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Sequential Control Underlies Robust Ramping Dynamics in
the Rostrolateral Prefrontal Cortex
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'Department of Neuroscience, 2Department of Psychiatry and Human Behavior, 3Carney Institute for Brain Science, “Department of Cognitive, Linguistic,
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An essential human skill is our capacity to monitor and execute a sequence of tasks in the service of an overarching goal. Such a sequence
can be as mundane as making a cup of coffee or as complex as flying a fighter plane. Previously, we showed that, during sequential control,
the rostrolateral prefrontal cortex (RLPFC) exhibits activation that ramps steadily through the sequence and is necessary for sequential
task execution using fMRI in humans (Desrochers et al., 2015). It remains unknown what computations may underlie this ramping
dynamic. Across two independent fMRI experiments, we manipulated three features that were unique to the sequential control task to
determine whether and how they modulated ramping activity in the RLPFC: (1) sequence position uncertainty, (2) sequential monitoring
without external position cues (i.e., from memory), and (3) sequential monitoring without multilevel decision making (i.e., task execu-
tion). We replicated the ramping activation in RLPFC and found it to be remarkably robust regardless of the level of task abstraction or
engagement of memory functions. Therefore, these results both replicate and extend previous findings regarding the function of the
RLPFC. They suggest that sequential control processes are integral to the dynamics of RLPFC activity. Advancing knowledge of the neural

bases of sequential control is crucial for our understanding of the sequential processes that are necessary for daily living.
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ignificance Statement

daily life.

We perform sequences of tasks every day, but little is known about how they are controlled in the brain. Previously we found that
ramping activity in the rostrolateral prefrontal cortex (RLPFC) was necessary to perform a sequence of tasks. We designed two
independent fMRI experiments in human participants to determine which features of the previous sequential task potentially
engaged ramping in the RLPFC. We found that any demand to monitor a sequence of state transitions consistently elicited
ramping in the RLPFC, regardless of the level of the decisions made at each step in the sequence or engagement of memory
functions. These results provide a framework for understanding RLPFC function during sequential control, and consequently,
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Introduction
Whether it’s making your morning cup of coffee or cooking a
complex 10-course meal, sequential tasks are common in our
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daily lives. Such sequences require not only maintaining the end
goal (make coffee), but also monitoring and performing multiple
subgoals (e.g., grind beans, pour water). The rostrolateral pre-
frontal cortex (RLPFC), also referred to as (lateral) frontal polar
cortex (Brodmann’s area 10) or anterior prefrontal cortex
(aPFC), has been implicated in many tasks that share processing
demands with sequential control tasks. The functions implicated
in these nonsequential tasks include managing abstract contexts
(Badre and D’Esposito, 2007), cognitive tracking of multiple
items or “branching” (Koechlin et al., 1999; Chahine et al., 2015),
integration of multiple information sources (Nee et al., 2014),
and temporal abstraction (Bahlmann et al., 2015b; Nee and
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D’Esposito, 2016). Although these tasks were not explicitly se-
quential, these functional observations led to the general hypoth-
esis that RLPFC might be necessary for sequential cognitive
control. Desrochers et al. (2015) tested this hypothesis directly in
a sequential task. When participants were asked to repeatedly
perform four-item sequences of simple tasks (e.g., color, shape,
shape, color), fMRI activation in the RLPFC increased progres-
sively (“ramped”) from the first to last item in the sequence.
Further, two, separate transcranial magnetic stimulation (TMS)
experiments using the same task showed that stimulating the
RLPEC, and not other frontal control regions, produced an in-
creasing number of errors as the sequence progressed, mirroring
the observed ramping activation. These results showed that
RLPFC is necessary for intact performance of a sequential control
task, particularly near the terminal boundary of a sequence.

Because ramping in RLPFC had not been previously observed
in nonsequential tasks, a key open question concerns what aspect
of this sequential control task drove the ramping activity dynamic
in RLPFC. Understanding the conditions needed for this dy-
namic can provide insight into the functioning of the RLPFC. The
Desrochers et al. (2015) task included at least four unique fea-
tures relative to prior nonsequential tasks. First and foremost, the
task was sequential. There was a series of transitions through task
“states” that had a defined beginning, end, and directed order
throughout. Second, there were no task or positional cues beyond
the initial instruction screen. Therefore, the current sequence
position had to be monitored internally to perform the task se-
quence correctly. Third, also following from the absence of exter-
nal cues, uncertainty regarding current sequence position could
grow as one progressed through the sequence to be maximal at
the end of the sequence. Finally, the task required managing at
least two levels of context-dependent decisions simultaneously:
both the task-level choice (i.e., color or shape task) and the
stimulus-level categorization.

We hypothesized that only the sequential demands of the task
were critical for the ramping dynamic observed in RLPFC. We
therefore designed experiments to manipulate the other unique
elements of the Desrochers et al. (2015) task and observe whether
doing so modulated the ramping dynamic in RLPFC. Specifically,
across two separate human fMRI experiments involving a se-
quential task, we manipulated uncertainty, the levels of context
required, and the availability of external cues to sequence posi-
tion. In the first experiment, we tested whether providing clues to
the position within the sequence would manipulate positional
uncertainty and so break the potential correlation between in-
creasing uncertainty through the sequence and sequence posi-
tion. In the second experiment, we removed the two-level
decision and only required monitoring of the sequence. Further,
we manipulated whether the sequence must be monitored from
memory to engage ramping in the RLPFC.

Across these experiments, we replicated the ramping pattern
in RLPFC in each sequential task. Importantly, however, we pro-
vide novel evidence that ramping in the RLPFC was robust to all
of the manipulations that we tested as long as a demand was in
place to monitor a sequence of state changes. These results fur-
ther our understanding of the functional role of RLPFC in se-
quential tasks and therefore daily human behaviors.

Materials and Methods

Experimental design and statistical analysis

A total of 27 people participated in Experiment 1. One participant was
excluded from analyses because of excessive movement (>3 mm multi-
ple times within individual runs) in the scanner, resulting in 26 (19
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female) right-handed adults (ages 19—30, mean 22) being included in
final analyses for Experiment 1. A total of 50 right-handed adults initially
participated in Experiment 2. Before analysis, 10 participants were ex-
cluded: two participants were excluded for excessive movement in the
scanner (>3 mm multiple times within individual runs), two partici-
pants were excluded for sleeping (one completed zero runs of the task;
the other completed only two runs with >90% error rate), and the re-
maining six participants were excluded due to the lack of data available to
produce reliable estimates of brain activation and/or >30% error rate on
the task. Error rate and available data for analysis are related because only
correct blocks were analyzed. The criteria for lack of data were as follows.
Runs were only included for analysis if they contained more than two
complete, correctly monitored 4-item sequences for each condition (>8
trials). If this criterion resulted in the exclusion of a single run for a
participant, then that participant was included (3 participants with single
runs were excluded). If, however, this criterion resulted in more than one
run being excluded, then the participant was excluded from analysis. The
remaining 40 (25 female) right-handed adults (ages 1829, mean 21)
were included in all analyses for Experiment 2. All participants were
screened for CNS affecting drugs or conditions, contraindications for
MRI, and had normal or corrected-to-normal vision. All behavioral test-
ing and scanning was conducted according to procedures approved by
the Human Research Protections Office of Brown University. All partic-
ipants gave informed, written consent and were compensated for their
participation.

Statistical design for the behavioral analyses and fMRI analyses can be
found for each experiment under the appropriate subheading below.

Experiment 1

Behavioral procedure

The core behavioral task, timing, and block structure remain the same as
in Desrochers et al. (2015) and are briefly summarized here. Experiment
control scripts were programed using the Psychophysics Toolbox (RRID:
SCR_002881) in MATLAB (MathWorks, RRID:SCR_001622) and were
displayed using an Apple computer running Mac OSX. On each trial,
participants classified a simple shape according to either its color or
shape by pressing one of four response buttons (MR compatible four-
button response pad, Mag Design and Engineering, RRID:SCR_009600)
within 4 s. The buttons corresponded to “red,” “blue,” “circle,” or
“square” and their specific assignment (i.e., which finger pressed each
response) was counterbalanced across participants. After the participant
responded, the fixation cross was shown and the jittered intertrial inter-
val began (0.25-8 s, mean 2 s).

Participants repeatedly performed four-item sequences of color and
shape judgments for each block of 2427 trials. The sequence was dis-
played (4 s) at the beginning of each block (e.g., the words “color,”
“color,” “shape,” “shape”). As in Desrochers et al. (2015), participants
performed two kinds of sequences: simple and complex. Simple se-
quences contained only one internal task switch (e.g., color, color, shape,
shape), whereas complex sequences contained two internal task switches
(e.g., color, shape, shape, color). Importantly, the overall number of
switches and repeats were balanced between blocks of simple and com-
plex sequences because the first position in a simple sequence was also a
task switch when the sequence was repeated. Each block could terminate
on any of the four positions in the sequences and participants were
asked to report which position in the sequence they would next per-
form to encourage them to perform the judgments as a sequence.
Each of the six total runs consisted of four blocks, two simple and two
complex, with the order of color and shape judgments within each
sequence counterbalanced.

The key difference between the Desrochers et al. (2015) task and Ex-
periment 1 was the addition of “clue” trials that provided additional
information to participants and thus potentially manipulated the uncer-
tainty about sequence position. Clue trials disambiguated which judg-
ment (shape or color) should be performed by presenting a stimulus
where one of the judgments would require an answer that was not avail-
able. For example, if a green square was presented, then participants
should indicate the shape of the stimulus because “green” was not an
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available response. Green and triangle were used as clues in the color and
shape dimension, respectively.

Clue trials comprised ~25% of the trials within a block. The first four
trials (first sequence iteration) in a block were always excluded from
analysis and therefore they never contained clues. The variable 0-3 ad-
ditional trials at the end of the block also never contained clues. There-
fore, of the minimum 20 trials that were used in analysis for each block,
approximately six trials were clue trials. Clue trials were randomly dis-
tributed across positions 2—4 in each sequence; the first position in each
sequence was never a clue trial because we assume that the first position
is defined by the participant and so is not subject to uncertainty about
sequence position (see Desrochers et al., 2015 for discussion).

We took a hidden Markov model approach to predict the uncertainty
about the position in the sequence for a subject’s particular series of clue
and no clue trials. Specifically, we assumed that participants were track-
ing the latent variable “order,” which corresponds to sequence position
and conditioned an inference about the current task. The inferred cur-
rent task then itself constrained the chosen action (conditioned on the
observed stimulus). We specify this graphical model here:

Let O, in {1:4} be the latent random variable describing the trial order
at £. We assume that participants track uncertainty about the current trial
t order according to the following:

P(O,, =i)= > P(O,;, =i0,=j)P(O,=j)

=14

Where P(O,., = i|O, = j) = Tr;; defines a transition matrix describ-
ing the process by which participants keep track of position/order. We
assume that, in the absence of a clue at trial t + 1, participants are equally
likely to accidentally skip or repeat a count in their tracking of order as
captured by parameter 7, but that there is also a small likelihood ¢ that
they will transition to any of the three possible wrong orders. This is
formalized by a transition matrix as follows:

1—e €/3 €/3 ¢€/3
el/3 l1—e &€/3 ¢&/3
e/3 €/3 1—¢ ¢&/3
e/3 €/3 €/3 1—e

Tr = Noise X Count =

/2 1-7 7/2 0

0 T/2 1-7 7/2
/2 0 /2 1-7
1-7 7/2 0 T/2

X

In the presence of a clue, we assume that the transition probability matrix
Count’s values are collapsed to 0 for order values O, + 1 that do not
respect the current cue and that Count is accordingly renormalized. This
is mathematically equivalent to inferring through Bayes rule that some
order values are impossible conditioned on observing a cue.

Next, we assume that participants’ choice at time ¢ is conditioned on
their inferred order O, and stimulus s, and is n-greedy, with a bias b for
within task errors, specifically:

P(ar = i|5,,O,)

=1-—m ifi is the correct action for the task specified by O, and s,

=mnxb ifi isthe other correct action for the task specified by O,

=mnx(1 —b)/2 for other actions i

This graphical model captures our assumptions of how participants track
position order to make choices and their uncertainty about the current
position. It allows us to infer participants’ uncertainty from their behav-
ior (see “Behavioral analysis” section).

Finally, to optimize the design for fMRI, multiple clue trial distribu-
tions were generated for a block and then the correlation between posi-
tion and a measure of position uncertainty was calculated for each
potential clue trial distribution. Uncertainty was operationalized as the
entropy over the current position’s probability. Clue trial distributions in
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which the trial-by-trial uncertainty values were least correlated with po-
sition itself were chosen for inclusion in the scanning experiment.

Behavioral analysis

As in Desrochers et al. (2015), the following trials were excluded from
analysis: the first four trials of every block (96 trials per participant), trials
with reaction times (RTs) <100 ms (zero trials across all participants),
and trials in which the participant had “lost” their place in the sequence
(=2 trials incorrect in a 4-trial moving window, terminated with 4 cor-
rect trials; mean 1.7% of trials per participant). RT analyses excluded
error trials. Analyses were collapsed across variants within a sequence
type (e.g., color, color, shape, shape; and shape, shape, color, color for
simple sequences). For some error rate analyses, differences in baseline
chance levels between clue (50% chance) and no clue (25% chance) were
accounted for by dividing error rates by two and four, respectively.
Repeated-measures ANOVA (RM-ANOVA) and paired ¢ tests were used
to assess differences where applicable.

We used computational modeling to infer from subjects’ trial-by-trial
choices their uncertainty about the task sequence (see Fig. 1d-g). For
these analyses, we used all trials and did not exclude trials due to error,
RT, or being “lost.” To fit the model to the data, we used the Viterbi
algorithm (Viterbi, 1967) to identify the most likely sequence of latent
orders for a given block conditioned on parameters. We used this se-
quence to compute the log likelihood of the observed sequence of
choices. We then used standard model-fitting techniques to identify pa-
rameters that explained the participants’ choices best: specifically, we
used MATLAB’s fmincon procedure to optimize parameters (7, &, 1), and
b) under constraints in [0, 1]*. Fit parameter values supported the be-
havioral results that participants performed well in the task: all noise
parameters were very low, with mean 7 = 0.003 (range [0 0.01]), ¢ =
0.001 ([0 0.02]), m = 0.01 ([0 0.06]); and the bias parameter favored
order knowledge (b = 0.7, [0 1]). The model captured the data well:
average likelihood per trial was 0.85 (SD = 0.09, range [0.52—0.99]). The
fit parameters and path inferred by Viterbi algorithm over orders (O,)
were used to compute the sequence of P(O,), t = 1:T for each block. At
each trial, we extracted the entropy of the probability over the possible
orders.

fMRI procedure

A Siemens 3T Trio Tim MRI system with a 32-channel head coil was used
for whole-brain imaging. Anatomical scans consisted of a T1-MPRAGE
(repetition time, TR, 2200 ms; echo time, TE, 1.54, 3.36, 5.18, 7.01 ms;
flip angle, 7°; 144 sagittal slices; 1.2 X 1.2 X 1.2 mm) and a T1 in-plane
(TR, 350 ms; TE 2.5 ms; flip angle, 70° 38 interleaved transversal slices;
1.5 X 1.5 X 3 mm). Functional images were acquired using a fat-
saturated gradient-echo echoplanar sequence (TR, 2 s; TE, 28 ms; flip
angle, 90°% 38 interleaved axial slices; 3 X 3 X 3 mm). A mean of 209
functional scans were acquired per run.

fMRI data analysis

As stated previously, one participant was excluded from analysis because
of excessive movement (>3 mm, multiple times within individual runs)
in the scanner. Analyses were performed using SPM 12 (http://www.fil.
ion.ucl.ac.uk/spm, RRID:SCR_007037). Data were slice time and motion
corrected, normalized to Montreal Neurological Institute (MNI) stereo-
taxic space, and smoothed (8 mm isotropic Gaussian kernel).

Within-subject statistical models were constructed under the assump-
tions of the general linear model (GLM). For all models, regressors were
generated by convolving with the canonical hemodynamic response
function and included the temporal derivative. The following were in-
cluded as nuisance regressors for all participants in all models: first four
trials in a block, error trials, “lost” trials (see “Behavioral analysis” sec-
tion), the six motion parameters (translation and rotation), linear drift
over the course of each run, block instructions, and sequence position
questions.

Regressors were estimated using a subject-specific fixed-effects model.
Whole-brain estimates of subject-specific effects were entered into
second-level analyses that treated subject as a random effect. One-sample
t tests (contrast value vs zero, p < 0.001) were used to assess significance.
These effects were corrected for multiple comparisons when examining
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whole-brain group voxelwise effects using extent thresholds at the cluster
level to yield familywise error correction (p < 0.05). Group contrasts
were rendered on an inflated MNI canonical brain using Caret (Van
Essen et al., 2001; RRID:SCR_006260).

Six GLMs were applied to the data as follows:

Onsets model. To assess the univariate effects of clue trials, we con-
structed a model using instantaneous stimulus onset regressors based on
the crossing of sequence type (simple/complex) X sequence position
(1-4) X clue (clue/no clue).

Parametric sequence position ramp model. This model tests for ramping
activation that increased with sequence position as in Desrochers et al.
(2015). Onset regressors were constructed by crossing sequence type
(simple/complex) X clue (clue/no clue). A parametric regressor of se-
quence position (1-4) was added as a modulator of trial onsets for all
positions (i.e., separate regressors were not constructed for each position
as in the onsets model above). The temporal derivatives of the parametric
regressors were also included in the model. Parametric regressors are
implemented hierarchically in the GLM; therefore, variance explained by
the parametric regressors is above and beyond what can be explained by
the onsets alone. Note that clue trials did not exist at position 1, so the
parametric sequence position values would only be 2, 3, or 4 for clue
trials.

Parametric increasing and decreasing sequence position ramp model.
This model is to provide a contrast for the solo increasing parametric
modulator. The model was constructed in the same way as the para-
metric sequence position ramp model with the addition of a second
parametric regressor that decreased as the four positions in the sequence
increased (4, 3, 2, 1). We did not orthogonalize the increasing and de-
creasing parametric regressors to allow them to compete for variance.

Parametric sequence position ramp model excluding position 1. This
model was used as a control. It was constructed the same as the paramet-
ric sequence position ramp model above, but with position 1 only mod-
eled as an onset (without a parametric) for both clue and no clue trials.

Sustain versus unique ramp model. To directly assess whether variance
could be better accounted for by sustained or ramping activation, we
constructed a pair of models to allow sustain and ramp regressors to
compete for variance within the same model. These models contained
sustain and ramp regressors (separated for each sequence type and clue
presence) in addition to a single regressor for the stimulus onsets at all
positions. These regressors started at the stimulus onset of each sequence
position 1 and ended at the stimulus offset (response) of sequence posi-
tion 4. Because the sustain and ramp functions share variance, we sought
to identify what variance was uniquely explained by each function. This
first of the pair of models sought to determine the variance uniquely
explained by the ramp regressor. We orthogonalized (spm_orth.m) the
sustain and ramp regressors within each sequence type to remove the
shared variance from the ramp regressors (and assign it to the sustain
regressors).

Unique:sustain versus ramp model. This second model of the pair
sought to identify any variance uniquely explained by the Sustain regres-
sor (independently of Ramp). Specifically, we removed the shared vari-
ance from the sustain regressor (and assigned it to the ramp regressor).
All other aspects of the model were the same as the sustain versus unique
ramp model above.

Parametric task entropy model:. This model tests for variance that can
be explained by uncertainty, operationalized as entropy obtained from
the hidden Markov model. As in the parametric sequence position ramp
model, onset regressors were constructed by crossing sequence type
(simple/complex) X clue (clue/no clue). Entropy values from the behav-
ioral model fits were added parametrically as a modulator of trial onsets
for all positions.

Regions of interest (ROIs) were constructed from clusters of activation
in the parametric ramp > baseline contrast in Desrochers et al. (2015)
and from clusters of activation in the same contrast in the present study.
The ROI defined by the cluster of activation in the RLPFC for the para-
metric ramp > baseline contrast in Desrochers et al. (2015) will be re-
ferred to as the “D15” ROI (center of mass x, y, z = —28, 56, 4; volume
1432 mm; max/min x = —38/—8, y = 46/62, z = —10/18). The RLPFC
cluster in the parametric ramp > baseline contrast, defined across con-
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ditions and regardless of the sequence type and whether the trial con-
tained a clue, in the parametric sequence position ramp model for
Experiment 1 will be referred to as the “clue” ROI (center of mass x, y, z =
—29, 50, 21; volume 2160 mm; max/min x = —34/—4, y = 38/60, z =
12/30). To compare ramping activation across models and regions, the
mean beta values for the parametric ramp regressor across all voxels in
the ROI (taken using MarsBar SPM toolbox, RRID:SCR_009605) were
compared using RM-ANOVA or paired t tests where appropriate. The
time course of activity across positions was extracted using an 8-time
point (16 s) finite impulse response (FIR) model (MarsBar, RRID:
SCR_009605) that contained the same regressors as the onset model.

Experiment 2

Behavioral procedure

For the sequence monitoring task in Experiment 2, participants had to
monitor a repeated series of four stimuli (based on Allen et al., 2014). On
each trial, an image was presented for 1 s. The participant released the
response button if the item was out of sequence (OutSeq); otherwise, the
item was considered in sequence (InSeq) and the response button was
continuously held. Stimuli were serially presented in blocks that were
further divided into miniblocks.

Each miniblock was as follows. A solid color screen was presented at
the beginning of the block as a “get ready” signal when the participant
had to start holding the response button to progress (minimum 0.5 s).
The participants continued to hold the response button during the in-
struction period, during which the four items to be monitored were
sequentially presented (0.75 s each) in the correct order. The identity of
the stimuli that followed the instruction stimuli differed according to
sequence type: visible or occluded. For the visible sequence type, all of the
stimuli that followed were members of the original instruction stimuli.
During occluded trials, a single placeholder image that was constant
throughout the entire experiment was presented in place of items from
the sequence. Participants had to monitor the sequence as if the in-
structed stimuli were still occurring, but were “hidden” by the place-
holder image.

After each stimulus presentation, a fixation cross was shown during
the jittered intertrial interval (0.25-8 s, mean 2 s). Visible miniblocks
terminated with an OutSeq item that was a member of the instruction set
presented at the incorrect position (e.g., stimulus instructed at position 1
was shown at position 3). Occluded miniblocks ended with the presen-
tation of an instruction set stimulus (rather than the occluder image) that
was either InSeq (participant had to hold) or OutSeq (release) with a 50%
probability. A large check (correct) or “X” (error) was shown (0.5 s) as
feedback after the last stimulus. Each miniblock could end with equal
probability on any of the four positions in the sequence. If the participant
released the button incorrectly to an InSeq item prematurely, then the
miniblock would proceed immediately to feedback and the rest of the
stimuli in the miniblock would not be displayed.

Blocks contained one of each of three possible miniblock lengths: 8, 12,
or 16 minimum trials in counterbalanced order. The first miniblock of
each block had a red get ready screen to signal that the four instruction
stimuli would follow and that the sequence could be different from the
previous block. Subsequent miniblocks within the block (miniblocks 2
and 3) had a green get ready screen to indicate the participant should
continue to monitor for the same sequence that was instructed at the
beginning of the block (during the first miniblock), but start again with
the first item.

Four blocks made up a single run. Each block (and its component
miniblocks) was a single sequence type. Each participant performed two
different sequences during the experiment. Each run contained sequence
1 visible and occluded and sequence 2 visible and occluded with the order
of blocks counterbalanced across run. The nine stimuli that composed
the two sequences and the occluder image were drawn randomly from a
pool of 109 everyday objects for each participant. Before scanning, par-
ticipants were trained on the sequence monitoring task using example
letter stimuli and then were exposed to example blocks of both sequence
types using the same stimuli that they would subsequently see in the
scanner. Some participants received additional practice while lying in
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the scanner but before scanning acquisition to become accustomed to the
response buttons. Participants were asked to complete six total runs.

Behavioral analysis

When participants performed the sequence monitoring task in Experi-
ment 2, we determined that there were at least two sources of error that
were not due to a failure of the participants to monitor the sequence. To
avoid unnecessary data loss, we accounted for these errors in the follow-
ing two ways.

Because participants were nearly continuously holding a sensitive but-
ton, occasionally, a slight shift of the participant’s pressure on the button
or mechanical oscillation between the “pressed” and “released” state
would mistakenly trigger the detection of a release. Participants also
often indicated that they did not release the button in these instances by
verbal report at the next break. These mistakes also happened at times
when a release was highly unlikely and the button state had just changed,
that is, in the first four stimulus presentations of the miniblock after the
get ready screen or instruction stimuli. The out of sequence item was
never present those first four items. We therefore identified releases that
occurred in the first four stimulus presentations of each miniblock and
coded those miniblocks as “button errors” (mean 0.7% total trials or
5.4% miniblocks across participants). Button error miniblocks were ex-
cluded from all subsequent analyses.

A second source of error was that participants’ release RTs shifted to be
slightly slower in the scanner than in prescanning piloting or training.
This resulted in the slower tail of the distribution of correct release RTs to
be cutoff by the 1 s response deadline. We therefore “recoded” these
miniblocks (mean 6.5% across participants) as correct (mean recoded
RT = 1.176 s) and included them in all subsequent analyses as correct
miniblocks.

After excluding button error miniblocks and including recoded trials,
as described previously, runs were only included for analysis if there were
greater than 2 4-item sequences (>8 trials) of each condition (visible/
occluded block type crossed with sequence position, 3 participants with
one run excluded). If this criterion resulted in the elimination of more
than one run or a participant’s overall error rate based on correct mini-
block performance was >30%, then they were excluded from further
analyses (6 participants were excluded).

Behavior on the miniblock level was a limited description of the be-
havior (but necessary because the only “response” was the release at the
end of each miniblock) because there were relatively few miniblocks (72
per participant) compared with the total number of stimulus presenta-
tions (1044 possible per participant). We therefore categorized trials ac-
cording to the detection of an OutSeq item. The four detection types were
as follows.

Hit. A release in response to an OutSeq item. These items are consid-
ered correct.

Correct rejection. A hold in response to an InSeq item. All successful
holds during visible miniblocks before the OutSeq item were classified as
correct rejections. Conversely, in occluded miniblocks, trials in which the
occluder image was displayed were not counted as correct rejections
because the stimulus was not one of the items in the sequence and could
be unambiguously identified as irrelevant. These items were also consid-
ered correct.

Miss. A hold in response to an OutSeq item. These items are consid-
ered errors.

False alarm. A release in response to an InSeq item. These items are
considered errors.

Using these trial types, the sensitivity index was calculated as follows:

d' = Z(hit rate) — Z(false alarm rate)

where Z(p), p € [0,1], is the inverse of the normal cumulative distribu-
tion function (Macmillan and Creelman, 2004). To prevent an infinite
d’, extreme rates of zero or one were converted to 1/(2N) and 1 —
1/(2N), respectively, where N is the number of trials on which the rate is
based (Macmillan and Creelman, 2004).
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fMRI procedure

Experiment 2 was scanned at the same facility as Experiment 1, but after
the scanner was upgraded to a Siemens 3 T PRISMA system with a 64-
channel head coil. Anatomical scans consisted of a TI-MPRAGE (TR,
1900 ms; TE, 3.02 ms; flip angle, 9°; 160 sagittal slices; 1 X 1 X 1 mm) and
a T1 in-plane that was the same as in Experiment 1 (TR, 350 ms; TE 2.5
ms; flip angle, 70°; 38 interleaved transversal slices; 1.5 X 1.5 X 3 mm).
Functional images were acquired using the same fat-saturated gradient-
echo echoplanar sequence as in Experiment 1 (TR, 2 s; TE, 28 ms; flip
angle, 90° 38 interleaved axial slices; 3 X 3 X 3 mm). A mean of 313
functional scans were acquired per run.

fMRI data analysis

As stated previously, two participants were excluded from analysis be-
cause of excessive (>3 mm) movement in the scanner. Preprocessing and
general model construction was the same for Experiment 2 as in Exper-
iment 1. All analyses were performed in SPM 12 (RRID:SCR_007037). If
any trial in the miniblock was incorrect (release to an InSeq item or
failure to release to an OutSeq item), then the entire miniblock was coded
as an error because it was unknown whether the participant was correctly
monitoring the sequence. For the purposes of these models, all the trials
within miniblocks classified as “button error” were also coded as error
trials (see Experiment 2: “Behavioral analysis” section).

The same parametric sequence position ramp model was constructed
as in Experiment 1 to explicitly test for ramping activation over sequence
position, with separate onset regressors for visible and occluded trials
that the parametric for sequence position (1-4) was added to. The com-
panion control parametric increasing and decreasing sequence position
ramp model was also formed. An onsets model was constructed that
separated the four positions in the sequence and visible and occluded
trials. Similarly, the same pair of models to test whether variance could be
better accounted for by sustained or ramping activation, the sustain ver-
sus unique ramp model and the unique sustain versus ramp model, were
constructed with separate ramp and sustain regressors for visible and
occluded trial types. ROIs were constructed from clusters of activation in
the parametric ramp > baseline contrast as in Experiment 1. The RLPFC
cluster in the parametric ramp > baseline contrast in the parametric
sequence position ramp model for Experiment 2 will be referred to as the
“monitoring” ROI (center of mass x, y, z = —32, 42, 27; volume 6568
mm; max/min x = —40/—0, y = 26/62, z = 12/46). The time course of
activity across positions was extracted using an 8-time point (16 s) FIR
model (MarsBar, RRID:SCR_009605) that contained the same regressors
as the onset model.

We completed an initial analysis of the fMRI data after acquiring 30
participants. Specifically, we originally hypothesized that there would be
a difference in parametric ramping activation betas in the RLPFC be-
tween the visible and occluded sequence types. With the 30-participant
sample, we found a marginal but not statistically significant effect of
sequence type. To determine whether collecting further participants
would yield sufficient power to observe this effect, we selected 10 partic-
ipants at random (due to the lack of an independent pilot dataset on this
task) and calculated that, with 80% power, 39 participants would be
necessary to observe a difference between visible and occluded ramping
betas in the RLPFC. We therefore collected 10 more participants for a
total of 40 participants included in Experiment 2. We intended to correct
for using a two-stage process by using a Bonferroni correction on the
expected type L error rate, i.e., dividing 0.05 by two total “peeks” for a type
TIerror rate of 0.025 at the second stage. However, subsequent simulations
revealed that our total experienced chance of type I error across the two
stages was p = 0.0548. We emphasize that, even though the experienced
chance of type I error was greater than originally planned, this fact did
not fundamentally change any of our inferences or conclusions about the
data. We included our full methods here in the interest of scientific rigor
and transparency.

Results

Experiment 1

In the first experiment, we tested whether manipulating uncer-
tainty would modulate ramping activation in the RLPFC during


https://scicrunch.org/resolver/SCR_007037
https://scicrunch.org/resolver/SCR_009605

1476 - J. Neurosci., February 20, 2019 - 39(8):1471-1483 Desrochers et al. @ Cortical Ramping During Sequences

a

1 2 3 4
Red Circle Blue Square

| ~
—~
~
| -~

Stimulus |—|/_ _________
Response —H—m - - — = — = — — -
b Clue trials

3
E\ua

o
q ue
YWarg

RCQLQRSHA
P
ESH/\PE
Color Color Shape Shapeé Color Color =u=s Color
C WSEEEM A A B 5 i A A ... A

q
G
Yarg

A B B A A B - A

“internal” sequence boundary

[0}
o c
c O
o=
S w
g Q? — Actual sequence
0 — - Model inferred sequence
— Position entropy
Task entropy
X x| [x\/x ) .
% Subject action error
correct for other task
Shape — % Clue
x
&)
'_
Color
0
Trial Number p129r3b3
Order effect Time effect:
e f g Clue effect
pre 1st clue pre 1st clue
0.16 0.4+ 0.18 1
0.14 0.35- 0.16+
0.12 0.3 0141
— 7 0.12
S 0.1 0.25 0.1 —— Order entropy
= Task entro
5 008 0.2 0.08 1 Py
0.06 - 0.15 1 006+
0.04
0.04 0.1 0.02-
0.02- 0051+ — ol — ¥
2 4 1 2 3 -1 0 1
Order Seq. iteration Lag from cue
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sequential task performance. Previously, we hypothesized that an
accumulation of uncertainty as sequences progress away from the
initiation may be responsible for ramping dynamics observed in
the RLPFC (Desrochers et al., 2015). However, uncertainty was
not separable from sequence position in that initial set of exper-
iments; both steadily increased through the sequence. We de-
signed a task based on the previous sequential task to manipulate
the amount of uncertainty that participants experienced at each
position in the sequence by providing “clues” throughout their
performance of a sequence of tasks (Fig. 1). These clues were
designed to explicitly decouple increases in sequence position
from increases and decreases in uncertainty.

The behavioral results replicated those found previously (Sch-
neider and Logan, 2006; Desrochers et al., 2015), with RTs pro-
viding evidence for sequence level control and that participants
performed the sequences of tasks in four item sets as instructed.
On trials that did not contain clues, RT at the first position in the
sequence was slowed compared with the same trial type (switch
orrepeat) in the interior of the sequence (position 3) regardless of
whether it was a switch or a repeat: simple sequence position 1
(switch) and position 3 (switch) versus complex sequence posi-
tion 1 (repeat) versus position 3 (repeat) (F, ,5) = 83.3, p =
1.96 X 10~°, main effect of position in ANOVA; Figure 2a).
Because this sequence initiation cost is over and above costs ex-
pected from task switching/repeating alone, it can only be due to
crossing the unsignaled sequence boundary between position 4 of
the previous sequence and position 1 of the next sequence. Con-
sistent initiation costs were not observed in error rate on nonclue
trials (sequence type X position 1 and 3, F(; ,5) = 0.76, p = 0.39,
main effect of position in ANOVA; Fig. 2b).

Clues did not have an effect on RT overall or by position
(sequence type X clue X position 2—4, F, ,5) = 0.26, p = 0.61,
main effect of clue in ANOVA; Fig. 2a). We did observe a decrease
in error rate on clue trials, but this was expected because clues
effectively eliminated the incorrect options (sequence type X
clue X position 2—4, F(, 55 = 9.72, p = 0.0045, main effect of clue
in ANOVA; Fig. 2b). When we normalized the error rate for
baseline differences in chance in clue and no clue trials, we no
longer observed a reliable difference between the trial types (se-
quence type X clue X position 2—4, F, ,5, = 0.47, p = 0.5, main
effect of clue in ANOVA; Fig. 2¢). In the normalized error rates,
the effect of clue on error rate differed by sequence position
(Fa,50) = 3.52, p = 0.037, ANOVA) such that the reduction in
error rate was greatest at position 3. This finding is possibly con-
sistent with a greater benefit later in the sequence due to the
resolution of increased uncertainty, but inconclusive due to alack
of a similar effect at position 4.

Given the changes in task from the original sequential task
used in Desrochers et al. (2015), namely the addition of clue trials
and a potential reduction in response conflict due to spreading
out the possible responses over four buttons (instead of two), we
next examined ramping activity in the RLPFC in this task. The
following analyses also collapsed across clue and no clue condi-
tions to focus on ramping dynamics that are common to both
conditions and potentially more general to the sequential task as
a whole. First, we conducted a whole-brain voxelwise analysis
that tested a parametric ramping function that reset at each po-
sition 1 and increased to position 4. This analysis yielded a net-
work of regions including RLPFC, dorsal premotor cortex (PMd),
supplementary motor area, and the precuneus (Figs. 3a, Table 1),
with the RLPFC and PMd clusters overlapping with those ob-
served in Desrochers et al. (2015).
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Figure 2.  Experiment 1 behavioral results. @, Mean RT across sequence position. Note that
clue and no clue RTs nearly perfectly overlap, **p << 0.001. b, Mean error rate (ER) across
sequence position. The generic task designation (A or B) is indicated at each data point, color-
coded according to the sequence type. ¢, ER normalized for baseline levels of chance across
sequence position.

Next, to determine whether variance in RLPFC could be better
accounted for by ramping or sustained activation, we constructed
a pair of models that pitted ramp and sustain regressors against
each other and examined the variance in MR signal from RLPFC
that could uniquely be accounted for by each regressor in turn
(see Materials and Methods). In the ROI defined by the paramet-
ric ramping cluster in RLPFC from Desrochers et al. (2015) (cen-
ter of mass x, y, z = —28, 56, 4), hereafter the “D15” ROI, we
found that variance was better accounted for by ramping over
and above what could be accounted for by a sustained function
(F(1,25) = 26.4, p = 0.018, ANOVA). As an additional control, we
found that variance was better accounted for by an increasing,
rather than a decreasing, parametric ramp function in the D15
ROI (F; 55y = 11, p = 0.003). We therefore replicated ramping
activity in the RLPFC during a sequential task despite the occa-
sional presentation of clues in this sequential task.

Because clue trials do not exist at position 1, we also con-
structed a parametric ramping model that excluded the paramet-
ric at position 1 for both clue and no clue trials (position 1 was
included as an onset regressor only). To determine whether
RLPFC ramping was consistent across the models, we examined
the same D15 ROIL. Ramping activation in the D15 ROI remained
reliable in this parametric model that excluded position 1 (data
not shown, t,5) = 3.48,p = 1.86 X 10 —3 ttest) and did not differ
between the two models (F(, ,5) = 0.03, p = 0.86, ANOVA).

Despite the lack of evidence for the effect of clues on RT, we
observed differences in activation across the caudal to midlateral
frontoparietal network in clue compared with no clue trials (Fig.



1478 - J. Neurosci., February 20, 2019 - 39(8):1471-1483

3b). This provided evidence that clues
were at least registered by the control sys-
tem as distinct from the more common
no-clue trials.

Theoretically, clues reduced uncer-
tainty and therefore the need for increased
RLPFC activation. To determine whether
there was an effect of clues on ramping b
activation in the RLPFC, we compared the
variance explained by parametric ramp-
ing (mean parametric betas in the GLM)
in the previously defined D15 ROl in clue
and no clue trials. In this D15 ROI, there
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These results were also illustrated by the
activity across the positions in the D15
ROI when modeling each position sepa-
rately and collapsing across sequence type
(Fig. 3d).

Because clue trials may appear at var-
ied positions in the sequence and position
in the sequence may influence uncertainty, the above analysis
does not take into account potential history or position effects in
the activity observed in response to clues in the brain. We there-
fore took a straightforward approach to accounting for potential
positional effects in the uncertainty signal by fitting participants’
choices with a model that estimated the uncertainty at each posi-
tion in the sequence (see Materials and Methods). This model has
the advantage of decorrelating uncertainty and sequence position
because the clues would cause uncertainty decreases at the high-
est positions (e.g., position 4), rather than uncertainty and posi-
tion being at the highest point at the same position in the
sequence under the assumptions we make. However, modeling
uncertainty this way (see Materials and Methods) did not yield
any reliable correlations with activation in RLPFC or elsewhere in
the brain. In a model that included a parametric regressor for
uncertainty on individual position regressors, the parametric >
baseline contrast did not yield any suprathreshold clusters (p <
0.001 uncorrected, data not shown). Further, beta values ex-
tracted from that contrast were not significantly different from
zeroin the D15ROI (¢(,5) = —0.78, p = 0.44, t test). Therefore, we
do not find evidence to support the hypothesis that trial-to-trial
uncertainty, as operationalized in this task, underlies ramping acti-
vation in the RLPFC. Rather, we again observe ramping activation
during sequential task control in this region.

Experiment 2

In Experiment 2, we assessed whether task (i.e., subgoal) perfor-
mance at each step in the sequence was an essential task compo-
nent to engage ramping in the RLPFC. We used a simplified task
that eliminated the categorization decisions on each trial based

ramp regressor > baseline in the parametric sequence position ramp model (see Materials and Methods). Black outline is the
location of the D15 ROI. FWE cluster corrected p = 0.05 (height p = 0.001, extent = 176 voxels). b, Voxelwise contrast of clue >
no clue trials for sequence positions 2—4 (there were no clues presented at position 1) in the onsets model (see Materials and
Methods). Familywise error (FWE) cluster corrected p = 0.05 (height p = 0.001, extent = 156 voxels). ¢, Mean parametric ramp
regressor beta values in the parametric sequence position ramp model for the D15 ROI. d, Mean percentage signal change (== SEM)
from the peak (6 s) of the FIR in the D15 ROI.

Table 1. Experiment 1: clue task

Location Extent (voxels) BA X y z Peak t-value
L RLPFC 270 10/9 —30 54 16 436
9 —28 46 22 4.69
RPMd 484 8 24 14 44 5.36
8 26 8 58 543
6 20 0 60 4.03
L PMd 213 6/8 —24 10 62 3.57
8 —30 6 58 41
6 —40 4 60 5.09
6 —44 -2 48 5.02
L SMA 384 6 —4 6 62 4.49
6 —14 2 70 47
6 —4 2 70 4.6
6 -2 —6 70 4.23
R precuneus 217 7 10 —60 50 4.72
L precuneus 7 —4 —64 46 4.82

Shown are all peaks greater than 8 mm apart in the parametric ramp > baseline contrast shown in Figure 3a
(cluster-corrected p = 0.05 FWE, height p = 0.001, extent = 176 voxels). Extent is the cluster size in voxels and is
only listed once for each group of peaks belonging to the same cluster. BA, Brodmann's area; SMA, supplementary
motor area.

on sequence position and rather asked participants to simply
monitor the sequential order of presented images either as pre-
sented (visible) or internally tracked (occluded) (Fig. 4, adapted
from Allen et al., 2014).

RT was assessed on trials when the participant released the
button. During a release rather than a press, we again found
increased RTs at the first position in the sequence (sequence
type X position 1 and 2-4, F(; ;9) = 21.2, p = 4.26 X 10 7,
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Monitoring task used in Experiment 2. a, Example single trial. b, Two example miniblocks of the sequence monitoring task. Upper row illustrates the Visible sequence type where the

instructed sequential stimuli are visible all through the block. Bottom row illustrates the Occluded sequence type where the place holder “occluder” image is shown after the instruction, and are
monitored as if the instructed stimuli were present on each screen, but occluded by the place holder. The last image of the block is one of the instructed stimuli, and participants must hold or
release according to whether it is InSeq or OutSeq. Example feedback isillustrated as a check mark (correct) or “X” (error). ¢, Complete example Occluded block consisting of three miniblocks followed
by the first miniblock of a Visible block. The red screen and four instruction images are only shown during the first miniblock of each block. The subsequent two miniblocks within a block only show
a green screen and monitoring stimuli are presented immediately following it. d, Example run. Each run consists of one of each sequence identity and type with the order counter-balanced across

runs and participants.

ANOVA; Fig. 5a). There was no effect of sequence type (visible or
occluded) on RT (F, 34y = 0.84, p = 0.36, ANOVA). There was
again no evidence of increased ER at sequence initiation (se-
quence type X position 1 and 2-4, F(; 55, = 0.16, p = 0.69,
ANOVA; Fig. 5b). However, there were significantly more errors
regardless of sequence position in occluded sequences (F(, ;) =
11.0, p = 0.002, ANOVA).

To further examine the difference in error rate between oc-
cluded and visible sequence types, we analyzed trials according to
the detection of an OutSeq item. We found that d’ was greater for
visible than occluded blocks (f39, = —20.0, p = 4.43 X 10 %,
paired t test; Fig. 5¢). This was primarily due to an increase in false
alarms (release to an InSeq item) in occluded blocks (.59, = 12.5,
p = 3.37 X 10", paired t test; Fig. 5d) because the hit rate did
not differ between occluded and visible blocks (¢35, = —1.51,p =
0.14, paired ¢ test; Fig. 5e). Therefore, even though the error rate

was different between the sequence types, the participants were
equally able to correctly release in response to an OutSeq item.
To determine whether task execution was required to engage
ramping in the RLPFC, we first performed a whole-brain voxelwise
contrast of parametric ramping activity across both sequence types.
Ramping activation was evident in the RLPFC and extended caudal
and dorsally along the middle frontal gyrus (Fig. 6a, Table 2). As in
Experiment 1, to determine whether variance in RLPFC could be
better accounted for by ramping or sustained activation, we con-
structed a pair of models that pitted ramp and sustain regressors
against each other and examined the variance that could uniquely be
accounted for by each regressor in turn. In the D15 ROI from the
Desrochers et al. (2015) study, we found that variance was better
accounted for by ramping over and above what could be accounted
for by a sustained function (F, 3 = 39.8, p = 1.92 X 1077,
ANOVA). As an additional control, we found that variance was also
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Figure5.  Experiment 2 behavioral results. @, Mean RT across sequence position. b, Mean ER

across sequence position. ¢, Mean sensitivity index (d” or p-prime) across sequence types. d,
Mean probability of false alarm (pFA). e, Mean probability of hit (pHit). **p < 0.001; ns, not
significant.

better accounted for by an increasing, rather than a decreasing, para-
metric ramp function in the D15 ROI (F, 3, = 7.2, p = 0.01).

We next contrasted parametric ramping activity separately in
the visible and occluded sequence types. We found a greater
number of areas, including the RLPFC, that survived statistical
correction in the occluded parametric ramp > baseline contrast
(Fig. 6b) than in the visible parametric ramp > baseline contrast
(Fig. 6¢). However, a direct contrast of parametric ramping in the
occluded over the visible sequence types yielded only one su-
prathreshold cluster in the left superior parietal lobule (Fig. 6d).

Follow-up ROI analyses were consistent with the above re-
sults. We tested the beta values associated with the parametric
ramp regressors in this monitoring task in the D15 ROL. Signifi-
cant ramping betas in the monitoring task overall were evident in
this ROI (t;9) = 2.54, p = 0.015, ¢ test). Further, though the
ramping betas were quantitatively larger in the D15 ROI for the
occluded task, the difference between the visible and occluded
conditions in this ROI did not reach statistical significance
(t39) = 1.43, p = 0.16, paired t test; Fig. 6e). We likewise observed
the same trend and lack of statistical significance between visible
and occluded when the ROI was defined directly on the overall
parametric ramp contrast from Experiment 2 (monitoring ROI,
tiey = 1.35, p = 0.18, paired ¢ test). Therefore, these results
cannot provide conclusive evidence for or against the hypothesis
that the occluded condition activated RLPFC more or showed
greater ramping than when the sequence was visible and merit
further experimentation.

Finally, there was limited evidence that the ramping activation
in the visible task alone may preferentially be located more cau-
dally than in the Desrochers et al. (2015) task. Even though, when
considering the visible and occluded tasks together, the ramping
betas in the D15 ROI were significant overall and not statistically
different from each other in the two conditions, as discussed
above, in the visible task only, ramping betas in the D15 ROI were
not significantly different from zero (¢35, = 0.82, p = 0.42, t test;
Fig. 6e “Vis”). However, in the more caudal monitoring ROI, the
ramping betas for the visible task only were reliable (t;, = 2.79,
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Figure 6.  Experiment 2 fMRI results. a, Ramping activation in the monitoring task shown

with the voxelwise contrast of the parametric ramp regressor > baseline in the parametric
sequence position ramp model (see Materials and Methods). Black outline is the location of the
D15 ROI. FWE cluster corrected p = 0.05 (height p = 0.001, extent = 181 voxels). b, Same as
a, but only occluded sequence type (height p = 0.001, extent = 191 voxels). ¢, Same as a, but
only visible sequence type (height p = 0.001, extent = 185 voxels). d, Same as a, but oc-
cluded > visible (height p = 0.001, extent = 196 voxels). e, Mean parametric ramp regressor
beta values for the D15 ROl in the parametric sequence position ramp model. Note the small
scale. f, Mean percentage signal change (== SEM) from the peak (6 ) of the FIR in the D15 ROI.

p = 0.008, t test) and there was a significant difference between
the two ROIs ((59) = 2.08, p = 0.04, paired ¢ test). Further anal-
yses regarding potential differences in ramping location will be
presented below. The ramping in the occluded condition and the
relative nonramping in the visible condition in the D15 ROI were
also illustrated by the activity across the positions when modeling
each position separately (Fig. 6f). In summary, we again found
ramping activation in RLPFC over the course of a sequence that
was robust across all conditions of the monitoring task.

Comparisons across tasks

Including the previously published study by Desrochers et al.
(2015), we have now observed ramping activation in the RLPFC
during sequential tasks across three independent datasets (total
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Table 2. Experiment 2: monitoring task

Extent Peak
Location (voxels)  BA X y 4 t-value
L RLPFC 821  10/46/9 —36 42 34 59
RRLPFC 50556 10/46/9 32 50 32 75
RIFG, opercularis 44 54 16 28 5.55
RIFG, triangularis 48 28 16 28 4
R central operculum 48 48 2 8 579
L central operculum 48 —50 0 2 574
L SMA 6 -10 —4 58 692
RPMd 6 20 2 60 8.68
RPMd 6 38 —12 38 4.09
L precentral gyrus (M1) 4 -3 —22 60 7.07
R anterior cingulate gyrus 32 8 36 20 392
R middle cingulate gyrus 24 4 12 36 512
L middle cingulate gyrus N/A —16 —36 4 429
R middle temporal pole 38 54 8§ —16 5.15
R superior/middle temporal gyrus 21 48 —20 —8 655
R middle temporal gyrus 21 50 —46 —6 48
L supramarginal gyrus 48 —4 -2 26 5.63
R supramarginal gyrus 48 62 —28 26 643
R supramarginal gyrus 2 54 =32 50 3.91
R paracentral lobule 4 0 —-32 56 5.84
L lingual gyrus 18 —-12 =5 -2 642
L angular gyrus 39 —48 =50 28 445
L superior parietal lobule 5 —16 —58 62 6.69
R superior parietal lobule 40 30 —42 38 596
R superior parietal lobule 7 22 —64 54 8.18
L occipital fusiform gyrus 19 —28 —78 —12 803
L calcarine cortex 17 -8 —8 8 974
R calcarine cortex 17 14 —64 14 849
L superior occipital gyrus 19 -2 —8 4 78
R superior occipital gyrus 18 24 —88 20 86
Rinferior occipital gyrus 19 4 —=72 —10 598
L putamen N/A —24 14 =2 565
L putamen N/A —=30 —20 4 434
R putamen N/A 24 20 —4 505
R putamen N/A 18 -2 10 428
R cerebellum culmen N/A 28 —52 —24 834
L cerebellum culmen N/A —28 —52 —24 725
R cerebellum exterior N/A 6 —72 —28 624

Shown are all peaks greater than 25 mm apart in the parametric ramp > baseline contrast (cluster-corrected p =
0.05 FWE). Extent is the cluster size in voxels and is only listed once for each group of peaks belonging to the same
cluster. BA, Brodmann's area; IFG, inferior frontal gyrus; SMA, supplementary motor area.

N = 94). However, the plot of the parametric ramp > baseline
contrast from all three experiments reveals that, although the
networks are similar, the proximity/overlap of the ramping acti-
vation clusters in the RLPFC shows some small differences in
spatial locus (Fig. 7a). For example, there did appear to be a trend
that clusters derived from sequential tasks that required task ex-
ecution were both more anterior in their location (Fig. 7b) and
showed greater ramping activation when sequences required task
execution.

To directly address whether these differences among the ros-
tral frontal cortex clusters reflect small cross-study differences in
peaks across variable samples versus a meaningful difference in
activation patterns, we examined the ramping activation (betas
associated with the parametric ramp > baseline contrast) from
three cluster-based ROIs defined in RLPFC from the parametric
ramp contrast from each study (D15 center of mass x, y, z = —28,
56, 4; clue center of mass x, y, z = —29, 50, 21; monitoring center
of mass x, y, z = —32, 42, 27; Fig. 7b).

We did not find conclusive evidence of overall differences in
ramping activation among the three ROIs in any of the three
tasks. Specifically, we did not have strong statistical evidence of a
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difference by ROI on ramping activation betas across the
three clusters in the Desrochers et al. (2015) task sequences ex-
periment (F, s, = 2.50, p = 0.092, ANOVA; Fig. 7c), Experi-
ment 1 (F,5p = 2.23, p = 0.118, ANOVA; Fig. 7d), or
Experiment 2 (F, ,4) = 3.04, p = 0.054, ANOVA; Fig. 7¢). How-
ever, the differences among the ROIs are trending in the more
abstract Desrochers et al. (2015) experiment to be greater in more
anterior regions and, in the less abstract Experiment 2, are trend-
ing to be greater in more posterior regions. These trends may
further support a rostral-to-caudal gradient observed in the loca-
tions of the clusters of ramping activation in the RLPFC (Fig. 7b).
When divided by condition, the only difference in ramping betas
among the ROIs was between the D15 and monitoring ROIs in
the visible condition of Experiment 2, as noted in the previous
section. Although we cannot conclusively rule out differences
across conditions on the basis of these results, we do show con-
sistent ramping activation in the RLPFC across all three datasets.

Discussion

Across two separate experiments, we have replicated and ex-
tended the prior observation that ramping activation in the
RLPFC accompanies sequential task performance. We provide
novel evidence that three features of sequential task control need
notbe present to engage RLPFC: task state uncertainty, multilevel
decision making, and internal maintenance of context. Experi-
ment 1 showed that RLPFC ramping is not affected by the
appearance of less-frequent clue stimuli that could reduce uncer-
tainty. Experiment 2 showed that RLPFC exhibits ramping even
during a simplified sequential monitoring task that does not re-
quire subtask sequencing and performance within the sequence.
Further, in this experiment, we found that ramping in the RLPFC
was engaged during sequential monitoring in the absence of ex-
ternal cues (i.e., from memory). This remarkable consistency in-
dicates that the ramping dynamic in RLPFC observed in these
experiments, and thus likely its functional role, is minimally tied
to the sequential nature of these tasks, specifically that they in-
volve monitoring a predictable series of state transitions toward a
bound.

The necessity of RLPFC for sequential task control was estab-
lished in previous combined fMRI and TMS studies (Desrochers
et al., 2015). However, several features of the task used in this
previous experiment distinguished it from other nonsequential
studies and so could have accounted for the novel ramping acti-
vation observed in RLPFC.

First, progress through a sequence might result in increased
uncertainty under the assumptions that sequence starting posi-
tion can be arbitrarily defined and so is not uncertain and, after
initiation, there is a nonzero probability that one can transition
from one task state to another that is out of sequence (i.e., make a
sequential error). Therefore, progressively increasing position
uncertainty might necessitate an increasing contribution from
RLPFC over the course of the sequence to overcome uncertainty
(Desrochers et al., 2015; see also White and Monosov, 2016).

In Experiment 1, we provided clue trials to break this con-
found between sequence position and uncertainty. However, de-
spite replicating ramping activation in the RLPFC, we did not
obtain evidence that activation in RLPFC was affected by a reduc-
tion in uncertainty from these clue trials. Indeed, RLPFC became
more rather than less activated when clues were presented. We do
note that, although the brain clearly responded to the less-
frequent clues, the reduced errors on clue trials provided only
limited behavioral evidence that participants used the clue infor-
mation to reduce uncertainty. Therefore, it is conceivable that we



1482 - J. Neurosci., February 20, 2019 - 39(8):1471-1483

did not manipulate uncertainty suffi-
ciently to affect the ramping pattern. Nev-
ertheless, we did not find evidence that
activation in RLPFC tracks trial-to-trial
position uncertainty.

Experiment 2 tested a second unique
feature of the sequential control task used
by Desrochers et al. (2015): multilevel de-
cision making. Numerous studies have
implicated RLPFC in processes that are
common to sequential control including
representing high-level, abstract, hierar-
chical information and integration (Badre
and D’Esposito, 2007; Nee et al., 2014;
Rahnev et al., 2016), multiple courses of
action (Koechlin et al., 1999; Braver and
Bongiolatti, 2002; Badre et al., 2012), in-
tegration of verbal and spatial working
memory (Chahine et al., 2015), and tem-
poral control (Nee and D’Esposito, 2016).
However, the TMS result from Desro-
chers et al. (2015) is inconsistent with
the idea that RLPFC plays a role in
trial-to-trial episodic or temporal control
throughout the sequence. These demands
are constant throughout the sequence,
whereas RLPFC was more necessary near
the terminal sequence bound.

Experiment 2 extended this observa-
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Second, RLPFC has been associated with
episodic or temporal control (Koechlin et
al., 2003; Badre and D’Esposito, 2007; Nee et
al., 2014; Bahlmann et al., 2015a,b; Nee and
D’Esposito, 2016), which refers to our abil-
ity to control behavior based on an internal
representation of a temporal context or ep-
isode. Experiment 2 manipulated the de-
mand on this type of control by allowing
sequences to be monitored either via a
presented stimulus or via a remembered
representation of the sequence. Ramping in the RLPFC more
broadly was engaged even in the presence of external cues (visible
condition), when it was not necessary to track an internal episode
representation, though this result is specific to the more caudal
monitoring and clue ROIs. However, it should be noted that,
across all ROIs examined in the RLPFC, ramping activation was
quantitatively greater in the condition without external position
cues (occluded), although this difference was not statistically sig-
nificant. Therefore, we do not find evidence in support of or con-
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Comparison across experiments. a, Overlay of the voxelwise contrast of the parametric ramp regressor > baseline in
the parametric sequence position ramp model from three different experiments. Red depicts the original task sequence experi-
ment (Desrochers et al., 2015). The Experiment 1 clue task is shown in green, and the Experiment 2 monitoring task is shown in
blue. Overlap is shown by the colors indicated in the Venn diagram. b, Same as a, but only showing the left RLPFC cluster from each
experiment. These are the three ROIs used throughout. ¢, In the task sequence experiment (Desrochers et al., 2015), mean
parametric ramp regressor beta values in the parametric sequence position ramp model across the three ROIs illustrated in b. d,
Same as ¢, but in the clue Experiment 1. e, Same as ¢, but in the monitoring Experiment 2.

trary to a difference between visible and occluded items and it is clear
that occlusion is not essential to engage ramping activity in RLPFC.
Further experiments will be necessary to determine whether there is
an interaction between sequential control and internally guided
behavior.

We have focused on RLPFC in this work primarily because
this region has been the focus of considerable debate regarding its
function and has been widely hypothesized to be involved in the
kind of temporal control needed for sequential control. It is im-
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portant to emphasize, however, that RLPFC is not acting as an
independent module. Rather, the activations observed in RLPFC
are part of a larger network of areas exhibiting ramping activation
across these sequential tasks. Among these broader networks,
only two areas of ramping activation overlapped across all three
experiments: left RLPFC and right PMd (Fig. 7a,b, white areas).
This finding again underscores the consistency in RLPFC ramp-
ing activation across the tasks. Other network areas show ramp-
ing activation that are unique to each of the three experiments.
Although it is outside the scope of these experiments to speculate
on the unique function of each (Fig. 7a,b, red, green, and blue
areas), these areas of unique ramping activation may be related to
task-specific demands that differ among the experiments. There-
fore, whereas RLPFC functions in a network, it may be consis-
tently involved in these sequential tasks relative to other areas.
Future experiments will be necessary to elucidate the potential
relationship among these ramping signals.

An important future direction will be to test the hypothesis of
whether such ramping activation is dependent on the sequential
information being task relevant. It is also possible that, when
there is sequential information, the monitoring or tracking of it is
automatic regardless of the task relevance. There are paradigms
in both the auditory (Wang et al., 2015) and visual domain
(Hsieh and Ranganath, 2015; Jiang et al., 2018) in which the
sequential information provided is not necessary for the perfor-
mance of the task. Crucially, these experiments did not test for the
presence of ramping activation in the RLPFC. Therefore, this
significant question remains unresolved.

In conclusion, ramping activation in RLPFC was found to be
robust across multiple tasks requiring monitoring predictable,
sequential state transitions. This pattern was not reliably modu-
lated by the presence of informative stimuli, the removal of mul-
tilevel task structure, or the presence of external position cues.
The critical feature in common among these experiments is that
they involve monitoring a sequence of states that occur in a re-
peated and fixed order. It remains possible that RLPFC may be
engaged when memory must be referenced to make serial control
decisions or it may track progress toward a goal or sequence
bound. Numerous other studies have associated activity in the
RLPFC with various boundary conditions (Dobbins et al., 2002;
Gilbert et al., 2005; Burgess et al., 2007; Farooqui et al., 2012) and
it is possible that RLPFC may play a role in the progress of ongo-
ing temporal events, along with preparing for what is to come
next. However, it seems clear from previous work (Desrochers et
al., 2015) that RLPFC function is not equally necessary or engag-
ing throughout a sequence. Because we did not conduct TMS in
this experiment, the necessity of RLPFC during simpler sequen-
tial tasks such as in Experiment 2 has not yet been established.
Nevertheless, it is clear that adding sequential structure to a task is
crucial to modulating activity in RLPFC. The goal of future work
will be to further specify the functional role played by these se-
quential signals and their potential impact on human behavior.
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