.32

Note: The numbers in bold in the first numerical column provide the percent change in population from
2010 to 2100 for each of the five population projections provided by the UNPD. The bold numbers in bold
in the first numerical row provide the percent change in ALQ from 2010 to 2100 corresponding to each
RCP. The 5x4 matrix provides the percent change to GDP per capita for each population
projection-climate scenario pair according to equation )
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Figure D4: Range of Impacts from Climate Change and Population for Se-
lected Countries

% Impacts from Climate Change and Population by Country
Perfect Mobility with Unmeasured Quality

Country
60-
Australia
Brazil
Canada
China
India
Malawi
Russia
Rwanda
United States

30-
Vietnam

% impact from population growth

-30-

30 0 30 60
% impact from climate change
Note: This plot depicts the minimum and maximum impacts from climate change and population across
different scenarios, represented by the first and second terms of equation (22)) as percent changes. The
contribution from impacts attributed to climate change come from four RCP scenarios, and scenarios for

log impacts from population comprise the 95th and 80th percent confidence intervals as well as the median
from UN population projections.

E Data Tables

E.1 Baseline
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Table E1: Changes in ALQ by RCP

Historical % Change in ALQ, 2010 - 2100
ALQ
Area weighted Pop. weighted

Country RCP | RCP | RCP | RCP | RCP | RCP | RCP | RCP

2.6 4.5 6.0 8.5 2.6 4.5 6.0 8.5
Afghanistan 0.20 12.66 2.20 3.97 -4.01 8.53 0.93 4.24 -1.99
Albania 2.62 -6.65 | -5.72 | -1.76 6.37 | -10.96 | -13.86 | -8.27 2.95
Algeria 0.33 -14.42 | -23.30 | -26.89 | -37.00 | -17.76 | -26.91 | -31.80 | -39.56
Angola 1.64 -23.71 | -31.66 | -36.47 | -51.76 | -27.20 | -21.33 | -27.33 | -39.28
Argentina 2.83 -4.80 | -10.71 | -12.28 | -20.62 | -8.12 | -14.07 | -15.27 | -22.47
Armenia 0.64 12.77 14.21 16.18 22.07 -4.41 | -10.06 | -5.54 -3.92
Australia 1.37 -10.16 | -11.53 | -12.84 | -26.03 | -16.66 | -16.60 | -15.10 | -32.67
Austria 1.79 18.87 | 36.73 | 45.66 71.67 13.49 29.54 | 34.73 | 48.14
Azerbaijan 2.67 1.10 -16.82 | -20.56 | -24.26 | -5.32 | -21.63 | -24.92 | -30.21
Bangladesh 3.30 -25.24 | -38.38 | -36.69 | -53.14 | -26.52 | -39.31 | -37.56 | -54.38
Belarus 3.48 40.24 | 66.05 | 74.89 | 83.90 | 35.54 | 57.48 | 65.23 | 75.17
Belgium 11.51 | -11.69 | -20.22 | -7.49 5.72 -17.07 | -26.49 | -11.58 1.25
Belize 1.87 | -24.13 | -24.73 | -25.70 | -35.83 | -25.74 | -28.60 | -28.04 | -38.66
Benin 1.05 -7.98 -6.90 | -16.29 | -32.64 | -12.76 | -14.61 | -25.66 | -40.04
Bhutan 0.24 1.92 8.78 5.54 11.85 0.66 -0.71 -7.28 | -12.73
Bolivia 0.87 -20.75 | -22.95 | -29.75 | -41.80 7.38 14.22 11.14 6.93
Bosnia and 2.13 12.31 23.06 | 33.69 24.53 11.63 22.84 | 33.99 20.78
Herzegovina
Botswana 0.50 -10.38 | -45.57 | -43.83 | -67.93 1.38 -42.43 | -37.76 | -70.79
Brazil 1.09 -21.05 | -25.19 | -31.78 | -48.26 | -19.08 | -19.79 | -27.25 | -43.71
Brunei 0.78 7.87 7.28 -7.48 | -30.41 | 9.71 10.28 | -5.76 | -31.57
Bulgaria 4.52 12.95 13.99 14.29 | -12.44 | 12.25 13.24 16.07 | -11.11
Burkina Faso 0.39 -4.50 | -8.79 | -940 | -26.96 | -5.39 | -11.13 | -10.99 | -30.20
Burundi 0.83 -23.37 | -35.97 | -41.45 | -56.88 | -22.86 | -35.47 | -41.30 | -56.46
Cambodia 1.35 -18.05 | -24.28 | -29.99 | -41.10 | -19.24 | -25.84 | -31.63 | -44.02
Cameroon 0.94 -8.29 -4.99 | -14.28 | -27.08 | -6.11 -2.78 | -11.22 | -21.72
Canada 0.17 84.04 | 172.92 | 218.37 | 396.32 6.21 31.41 43.60 73.34
Central African 0.48 -12.04 | -12.84 | -20.10 | -35.29 | -8.98 -9.26 | -17.49 | -33.75
Republic
Chad 0.11 1.90 0.76 2.36 -17.36 | -2.84 -2.47 -2.43 | -20.74
Chile 1.40 23.76 | 40.13 | 47.58 79.73 | 31.31 50.48 55.01 58.75
China 0.83 2.21 1.90 2.40 5.10 -4.42 -9.96 | -10.32 | -15.03
Colombia 0.59 -10.44 | -14.71 | -21.72 | -37.06 | -8.23 | -15.13 | -17.70 | -37.78
Costa Rica 0.79 -10.71 0.33 -10.26 | -14.07 | -11.16 1.07 -9.12 -3.71
Croatia 5.95 10.60 18.54 26.27 6.73 10.55 17.64 25.34 2.88
Cuba 3.69 -21.60 | -29.30 | -31.00 | -41.93 | -17.83 | -29.76 | -32.97 | -42.19
Czech Republic 3.31 43.26 64.75 74.88 | 109.24 | 36.02 54.63 62.14 88.14
Democratic 0.62 -11.08 | -12.50 | -22.33 | -41.80 | -13.05 | -16.37 | -24.93 | -44.19
Republic of the
Congo
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Denmark
Djibouti
Dominican
Republic
Ecuador
Egypt

El Salvador
Equatorial Guinea
Eritrea
Estonia
Ethiopia
Finland
France
French Guiana
Gabon
Gambia
Georgia
Germany
Ghana
Greece
Guatemala
Guinea
Guinea-Bissau
Guyana
Haiti
Honduras
Hong Kong
Hungary
Iceland
India
Indonesia
Iran

Iraq
Ireland
Israel

Italy

Ivory Coast
Japan
Jordan
Kazakhstan
Kenya
Kuwait
Kyrgyzstan
Laos
Latvia
Lebanon
Lesotho
Liberia

12.66
0.22
3.34

1.01
0.33
1.20
1.01
0.32
1.93
0.71
0.73
6.91
0.81
1.06
0.92
1.73
7.32
1.16
4.63
1.22
0.95
1.14
1.04
241
1.41
6.28
4.83
0.31
1.29
0.86
0.41
0.50
5.72
2.51
4.81
1.36
1.69
0.42
0.21
0.68
0.34
0.08
0.95
2.53
3.11
0.84
1.17

38.18
0.67
-26.29

-2.36
-22.70
-17.55

-2.25

-5.84
146.37
-11.29
141.49

-0.51

-3.43

-4.83
-16.38

4.30

19.67
-14.23

-4.04
-19.44
-17.52

-3.47
-12.30
-19.67
-23.83
-14.68

22.53
117.59
-15.96

0.26

7.64

2.06

16.00

-8.38

7.06
-16.23

15.74

-7.79
46.94

-4.37

-9.59
36.59
-19.53
137.77

-4.25
22.66

-4.58

55.29
-4.30
-31.59

-5.79
-33.99
-20.62

8.56
-18.33
258.29
-21.78
296.31

11.88

2.60

4.18
-24.34

-2.06
26.06
-12.81

-9.22
-22.09
-20.02
-15.80
-21.05
-26.28
-26.72
-20.56
36.61
225.73
-16.95

-4.08

-1.35

-8.56
25.85
-29.95

11.34
-11.99
23.99
-18.38
53.44
-12.21
-20.74
53.36
-31.76
212.52
-13.53
28.07

-6.37
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72.88
4.27
-33.26

-9.87
-38.24
-24.52

-0.42
-13.17
305.95
-25.52
396.01

8.83

-6.54

-4.54
-30.46

-3.50

28.95
-21.23

-5.16
-22.99
-25.95
-19.31
-23.75
-27.53
-29.79
-28.94
45.39
288.33
-29.89
-13.60

-1.88
-14.02
39.38
-33.57

11.54
-21.72
40.57
-19.16
44.21
-18.40
-28.12
53.62
-29.36
244.53
-14.03
38.54
-16.97

82.73
4.50
-44.36

-25.19
-52.84
-36.02
-8.70
-23.71
369.91
-39.89
655.08
25.08
-8.69
-19.61
-46.05
-7.69
45.28
-35.34
-17.54
-31.60
-36.80
-36.79
-39.89
-39.34
-38.56
-42.43
19.16
501.84
-38.45
-34.74
-6.41
-28.68
42.15
-58.41
-1.82
-39.23
63.54
-32.30
61.82
-37.31
-38.24
73.66
-42.65
289.59
-28.76
19.44
-26.96

47.40
5.60
-28.39

-7.35
-29.18
-16.92

-1.28

-0.98
117.24

-6.66

99.39

3.30

-2.56

-5.73
-18.17

8.80

11.80
-11.33

-2.19
-20.18
-17.22

-3.15
-16.52
-18.49
-22.89
-15.27

24.70
31.87
-21.51

-2.43

5.46

-1.79

13.74

1.50

11.26
-15.09

-2.30

-5.99
36.37
-16.44

-5.98
26.74
-21.59
97.54

-8.47
26.83

-4.31

66.17
1.55
-36.17

-11.26
-40.92
-17.84
7.06
-20.18
216.25
-19.81
192.27
14.86
2.27
3.06
-27.19
0.21
16.04
-12.18
-12.47
-20.26
-18.68
-16.31
-28.08
-24.86
-28.91
-21.31
38.53
94.69
-21.95
-6.62
0.44
-11.63
20.92
-24.91
16.43
-11.29
-6.40
-20.67
44.57
-26.38
-18.94
38.87
-33.74
153.33
-18.56
29.64
-4.76

83.65
11.47
-38.37

-14.00
-45.43
-21.90
-2.15
-13.66
254.31
-23.07
268.64
9.42
-6.18
-6.54
-32.01
-1.15
19.33
-22.82
-10.18
-22.23
-25.62
-19.72
-28.44
-28.14
-32.13
-29.45
46.75
110.86
-32.03
-17.49
0.28
-17.84
29.43
-29.13
15.80
-18.64
-0.70
-22.51
37.23
-31.75
-25.36
32.53
-30.91
179.25
-19.31
36.27
-14.72

95.88
3.55
-51.75

-28.00
-58.95
-34.05
-13.15
-28.87
309.32
-41.77
369.08
27.89
-10.36
-17.60
-51.46
-12.88
33.06
-41.18
-27.13
-31.39
-36.12
-37.46
-46.10
-40.93
-42.63
-43.17
22.55
193.88
-43.41
-41.15
1.84
-29.93
28.97
-97.83
-4.72
-39.32
6.65
-42.42
54.55
-49.38
-36.16
42.40
-44.08
207.18
-35.99
-4.24
-24.44



Libya
Liechtenstein
Lithuania
Luxembourg
Macedonia
Madagascar
Malawi
Malaysia
Mali
Mauritania
Mexico
Moldova
Mongolia
Montenegro
Morocco
Mozambique
Myanmar
Namibia
Nepal
Netherlands
New Zealand
Nicaragua
Niger
Nigeria
North Korea
Norway
Oman
Pakistan
Palestine
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Portugal
Qatar
Republic of Congo
Romania
Russia
Rwanda
Saudi Arabia
Senegal
Serbia,

Sierra Leone
Singapore
Slovakia
Slovenia

0.30
0.06
3.13
4.25
1.88
2.51
1.67
0.81
0.16
0.07
1.55
4.15
0.06
1.47
1.34
2.01
1.55
0.70
0.69
21.85
5.86
1.28
0.06
0.84
1.08
0.26
0.36
0.43
2.13
1.23
0.83
1.44
0.69
1.60
6.26
8.33
0.45
1.07
4.44
0.25
0.78
0.18
0.47
3.59
1.00
3.20
2.45
1.82

-18.70
13.03
99.00

9.66
7.34
-13.71
-11.84
0.62
-3.64

-12.69

-13.28
36.40
67.22

-10.86

-21.71

-16.04

-23.25

-21.70

-13.15
-4.89
19.03

-19.70
14.12
-8.36
38.59
67.71

-24.34
-7.42

-10.22
-8.47
-6.99

-31.93
-3.31

-10.95
39.91

-17.02

-19.86
-0.62
21.25
95.56

-18.63

-12.47

-12.88
17.08

-21.22

6.10
25.32
7.71

-28.78
107.71
141.85
5.37
10.61
-20.70
-34.67
-0.90
-9.37
-25.98
-23.15
61.04
101.77
-8.59
-41.21
-32.87
-33.05
-41.58
-10.83
-12.54
34.88
-7.26
11.34
-9.03
60.81
161.59
-35.95
-20.95
-24.84
-2.03
-12.76
-34.80
-4.62
-13.74
53.88
-21.75
-27.71
5.77
23.88
162.31
-33.58
-23.84
-21.55
27.30
-24.62
13.90
43.25
32.15
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-33.64
133.89
160.15
-2.25
18.55
-25.13
-39.91
-9.44
-11.74
-26.18
-26.17
99.77
116.69
-7.73
-45.55
-39.06
-29.56
-42.47
-16.07
-6.57
55.91
-17.85
15.64
-16.66
64.10
209.68
-36.74
-20.78
-27.85
-10.35
-25.19
-45.84
-9.59
-23.06
58.44
-22.30
-33.76
-4.82
27.55
189.40
-40.18
-24.89
-23.66
40.67
-31.26
3.41
44.94
42.28

-48.55
322.65
197.44
2.33
2.68
-40.20
-55.02
-25.48
-32.09
-45.04
-42.69
24.09
171.82
10.94
-65.38
-57.86
-42.98
-61.97
-28.92
18.96
84.53
-29.70
-6.71
-29.71
89.44
302.46
-47.83
-31.05
-49.68
-14.59
-44.16
-71.12
-16.72
-35.02
63.11
-38.39
-45.24
-21.83
6.41
300.35
-54.92
-39.32
-40.59
5.30
-36.84
-14.10
54.61
49.33

-18.85
13.03
82.13

3.76
8.61
-7.28
-11.38
0.10
-5.69
-6.63

-14.79
32.28
96.50

-11.30

-25.37

-10.70

-18.54

-16.69

-17.56
-9.55
-0.60

-19.84
14.94
-9.21
34.96
49.72

-16.34

-15.43
-7.07
-3.62

-10.59

-22.21

-14.66

-15.07
39.09

-16.73

-20.47

1.41
17.97
58.08

-18.14
-7.27

-20.86
16.49

-20.64

6.10
23.07
5.50

-32.11
107.71
117.18
-5.57
11.92
-13.56
-35.32
-0.08
-9.06
-18.74
-11.75
59.63
152.21
-10.01
-45.24
-28.34
-29.11
-38.70
-18.25
-18.76
17.52
-21.17
18.47
-10.53
52.18
122.05
-26.18
-32.97
-20.95
5.66
-18.12
-24.46
-17.58
-18.81
53.12
-21.54
-28.85
2.77
19.21
87.71
-34.64
-18.97
-31.89
26.02
-23.38
13.90
39.64
30.64

-40.07
133.89
139.93
-10.64
20.88
-15.89
-40.43
-9.79
-13.01
-14.18
-18.69
59.24
192.73
-7.93
-49.11
-33.80
-24.27
-39.46
-23.31
-13.34
37.22
-26.85
22.18
-18.96
57.56
155.28
-29.00
-32.62
-23.83
-4.87
-28.09
-41.55
-17.98
-27.63
57.28
-22.04
-34.63
-3.99
20.43
100.10
-41.29
-18.85
-34.42
41.39
-29.20
3.41
40.31
40.06

-55.81
322.65
169.19
-7.07
5.04
-31.69
-55.70
-30.10
-33.41
-34.32
-39.91
22.97
280.93
8.42
-72.71
-54.15
-35.61
-62.06
-39.41
13.69
33.34
-40.47
-9.62
-33.37
71.17
163.36
-34.70
-42.49
-46.09
-11.53
-46.61
-66.91
-21.71
-39.82
63.18
-38.23
-46.62
-22.19
-1.67
126.85
-55.74
-32.26
-49.63
1.05
-35.28
-14.10
48.91
43.87



Somalia
South Africa
South Korea
Spain

Sri Lanka
Sudan
Suriname
Swaziland
Sweden
Switzerland
Syria
Taiwan
Tajikistan
Tanzania,
Thailand
Timor-Leste
Togo
Trinidad and
Tobago
Tunisia,
Turkey
Turkmenistan
Uganda
Ukraine
United Arab
Emirates
United Kingdom
United States
Uruguay
Uzbekistan
Venezuela
Vietnam
Yemen
Zambia
Zimbabwe

0.24
1.94
1.98
3.69
1.73
0.17
1.00
2.99
1.41
0.68
0.86
2.27
0.19
1.31
1.14
1.71
1.15
3.23

1.88
1.79
0.34
0.58
3.93
0.25

7.24
1.44
9.18
0.27
1.05
1.62
0.35
1.02
1.45

-14.47
-2.34
38.27
-5.03

-13.23
-7.92

-10.26
-8.37
74.85
17.44
-9.96
-2.79
13.41

-13.44

-22.98

-12.36
-9.05

-23.62

-9.16
1.46
-9.70
-16.93
36.48
-7.39

14.91
3.68
-33.79
-1.44
-19.21
-17.34
-20.58
-21.66
-20.98

-27.31
-20.83
49.98
-10.64
-14.75
-10.31
-14.26
-25.09
152.91
61.11
-17.52
-12.19
20.27
-24.96
-30.12
-19.37
-9.58
-19.75

-15.36
-4.59
-16.59
-15.99
44.77
-16.75

19.93
7.27
-44.49
0.38
-24.06
-24.88
-33.28
-37.41
-45.78

-24.64
-21.23
62.82
-10.42
-18.24
-7.70
-22.50
-26.40
198.11
73.21
-16.34
-14.19
25.30
-31.30
-32.11
-21.90
-20.04
-28.62

-21.14
-1.42
-20.96
-25.49
51.86
-21.86

29.63
7.55
-47.91
-1.51
-30.82
-26.41
-31.71
-42.45
-49.16

-30.21
-49.00
59.53
-23.36
-30.00
-24.58
-28.94
-49.61
288.18
114.62
-23.82
-21.02
39.44
-46.98
-42.96
-35.23
-30.99
-44.18

-30.13
-13.02
-27.45
-37.44
34.42
-35.54

40.61

14.69
-58.09
-1.09
-49.01
-39.90
-42.65
-59.46
-69.38

-14.70
-11.61
43.16
-0.78
-16.01
-6.30
-16.41
-10.20
64.35
14.66
-12.82
-5.67
7.97
-7.97
-24.18
-12.30
-8.22
-26.20

-18.58
-9.21
-4.60

-21.07
38.35
-8.35

9.81
-7.35
-34.42
4.60
-20.79
-19.02
-4.42
-20.83
-26.68

-27.54
-30.52
54.42
-6.51
-18.17
-9.65
-20.77
-26.13
124.74
55.69
-21.51
-16.32
14.27
-16.71
-27.88
-19.81
-9.22
-22.96

-25.31
-13.61
-9.67
-21.40
44.17
-22.46

13.25
-3.65
-50.40
10.56
-29.67
-28.17
-17.92
-37.81
-51.67

-25.22
-31.55
67.07
-6.22
-20.78
-5.49
-29.28
-28.48
160.36
67.86
-17.69
-17.09
18.32
-22.79
-34.84
-22.95
-20.57
-31.53

-31.06
-8.99
-14.36
-29.95
50.16
-29.33

19.18
-3.82
-50.56
9.82
-35.57
-29.63
-13.33
-42.71
-55.17

-36.04
-54.28
66.58

-23.62
-31.60
-21.51
-34.65
-50.08
191.13
104.00
-23.75
-26.93
30.53

-38.49
-44.84
-35.46
-33.86
-44.82

-39.78
-16.04
-21.93
-41.97
32.99
-41.33

28.99
-4.80
-60.20
16.45
-56.49
-44.43
-24.37
-59.85
-71.92
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Table E3: Variance Decomposition of Impact Estimates

Variance 2 x Covariance

é % X L |[Offset| X, L | X, Offset|L, Offset
0 9%10.150(0.039(0.059| 0.001 [0.037| -0.000 0.014
1 %10.148{0.039(0.059| 0.001 {0.037| -0.000 0.012
2 %10.146|0.039(0.059| 0.001 {0.037| -0.000 0.011

E.2 Interactive Country-Level Data Tables

https://bjang.shinyapps.io/appendix_countries/
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