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Abstract of “Generalized (Wiener-Askey) Polynomial Chaos,” by Dongbin Xiu, Ph.D., 
Brown University, May 2004

A new methodology for uncertainty quantification in practical applications is developed. 

The method, termed as ‘generalized polynomial chaos’ or ‘Wiener-Askey polynomial chaos’, 

is an extension of the mathematical theory of Nobert Wiener (1938). The original W iener’s 

polynomial chaos employs Hermite orthogonal polynomials in terms of Gaussian random 

variables to represent stochastic processes. This approach was adopted by Ghanem and 

his co-workers, who have conducted extensive research on uncertainty quantification via 

the Wiener-Hermite expansions in various areas. The generalized polynomial chaos is a 

broader framework which includes the Wiener-Hermite polynomial chaos as a subset. In 

addition to  Hermite polynomials, more orthogonal polynomials from the Askey scheme are 

employed as the expansion bases in random space. Accordingly, the random variables in 

the basis functions are not necessarily Gaussian, and are determined by the random inputs 

to achieve fast convergence. Several types of discrete expansions are also incorporated that 

increase further the flexibility of generalized polynomial chaos. In the first part of this 

thesis, the construction of generalized polynomial chaos is presented and its mathematical 

properties examined. We then apply it to various differential equations subject to random 

inputs, including elliptic equations, parabolic equations, advection-diffusion equations, 

and Navier-Stoke equations. The results of generalized polynomial chaos are examined in 

model problems, and exponential convergence is demonstrated when the exact solutions 

are known and the appropriate type of chaos is employed. For model problems without 

explicit exact solutions, we validate the results by conducting Monte Carlo simulations. 

It is shown that the cost of generalized polynomial chaos is, in many cases, significantly 

lower than that of Monte Carlo methods, and tha t the generalized polynomial chaos can 

serve as an effective means for uncertainty quantification in real systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C itizenship:

People’s Republic of China

Education:

• University of Virginia, Master of Science in Mechanical Engineering, May 1999. 

Thesis Title; “Numerical Simulation of Vortex Breakdown in an Eccentric Spherical 

Gap”

Advisor: Professor Hossein Haj-Hariri

• Zhejiang University, P.R.China, Bachelor of Science in Department of Mechanics, 

June 1993.

Thesis Title: “Numerical Simulation of Incompressible Flows in Complex Geometry 

by Domain Decomposition Method”

Advisor: Professor An-Lu Ren

Honors:

• Nominated to Sigma Xi, the Scientific Research Society, in 2003.

• 2003 Sigma Xi Award for Excellence in Research.

Publications and Conferences

Invited Talks:

1. Seminar speaker. School of Mathematics, Institute for Advanced Study, Princeton, 

NJ, December 6, 2002.

2. Invited speaker. DOE/NSF Workshop on Predictability of Complex Phenomena, 

hosted by Los Alamos National Laboratory, Santa Fe, NM, December 16-18, 2002.

3. Seminar speaker. “Predictability and Uncertainty in Large-Scale Simulations” , CSIRO, 

Manufacturing and Infrastructure Technology, Highett, Victoria, Australia, June 6, 

2003.

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Journal Publications:

1. D. Xiu and G.E. Karniadakis, “A Semi-Lagrangian High-Order Method for Navier- 

Stokes Equations” , Journal o f Computational Physics, Vol. 172, 658-684, 2001.

2. D. Xiu and G.E. Karniadakis, “Modeling Uncertainty in Flow Simulations via Gen­

eralized Polynomial Chaos” , Journal of Computational Physics, Vol. 187, 137-167, 

2003.

3. D. Xiu and G.E. Karniadakis, “The Wiener-Askey Polynomial Chaos for Stochastic 

Differential Equations” , SIAM  Journal on Scientific Computing, Vol. 24, 619-644, 

2002 .

4. D. Xiu and G.E. Karniadakis, “Modeling Uncertainty in Steady State Diffusion Prob­

lems via Generalized Polynomial Chaos” , Computer Methods in Applied Mechanics 

and Engineering, Vol. 191, 4927-4948, 2002.

5. D. Xiu, D. Lucor, C.-H. Su and G.E. Karniadakis, “Stochastic Modeling of Flow- 

Structure Interactions using Generalized Polynomial Chaos” , Journal of Fluids En­

gineering, Vol. 124, 51-59, 2002.

6. J. Xu, D. Xiu and G.E. Karniadakis, “A Semi-Lagrangian Method for Turbulence 

Simulations Using Mixed Spectral Discretizations” , Journal of Scientific Computing, 

Vol. 17, 585-597, 2002.

7. D. Lucor, D. Xiu, C.-H. Su and G.E. Karniadakis, “Predictability and Uncertainty 

in CFD” , International Journal for Numerical Methods in Fluids, 2003 (in press).

8. D. Xiu and G.E. Karniadakis, “A New Stochastic Approach to Transient Heat Con­

duction Modeling with Uncertainty” , International Journal o f Heat and Mass Trans­

fer, Vol. 46, 4681-4693, 2003.

9. D. Xiu and G.E. Karniadakis, “On the Well-posedness of Generalized Polynomial 

Chaos Expansions for the Stochastic Diffusion Equation” , SIAM  Journal of Numer­

ical Analysis, 2003 (under review).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10. D. Xiu and G.E. Karniadakis, “Supersensitivity Due to Uncertain Boundary Con­

ditions” , International Journal fo r  Numerical Methods in Engineering^ 2003 (under 

review).

11. X. Wan, D. Xiu and G.E. Karniadakis, “Stochastic Solutions for the Two-dimensional 

Advection-Diffusion Equation”, SIAM  Journal of Scientific Computing, 2003 (under 

review).

C onference Proceedings:

1. D, Xiu, D. Lucor, M. Jardak, C.-H. Su and G.E. Karniadakis, “Polynomial Chaos 

Solutions of Fluid Dynamics with Applications” , Proceedings of Stochastic Numerics 

Conference 2001, ETH Zurich, Switzerland, February 2001.

2. D. Xiu, D. Lucor and G.E. Karniadakis, “Modeling Uncertainty in Flow-structure 

Interactions” , Computational Fluid and Solid Mechanics, Proceedings of the First 

MIT Conference on Computational Fluid and Solid Mechanics, Cambridge, MA, 

June 2001. Edited by K.J. Bathe, Vol. 2, pp.1420-1423, Elsevier Press, 2001.

3. D. Xiu and C.E. Karniadakis, “Modeling Uncertainty of Elliptic Partial Differential 

Equations via Generalized Polynomial Chaos” , Proceedings of the 5th ASCE Engi­

neering Mechanics Division Conference, Columbia University, New York City, June 

2002 .

4. D. Xiu and C.E. Karniadakis, “Uncertainty Modeling of Burgers’ Equation by Gen­

eralized Polynomial Chaos” , Computational Stochastic Mechanics, Proceedings of 

the 4th International Conference on Computational Stochastic Mechanics, Corfu, 

Greece, June 2002. Edited by P.D. Spanos and C. Deodatis, pp.655-661, Millpress 

Rotterdam, 2003.

5. D. Xiu, D. Lucor, C.-H. Su and C.E. Karniadakis, “Performance Evaluation of 

Generalized Polynomial Chaos”, Computational Science -  ICCS 2003, LNCS 2660, 

Proceedings of the 2003 International Conference on Computational Science, Mel­

bourne, Australia, June 2003. Edited by P.M.A. Sloot et al. Vol. 4, pp.346-354, 

Springer-Verlag, 2003.

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Conference A bstracts:

1. D. Xiu, R.M. Kirby and G.E. Karniadakis, “A Semi-Lagrangian Spectral/hp Ele­

ment Method for Advection-Diffusion” , Presented at Finite Element in Flow Prob­

lems 2000, Austin, Texas, April 30-May 4, 2000.

2. D. Xiu and G.E. Karniadakis, “A Semi-Lagrangian Method for DNS with Large 

Time-Stepping” , Presented at the 53rd Annual Meeting of the American Physics 

Society’s (APS) Division of Fluid Dynamics, Washington D.C., November 19-21, 

2000 .

3. D. Xiu and G.E. Karniadakis, “A Semi-Lagrangian Spectral/hp Element Method for 

the Navier-Stokes Equations” , Presented at the International Conference on Spectral 

and High Order Methods 2001 (ICOSAHOM-01), Uppsala University, Sweden, June 

11-15, 2001.

4. D. Lucor, D. Xiu, C.-H. Su and G.E. Karniadakis, “Spectral Representations of 

Uncertainty in Simulations: Algorithms and Applications” , Presented at the Inter­

national Conference on Spectral and High Order Methods 2001 (ICOSAHOM-01), 

Uppsala University, Sweden, June 11-15, 2001.

5. D. Xiu and G.E. Karniadakis, “Modeling Uncertainty in Navier-Stokes Equations via 

Polynomial Chaos” , Presented at the 6th  U.S. National Congress on Computational 

Mechanics (USNCCM), Dearborn, MI, July 31-August 4, 2001.

6. D. Xiu and C.E. Karniadakis, “Modeling Uncertainty in CFD via Generalized Poly­

nomial Chaos” , Presented at the 54th Annual Meeting of the American Physics 

Society’s (APS) Division of Fluid Dynamics, San Diego, CA, November 18-20, 2001.

7. D. Xiu and C.E. Karniadakis, “Modeling Uncertainty via Generalized Polynomial 

Chaos” , Presented at the 2002 SIAM Conference on Optimization, Toronto, Canada, 

May 20-22, 2002.

8. D. Xiu and C.E. Karniadakis, “Modeling Uncertainty by Generalized Polynomial

VII

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chaos” , Presented at the SIAM 50th Anniversary and 2002 Annual Meeting, Philadel­

phia, July 8-12 2002.

9. S. Dong, D. Xiu and G.E. Karniadakis, “Semi-Lagrangian Method for Turbulence 

Simulation”, Presented at the SIAM Conference on Computational Science and En­

gineering, San Diego, CA, February 10-13, 2003.

10. S. Sherwin and D. Xiu, “Sub-stepping and Semi-Lagrangian Formulations of the 

Spectral/hp Element Navier-Stokes Equations” , Presented at the SIAM Conference 

on Computational Science and Engineering, San Diego, CA, February 10-13, 2003.

11. D. Xiu and D.M. Tartakovsky, “Generalized Polynomial Chaos and Random Do­

main Decomposition” , Presented at the NSF workshop on Applications of Modern 

Tools of Mathematics and Physics to Subsurface Hydrology, Purdue University, West 

Lafayette, IN, August 11-15, 2003.

vm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A cknowledgm ents

Finally, my journey as a student has come to an end. As I look back to the past, while 

waiting for what the future will bring, I realize that I have many individuals to thank to.

First of all, my gratitude goes to Professor George Em Karniadakis, my Ph.D. thesis 

advisor at the Division of Applied Mathematics of Brown University. During the years 

I spent at Brown, he has been an understanding mentor and a supportive advisor. His 

vision in science and insight in physics are unparallel, and have been vital to the completion 

of this thesis. I am truly grateful to the encouragement, support and opportunities he 

has provided. His guidance, which is often beyond the scope of academia, has been an 

invaluable asset to me, and is the one I will always treasure.

Secondly, I would like to express my thanks to two of my former advisors. Professor 

Hossein Haj-Hariri was my MS thesis advisor in Mechanical Engineering of the Univer­

sity of Virginia. It was him who taught me how to understand mathematics from a 

physics point of view, and how to associate virtually any concept in fluid dynamics with 

concrete examples. Professor An-Lu Ren was my undergraduate advisor in the Mechanics 

Department of Zhejiang University in China. He introduced me to the field of CFD (Com­

putational Fluid Dynamics), and taught me how to understand computational results by 

literally examining the numbers on the screen in the early days of computers when good 

visualization softwares were scarce.

Thirdly, I would like to express my appreciation to my thesis readers. Professor Roger 

Chanem of Johns Hopkins University, Professor James Climm of SUNY at Stony Brook, 

and Professor David Gottlieb of Brown University, for sparing their precious time and 

providing valuable comments on the thesis. I am also privileged to have had the oppor­

tunity to interact with many of the professors, students and stuff members here in the 

Division. Such interactions have made my life at Brown, both academic life and social life, 

much more enjoyable. Among them, an important part takes place within the CRUNCH 

group. I thank the help I received from several former CRUNCH members. Dr. Spencer 

Sherwin, Dr. Tim War burton. Dr. George Karamanos, Dr. Mike Kirby, and Dr. Xia Ma. 

I would also like to acknowledge the current members, whom I frequently interacted with

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and learned valuable lessons from.

Last but not the least, my utmost gratitude goes to my family members, for their 

unconditionally support throughout the years. My parents, Richen Xiu and Yuhe Gu, 

have guided me to the doorstep of science, and have always believed in me and been 

patient with my progress. On the other side of the family, my loving wife Yvette Shen and 

her mother Meela Shen, have supported me during the Ph.D. years in every possible way, 

and made my life a much better and a much more comfortable one. My special thanks 

also go to my beloved sister, Angela Xiu, and her loving family. My journey to a Ph.D. 

degree would not have been possible without the support of my family.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

A cknow ledgm ents ix

1 Introduction  1

1.1 Illustrative E xam ples..................................................................................................  2

1.2 Review of Probabilistic M e th o d s ........................................................................... 5

1.2.1 Statistical M ethods......................................................................................... 5

1.2.2 Non-statistical M e th o d s ...............................................................................  6

1.3 Objective and O u t l in e ...............................................................................................  7

2 O rthogonal Polynom ials and G eneralized Polynom ial Chaos 10

2.1 The Askey Scheme of Orthogonal Polynom ials.....................................................  10

2.1.1 Orthogonal Polynom ials...............................................................................  11

2.1.2 The Askey S chem e.........................................................................................  12

2.2 Representation of Stochastic P ro cesses ....................................................   14

2.2.1 Karhunen-Loeve E x p a n s io n ........................................................................   14

2.2.2 Wiener-Hermite Expansion  ............................................................... 15

2.3 Generalized Polynomial Chaos    • • 17

2.3.1 Construction and Properties ...................................................................... 17

2.3.2 Representation of Random V ariab les........................................................  19

2.3.3 Representation of Random P rocesses............................................................ 23

2.3.4 Solutions of Stochastic E quations ...................................................................24

2.3.5 Application to Stochastic Ordinary Differential E q u a tio n s .......................25

XI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 Elliptic Equations 36

3.1 Stochastic Formulations and a Block-Jacobi Iterative A lgorithm ........................ 37

3.2 Numerical E x a m p le s .....................................................................................................39

3.2.1 One-Dimensional Model P ro b le m ..............................................................39

3.2.2 Two-Dimensional Model P rob lem ..............................................................43

3.2.3 Random Heat Conduction in a Grooved C h a n n e l................................... 52

3.3 Problems with Random Boundary; Roughness .  ..............................................54

4 Parabolic Equations 57

4.1 Stochastic Formulation with Uncertain Diffusivity ..............................................57

4.2 Well-posedness of Generalized Polynomial Chaos E xpansion .........................  58

4.2.1 Gaussian Input and H erm ite-chaos............................................................... 62

4.2.2 Beta Input and Jacobi-chaos .........................................................................64

4.2.3 Gamma Input and L aguerre-chaos............................................................... 66

4.2.4 D iscussion.............................................................................................................69

4.3 Applications to Transient Heat C o n d u c tio n ...........................................................70

4.3.1 A lgorithm ......................................................................................................... 70

4.3.2 Random Heat Conduction in an Electronic C h i p .................................  74

5 A dvection-D iffusion Equation 83

5.1 Linear Advection-Diffusion .........................................................................................83

5.1.1 Model problem: convergence ......................................................................... 84

5.1.2 Results with two-dimensional ‘truncated’ Gaussian input .......................92

5.2 Nonlinear Advection-Diffusion: Burgers’ Equation .............................................. 96

5.2.1 Deterministic Supersensitivity......................................................................... 97

5.2.2 Stochastic Supersensitivity ...........................................................................101

6 Incom pressible N avier-Stokes Equations 116

6.1 Stochastic Form ulation...............       116

6.1.1 Governing E quations ........................................................................................116

6.1.2 Numerical Formulation ................................................................................. 117

XU

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.2 MicroChannel F lo w ..................................................................................................... 119

6.2.1 Uniform Boundary Conditions ...................................................................119

6.2.2 Non-uniform Boundary C on d itio n s .............................................................121

6.3 Flow Past a Circular C ylinder..................................................................................126

6.3.1 Onset of in stab ility ..........................................................................................126

6.3.2 Vortex S h e d d in g .............................................................................................128

6.4 Flow in a Grooved C h a n n e l .....................   129

7 Sum m ary 138

A  Some Im portant O rthogonal Polynom ials in A skey-schem e 141

A .l Continuous P o lynom ials ............................................................................................ 142

A.1.1 Hermite Polynomial Hn{x) and Gaussian D is tr ib u tio n .........................142

A. 1.2 Laguerre Polynomial L ^ \ x )  and Gamma D istribu tion .........................142

A.1.3 Jacobi Polynomial and Beta D is trib u tio n .................................143

A.2 Discrete Polynom ials...................................................................................................144

A.2.1 Charlier Polynomial Cn{x-,a) and Poisson D is trib u tio n .........................144

A.2.2 Krawtchouk Polynomial A „(x;p, A) and Binomial Distribution . . . 145 

A.2.3 Meixner Polynomial Mn{x]f3,c) and Negative Binomial Distribution 146 

A.2.4 Hahn Polynomial Qn{x]a, f3,N) and Hypergeometric Distribution . 147

B E stim ation o f th e  Largest Zero o f H erm ite Polynom ials 149

C The Truncated G aussian M odel G{a, (3) 151

D N um erical R esults for Supersensitiv ity  o f B urgers’ Equation 154

D .l Numerical Results for Deterministic Supersensitiv ity ........................................ 154

D.2 Numerical Results for Stochastic Supersensitivity ............................................... 154

xm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

1.1 Solution profile of Burgers’ equation subject to perturbation of the left

boundary condition......................................................................................................  3

2.1 The Askey scheme of hypergeometric orthogonal polynomials..........................  14

2.2 Approximation of exponential distribution with Hermite-chaos; Left: The

expansion coefHcients, Right: The PDF of different orders of approxima­

tions..................................................................................................................................... 21

2.3 PDF of approximations of beta distributions by Hermite-chaos; Left: a —

P = 0, the uniform distribution, Right: a  =  2, /3 =  0..............................................22

2.4 Solution with Gaussian random input by 4th-order Hermite-chaos; Left:

Solution of each random mode, Right: Error convergence of the mean and

the variance........................................................................................................................27

2.5 Solution with Gamma random input by 4th-order Laguerre-chaos; Left:

Solution of each mode (a =  0: exponential distribution). Right: Error 

convergence of the mean and the variance with different a ................................... 28

2.6 Solution with Beta random input by 4th-order Jacobi-chaos; Left: Solution 

of each mode (a  =  /3 =  0: Legendre-chaos), Right: Error convergence of

the mean and the variance with different a  and P ...................................................29

2.7 Solution with Poisson random input by 4th-order Charlier-chaos; Left: So­

lution of each mode (A =  1), Right: Error convergence of the mean and the 

variance with different A.................................................................................................30

XIV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.8 Solution with binomial random input by 4th-order Krawtchouk-chaos; Left: 

Solution of each mode (p =  0.5, N  =  5)), Right: Error convergence of the 

mean and the variance with different p  and N ......................................................... 31

2.9 Solution with negative binomial random input by 4th-order Meixner-chaos;

Left: Solution of each mode (/? =  1, c =  0.5)), Right: Error convergence of

the mean and the variance with different j3 and c....................................................32

2.10 Solution with hypergeometric random input by 4th-order Hahn-chaos; Left: 

Solution of each mode {a = /3 = 5, N  = 4)), Right: Error convergence of

the mean and the variance with different a, (3 and N ............................................. 33

2.11 Error convergence of the mean solution of the Laguerre-chaos and Hermite- 

chaos to stochastic ODE with random input of the exponential distribution 34

3.1 Convergence of Jacobi-chaos for the one-dimensional model problem...........41

3.2 Convergence of Hermite-chaos for the one-dimensional model problem. . . . 42

3.3 Convergence of Charlier-chaos for the one-dimensional model problem. . . . 42

3.4 Convergence of Krawtchouk-chaos for the one-dimensional model problem. . 43

3.5 Eigenvalues of KL decomposition with Bessel correlation function (3.20),

6 =  20.......................................................................................................................... 46

3.6 Eigenfunctions of the KL decomposition with the Bessel correlation func­

tion (3.20), b =  20; Left: first eigenfunction, Right: second eigenfunction. 

(Dashed lines denote negative v a lu e s .) .............................................................46

3.7 Eigenfunctions of the KL decomposition with the Bessel correlation func­

tion (3.20), b =  20; Left: third eigenfunction, Right: fourth eigenfunction. 

(Dashed lines denote negative v a lu e s .) .............................................................47

3.8 Two-dimensional model problem: uniform random distribution and Legendre- 

chaos; Left: Mean solution along the horizontal centerline. Right: Close-up 

view................................................................  48

3.9 Two-dimensional model problem: uniform random distribution and Legendre- 

chaos; Left: Variance along the horizontal centerline, Right: Close-up view. 48

XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.10 Two-dimensional model problem: Gaussian random distribution and Hermite- 

chaos; Left: Mean solution along the horizontal centerline, Right: Close-up 

view..................................................................................................................................... 49

3.11 Two-dimensional model problem: Gaussian random distribution and Hermite- 

chaos; Left: Variance along the horizontal centerline, Right: Close-up view. 50

3.12 Two-dimensional model problem: Poisson random distribution and Charlier- 

chaos; Left: Mean solution along the horizontal centerline, Right: Close-up 

view...................................................................................    50

3.13 Two-dimensional model problem: Poisson random distribution and Charlier- 

chaos; Left: Variance along the horizontal centerline, Right: Close-up view. 51

3.14 Two-dimensional model problem: binomial random distribution and Krawtchouk-

chaos; Left: Mean solution along the horizontal centerline, Right: Close-up 

view..................................................................................................................................... 51

3.15 Two-dimensional model problem: binomial random distribution and Krawtchouk-

chaos; Left: Variance along the horizontal centerline, Right: Close-up view. 52

3.16 Schematic of the domain of the grooved channel...............................................  53

3.17 Standard deviations of heat conduction in the grooved channel; Left: solu­

tion subject to random diffusivity only; Right: solution subject to random 

diffusivity and random boundary conditions............................................................. 54

3.18 Schematic of the mapping of a uncertain domain................................................... 56

3.19 Mean square error convergence for a model problem with uncertain boundary. 56

4.1 Critical expansion order (N) versus a for the well-posedness of Hermite-

chaos (p =  1)................................................................    65

4.2 Critical expansion order (N) versus a for the well-posedness of Laguerre-

chaos (p =  1, a  =  0) .........................................................................................................68

4.3 Schematic of the domain of the chip geometry. It consists of 16 spectral

elements of order 6*̂  (7 points).................................................................................... 75

4.4 Eigenmodes of the correlation field. Left: the first eigenmode; Right: the

second eigenmode............................................................................................................. 75

XVI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.5 Contours of temperature distribution in the electronic chip at steady state

(case 1). Left: mean field; Right: standard deviation..............................................76

4.6 Temperature evolution at reference points (case 1). Left: mean tempera­

ture; Right: COV (coefficient of variance)................................................................. 77

4.7 Time evolution of cross-correlation coefficients between reference point A

and other points (case 1)................................................................................................ 77

4.8 Contours of tem perature distribution in the electronic chip (unsteady state

at t =  1, case 2). Left: mean field; Right: standard deviation.  ................. 77

4.9 Temperature evolution at reference points (case 2: unsteady problem). Left:

mean temperature; Right: COV (coefficient of variance)....................................... 78

4.10 Time evolution of cross-correlation coefficients between reference point A

and other points (case 2: unsteady problem).............................................................78

4.11 Stochastic solution at reference points (case 2: unsteady problem)......................79

4.12 Comparison of results obtained by Monte Carlo simulation and generalized 

polynomial chaos expansion. Left: evolution of cross-correlation coefficients 

at reference points for case 1 (20,00 realizations for MCS); Right: evolution

of COVs at reference points for case 2 (150,000 realizations for MCS). . . . 80

4.13 Temperature COV evolution at reference points. Left: random capacity 

only; Right: random conductivity o n ly ...................................................................... 81

4.14 Evolution of cross-correlation coefficient between reference point A and the 

other points. Left: random capacity only; Right: random conductivity only. 82

5.1 L°° error of Legendre-chaos with uniform random input at T  =  Stt...................85

5.2 L°° error of Jacobi-chaos with i3e(^°’̂ °^(-l, 1) random input at T  =  Stt. . . 86

5.3 L°° error of Hermite-chaos with Gaussian random input at T  =  Stt.................. 86

5.4 PDF of the peak solution a t T  =  tt with Gaussian input and Hermite-chaos

expansion................................................................   87

5.5 L°° error of Jacobi-chaos with truncated Gaussian random input

at T  =  37t .............................................................................................   88

5.6 PDF of the peak solution at T  =  tt with input and Jacobi-chaos

expansion............................................................................................................................ 89

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.7 Error bars of the evolution of the peak solution with input and 

Jacobi-chaos expansion. The circles represent the stochastic mean solution

and the dotted line the deterministic solution...........................................................89

5.8 Jacobi-chaos solution with random input at T  =  0 . 57t . Left: mean

solution; Right: variance................................................................................................ 90

5.9 Jacobi-chaos solution random input at T  = t v . Left: mean solution;

Right: variance................................................................................................................. 90

5.10 Jacobi-chaos solution random input at T  =  I.Ott. Left: mean solu­

tion; Right: variance 91

5.11 Jacobi-chaos solution random input at T  =  2tt. Left: mean solu­

tion; Right: variance 91

5.12 Jacobi-chaos solution random input at T  =  2 . 57t . Left: mean solu­

tion; Right: variance 91

5.13 Jacobi-chaos solution random input at T  =  S tt. Left: mean solu­

tion; Right: variance 92

5.14 Error bars of the evolution of the peak solution with two-dimensional ‘trun­

cated’ Gaussian input and Jacobi-chaos expansion. The circles represent

the stochastic mean solution and the dotted line the deterministic solution. 93

5.15 Jacobi-chaos solution with 2D-Gaussian random input at T  =  O.bn. Left: 

mean solution; Right: variance......................................................................................93

5.16 Jacobi-chaos solution of 2D-Gaussian random input at T  =  tt. Left: mean 

solution; Right: variance.................................................................................................94

5.17 Jacobi-chaos solution of 2D-Gaussian random input at T  =  l.hrr. Left: 

mean solution; Right: variance......................................................................................94

5.18 Jacobi-chaos solution of 2D-Gaussian random input at T  =  2yr. Left: mean 

solution; Right: variance............................................................................   94

5.19 Jacobi-chaos solution of 2D-Gaussian random input at T  =  2 .57t . Left: 

mean solution; Right: variance.......................................   95

5.20 Jacobi-chaos solution of 2D-Gaussian random input at T  — 3n. Left: mean 

solution; Right: variance.................................................................................................95

xvm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.21 Stochastic solutions by Legendre-chaos with S ~  [/(0,0.1) and n =  0.05.

The upper and lower bounds are the deterministic solutions corresponding

to the bounds of the random inputs, 5 = 0.1 and <5 =  0, respectively. . . . . 105

5.22 Stochastic solutions by Legendre-chaos with 5 ~  ?7(0,0.1) and u = 0.1.

The upper and lower bounds are the deterministic solutions corresponding

to the bounds of the random inputs, <5 =  0.1 and <5 =  0, respectively. . . . .  105

5.23 Probability density functions at various locations for <5 C/(0,0.1) and

1/ =  0.05. Gibb’s oscillations are present at x =  0.6 and 0.5..................................107

5.24 Probability density functions at various locations for <5 ~  17(0,0.1) and

1/ =  0.1.............................................................................................................................. 107

5.25 Probability density functions at a; =  0.6 and x  =  0.9 for <5 ~  17(0,0.1) and 

1/ =  0.05 by Monte Carlo simulation and Legendre-chaos expansion. (The 

oscillations at x =  0.9 are due to Gibb’s phenom enon.)....................................... 108

5.26 Probability density functions at x =  0.7 and x  =  0.8 for 6 ~  17(0,0.1) and

u =  0.05 by Monte Carlo simulation and Legendre-chaos expansion................. 108

5.27 Stochastic solution by Jacobi-chaos {a = P = 10) with 6 ~  (0,0.1)

and u =  0.05. The upper and lower bounds are the deterministic solutions 

corresponding to the bounds of the random inputs <5 =  0.1 and J =  0, 

respectively.................................................................................................................... I l l

5.28 Stochastic solution by Jacobi-chaos (<a =  /5 =  10) with 6 ~  C(^°dO)^Q^o.l) 

and V = 0.1. The upper and lower bounds are the deterministic solutions 

corresponding to the bounds of the random inputs <5 =  0.1 and <5 =  0, 

respectively...................................................................................................................... I l l

5.29 Probability density functions at various locations (<5 ~  (0,0.1) and

V =  0.05)...........................................................................................................................112

5.30 Probability density functions at various locations (J ~  and
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Chapter 1

Introduction

During the last four decades, computer simulations of physical processes have been in­

creasingly used in scientific research and in the analysis and design of engineering sys­

tems. Because of the impact tha t simulation predictions can have, the credibility of 

computational results is of great concern, and there has been an intense interest in 

verification and validation of large-scale simulations and in uncertainty quantification 

[1, 45, 46, 47, 53, 87, 93, 94, 107, 108, 137],

Characterization of uncertainty is a complex subject in general, but it can be roughly 

classified as numerical uncertainty and physical uncertainty. The former includes spa- 

tiotemporal discretization errors, errors in numerical boundary conditions (e.g., outflow), 

errors in solvers or geometry description, etc. On the other hand, physical uncertainty 

includes errors due to unknown boundary and initial conditions, imprecise transport coef­

ficients or interaction terms, insufficient knowledge of the geometry, approximate constitu­

tive laws, etc. There are also coupled problems involving source and interaction terms and 

are difficult to simulate even deterministically, so providing error bars for such solutions 

is even more difficult.

With regards to numerical uncertainty, accuracy tests and error control have been 

employed in simulations for the modern discretizations. High-order, high-resolution nu­

merical methods are used in increasingly more applications to reduce the discretization 

errors. Also, a posteriori error bounds and estimates are available in some cases for better 

error control. W ith regards to physical uncertainty, it is only recently tha t a systematic
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effort has been made to address it. The common practice in engineering is to analyze 

systems based on deterministic mathematical models with precisely defined input data. 

However, such ideal conditions are rarely encountered in practice, and there is a need to 

address physical uncertainty in real systems. The purpose of uncertainty quantification is 

to identify and quantify each source of uncertainty and to assess their integrated effect on 

the simulation results. Because incomplete knowledge of the properties of complex sys­

tems often leads to a probabihstic description of each source of uncertainty, uncertainty 

quantification is naturally a concept of stochastic modeling, and there has been a growing 

interest in developing probabilistic methods.

1.1 Illustrative Examples

In this section, we present two examples to illustrate the effect of uncertainty on physical 

systems. First, we demonstrate, through the viscous Burgers’ equation, that a small 

perturbation on the boundary condition can lead to a much larger response in the solution. 

Next, we show, via a simple model of hyperbolic system, tha t introducing randomness into 

the system could change the mathematical nature of the governing equation.

Consider a one-dimensional viscous Burgers’ equation

Ui UUx — l^Uxxi X €. [ 1,1], (11)

u { - l )  =  1 -t- u ( l)  = - 1 ,

where <5 > 0 is a small perturbation to the left boundary condition {x =  —1) and u > 0 

is the viscosity. The solution has a transition layer, which is a region of rapid variation 

and extends over a distance 0(i/) as r* |  0. The location of the transition layer z, defined 

as the zero of the solution profile u{z) = 0, varies with time, and its eventual location at 

steady state is sensitive to the boundary data.

In figure 1.1, we show two solutions with viscosity u =  0.05, computed by high-order 

spectral/hp method ([63]) with five non-uniform meshes as shown in the figure. The

dashed line corresponds to  the solution with no perturbation {S = 0), and the solid line

to a small deterministic perturbation (5 =  0.01). We observe tha t with a perturbation
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Figure 1.1: Solution profile of Burgers’ equation subject to perturbation of the left bound­
ary condition.

as small as 0.01, the location of the transition layer moves from z = 0 (dashed line) to 

z =  0.73746 (solid line), i.e. by a 0(1) change. This example shows the impact a small 

perturbation on input can make.

If we assume tha t the perturbation on the left-side boundary condition is uncertain 

and model it as a random number, then the system (1.1) becomes stochastic. In table 1.1, 

the mean location of the transition layer [z] and its standard deviation (cr )̂ are shown. 

They are obtained by assuming <5 6 (0,0.1) is a uniform random number between (0,0.1) 

and V =  0.05. The results of several methods are shown, along with their computational 

cost normalized by the cost of one deterministic simulation. Specifically, interval analysis 

deals with the maximal output bounds, and is straightforward to apply to this problem

However, it does not provide any statistical information of the solution. The results 

from perturbation methods are noticeably different from the accurate solution obtained 

by Monte Carlo simulation with 10, ODD realizations. In addition, the fourth-order pertur­

bation method does not yield any improvement over the first-order method. This suggests

^For this problem, we only need to conduct one simulation corresponding to the maximum input of 
(5 =  0.1 to determine the maximum output. In general, however, such monotonic dependence between input 
and output does not exist, and a systematic search in the input range is needed to locate the maximum 
response.
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Method {Z, (Tz) Cost (unit)
Interval analysis N/A <  2

First-order perturbation method (0.823,0.349) ~  2
Fourth-order perturbation method (0.824,0.328) ~  5

Fourth-order Legendre-chaos (0.814,0.414) ~  5
Monte Carlo simulation (0.814,0.414) ~  10,000

Table 1.1: Stochastic solutions and computational cost of different methods for Burgers’ 
equation with uncertain boundary condition. (One unit of cost corresponds to the cost of 
one deterministic simulation.)

that the perturbation method converges slowly, if at all. The Legendre-chaos method, 

one of the subsets of the generalized polynomial chaos, accurately resolves the solution 

statistics. At fourth-order, its cost is about the same as the fourth-order perturbation 

method and is much less than the Monte Carlo method. This illustrative example reveals 

the promise of generalized polynomial chaos for stochastic modeling, which is the focus of 

this thesis. (More details of computations of stochastic Burgers’ equation can be found in 

section 5.2 of this thesis; see also [134].)

Dealing with noises in physical systems requires new formalism and effective tools to 

handle the mathematical complexity. The following example serves as a demonstration.

Consider a one-dimensional hyperbolic system,

where

u =  [ui,U2 ] ^ , F{u) = [u2 , a ‘̂ ui] , a ^  0. (1.3)

The Jacobian is
0 1 

0
(1.4)

This is a strongly hyperbolic system with eigenvalue Ai,2 =  ± a . Now assume tha t the 

system is subject to random input and the flux takes the form F(u) — [u2 {l + e{u>)),
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where e(uj) is a random variable. The stochastic Jacobian becomes

A(u)  =
0 1 + e

0
(1.5)

The eigenvalues are Ai,2(w) =  a-y/l +  e(w). It is clear tha t the stochastic problem is 

weakly (strongly) hyperbolic if e > —l(e > —1). Therefore, while the original deterministic 

problem is always hyperbolic, the stochastic problem is not whenever the random variable 

e{oj) has support within (—oo, —1), e.g. a Gaussian distribution.

This example shows that under stochastic assumptions, the properties of the governing 

equations may change and we need to pay extra attention in studying such problems.

1.2 Review of Probabilistic M ethods

Many methods have been developed to solve stochastic systems. In this section, we briefly 

review the techniques that are more popular in engineering applications. Following [76], 

these methods can be broadly classified into two major categories: methods using a sta­

tistical approach and methods using a non-statistical approach.

1 .2 .1  S ta tis t ic a l M eth o d s

The statistical approach includes Monte Carlo simulation, stratified sampling, Latin hy­

percube sampling, etc (cf. [30]). These methods involve sampling and estimation and 

in most cases are straightforward to  apply. The accuracy of Monte Carlo method is not 

dependent on the dimensionality of the system but, rather, on the number of realizations 

used to characterize the system. For the interested reader, a wide range of literature 

describing the methodology, tools, and the applicability of the Monte Carlo methods is 

available [11, 24, 26, 30, 35, 49, 59, 103, 109, 115]. Since the accuracy of the sampling 

techniques depends on the sample size, in accordance with the ‘weak law of large num­

ber’, simulations can become prohibitively expensive, especially for the systems th a t are 

already complicated in the deterministic case. Also, it is not suited to assessing the low 

probability domain of the stochastic response, as a large number of realizations will be
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required. To accelerate convergence, several techniques have been developed, for example, 

Latin Hypercube Sampling [80, 116], Quasi-Monte Carlo (QMC) method [31, 91, 92], 

Markov Chain Monte Carlo method (MCMC) [32, 44, 82], Response Surface method 

(RSM) [12, 13, 29, 102, 104, 113], etc. These methods can improve the efficiency of 

the brute-force Monte Carlo method. However, additional restrictions are imposed based 

their specific designs and the applicability of these methods is limited.

Statistical methods will not be the focus of this thesis.

1.2 .2  N o n -s ta t is t ic a l M eth o d s

Recently, more research effort has been made in developing non-statistical methods. The 

most popular method is perturbation method, where a random field is expanded via Taylor 

series around its mean and truncated at certain order. Typically, at most second-order 

expansion is employed because the system of equations becomes extremely complicated 

beyond second-order. This approach, also called the ‘second moment analysis’ [75, 76, 77], 

has been used extensively in various fields [51, 52, 64, 74, 78, 121, 139]. An inherent 

limitation of perturbation methods is tha t the uncertainties cannot be too large, i.e., the 

deviations of the random fields cannot be too large compared with their mean values, e.g., 

typically less than 10% Also, higher-order statistics are not readily available for second 

moment methods.

Another approach is based on the manipulation of the stochastic operators. Methods 

along this line of approach include Neumann expansion, which is based on the inverse of 

the stochastic operator in a Neumann series [114, 136, 138], and the weighted integral 

method [22, 23, 118, 119]. These methods have limitations on the type of model equations 

they can address, and they are also restricted to small uncertainties.

Another methodology of the non-statistical type is to ‘discretize’ directly a random 

field in the random space. Ghanem and Spanos pioneered a polynomial chaos expansion 

method and have successfully applied it to various problems in mechanics [43]. The poly­

nomial chaos expansion is based on the homogeneous chaos theory of Wiener [124] and is

‘̂ Note that this requirement needs to be satisfied by not only the stochastic inputs, but also the stochastic 
outputs. This is especially difficult to verify a priori  for nonlinear problems as small random inputs may 
result in large responses, as demonstrated by our example of Burgers’ equation in section 1.1.
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7

essentially a spectral expansion of the random variables. It allows high-order representa­

tion and promises fast convergence; coupled with Karhunen-Loeve decomposition for the 

stochastic input [79] and Galerkin projection in the random space, it results in computa­

tionally tractable algorithms for large engineering systems [37, 38, 39, 41, 42, 43, 71, 73]. 

Other applications and analysis, including the limitation of Wiener-Hermite expansion, 

can be found in [2, 17, 54, 83, 84, 85, 98]. More recently, a theoretical framework of 

discretizing random fields via the finite element approach, i.e. piecewise polynomials, was 

proposed in [5, 6, 21].

The classical polynomial chaos expansion is based on the Hermite polynomials in terms 

of Gaussian random variables. Although, in theory it converges to any L 2 functionals in 

the random space [14], it achieves optimal convergence rate only for Gausian and near 

Gaussian random fields [130], and does not readily apply to random fields with discrete 

distributions. A more general framework, called the ‘generalized polynomial chaos’ or the 

‘Askey-chaos’, was proposed in [130], following the more fundamental work on stochastic 

theory [95, 111] and orthogonal polynomials [3, 65]. Here the polynomials are chosen 

from the hypergeometric polynomials of the Askey scheme [3], and the underlying random 

variables are not restricted to Gaussian random variables. Instead, the type of random 

variables are chosen according to the stochastic input, and the weighting function of the 

random input determines the type of orthogonal polynomials to be used. The convergence 

properties of different bases were studied in [130] and exponential convergence rate was 

demonstrated for model problems. Applications to stochastic ODE, PDE, Navier-Stokes 

and flow-structure interactions have been reported, along with convergence for model prob­

lems in [122, 129, 130, 131, 132, 134, 135]. More recently, another generalized polynomial 

chaos expansion based on wavelets was proposed in [72].

1.3 Objective and Outline

The objective of this thesis is to give a comprehensive introduction of the theory of gen­

eralized polynomial chaos and examine its properties. Various stochastic systems are to 

considered, and the pros and cons of generalized polynomial chaos will be shown via these
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applications.

In chapter 2, we review the fundamental theory of orthogonal polynomials, in partic­

ular, the Askey scheme of hypergeometric polynomials. After discussing the two popular 

representation techniques for stochastic processes, the Karhunen-Loeve expansion and the 

Wiener-Hermite expansion, we present the construction of generalized polynomial chaos. 

The techniques of representing a random variable and random process are discussed, and 

the outline of applying generalized polynomial chaos to a general stochastic system is 

presented. At the end of this chapter, we show convergence and efficiency of generalized 

polynomial chaos by solving a model stochastic ordinary differential equation.

In chapter 3, we consider the elliptic equation with uncertain inputs, i.e., random 

diffusivity, source term, and/or boundary conditions. An efficient block-Jacobi iterative 

algorithm is constructed to solve the coupled deterministic equations from the generalized 

polynomial chaos expansion. Several appfications with diffusivity and source terms being 

random fields are solved via multi-dimensional chaos expansion. Finally, we propose a 

random mapping technique to tackle problems with uncertain boundary.

The parabolic equation, i.e., unsteady diffusion equation, is considered in chapter 4. In 

the first part, we apply the generalized polynomial chaos expansion to a simple diffusion 

equation with constant random diffusivity. The well-posedness of the semi-discrete system 

of equation resulted from the chaos expansion is studied. It is shown tha t Hermite- 

chaos expansion is ill-posed beyond a critical expansion order, due to the inappropriate 

Gaussian assumption on the random diffusivity. The lower and upper bounds of this 

critical expansion order are estimated via polynomial theory. On the other hand, the 

Jacobi-chaos is always well-posed as long as the support of diffusivity remains positive. 

Similar study on Laguerre-chaos is also conducted. In the second part of this chapter, 

the unsteady random diffusion equation is solved in a general setting. We first show 

convergence for a model one-dimensional problem, then apply the algorithm to unsteady 

random heat conduction in an electronic chip.

Chapter 5 includes the study of advection-diffusion equations. We first consider a 

linear advection-diffusion equation with random transport velocity, with a focus on the low 

viscosity cases. Special attention is paid on the solution statistics, including the evolution
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of probability density function (PDF) of the solution. We show tha t the under-resolved 

Hermite-chaos solution may develop long tails which are not physical. In the second part 

of this chapter, we study the nonlinear advection-diffusion, i.e., the Burgers’ equation. The 

supersensitivity of Burgers’ equation, as illustrated in section 1.1, is considered, where a 

detailed numerical study is presented.

Incompressible flow subject to random inputs is the theme of chapter 6. After pre­

senting the numerical procedure for discretizing Navier-Stokes equation via generalized 

polynomial chaos, we show three examples of two-dimensional flow. The first one is a 

microchannel flow driven by pressure drop, where the boundary conditions are random 

processes. Extensive Monte Carlo simulations are conducted to validate the results from 

generalized polynomial chaos. Next we study the effect of uncertainty in boundary condi­

tions on the flow instability. To this end, we focus on an external flow (flow past a circular 

cylinder) and an internal flow (flow in a periodically driven grooved channel).

A summary is in chapter 7 to conclude this thesis, where we also address several 

important open issues in the development of generalized polynomial chaos.
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Chapter 2

Orthogonal Polynom ials and 

Generalized Polynom ial Chaos

In this chapter, we present the constructions and basic properties of generalized polyno­

mial chaos. Because these issues reply heavily on the theory of orthogonal polynomials, we 

first review briefly, in section 2.1, the fundamental properties of orthogonal polynomials 

and Askey scheme. In section 2.2, two important representation techniques for stochastic 

processes are discussed: the Karhunen-Loeve expansion and the Wiener-Hermite expan­

sion. Karhunen-Loeve expansion provides a means of representing stochastic processes 

with reduced dimensionality in random space; Wiener-Hermite expansion is the original 

Wiener’s polynomial chaos. The construction of the generalized polynomial chaos is then 

presented in section 2.3. Techniques to represent an arbitrary random variable and pro­

cess are discussed (section 2.3.2 and 2.3.3), followed by applications to stochastic ordinary 

differential equation (section 2.3.4).

2.1 The Askey Scheme of Orthogonal Polynom ials

The theory of orthogonal polynomials is relatively mature and many books have been 

devoted to their study (e.g. [10, 16, 117]). More recent work has shown that an important 

class of orthogonal polynomials belongs to the Askey scheme of hypergeometric polyno­

mials [3]. In this section, we review the theory of hypergeometric orthogonal polynomials;

10
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we adopt the notation of Koekoek and Swarttouw [65] and Schoutens [112],

2.1.1 O rth o g o n a l Polynom ials

Consider a system of polynomials {Qn{x),n  € N"}, where Qn{x) is a polynomial of exact 

degree n  and M  — { 0 ,1 ,2 ,...  } or J\f = { 0 , 1 , ,  N }  for a finite non-negative integer N.  

Every polynomial Qn(x) of degree n can be expressed in a monic version as

n
Qnjx) = y^gfcX^, n > 0, an 7^ 0 . (2.1)

fc=0

{Qn{x), n € M }  is an orthogonal system of polynomials if

/  Qn{x)Qm{x)w{x)dx -  hlSmn, u ,m  € M  (2.2)
Jx

for continuous x, or in the discrete case

y ]  Qn{x)Qm{x)w{x) =  hlSmn, U,m E N . (2.3)
X

Here w{x) is the weighting function and 6mn is the Kronecker delta. If the normalization 

coefficients h^{x) =  1, the system is called orthonormal.

Orthogonal polynomials {Qn(2;)} satisfy a three-term recurrence relation

Qn+l{x) = (AnX +  Bn)Qn{x) ~ CnQn-^l(x), n  > 0, (2.4)

where An, Cn ^  0 and CnAnAn-i > 0. Together with Q ^i{x)  =  0 and Qo{x) — 1, 

all Qn{x) can be determined by the recurrence relation. Another way of expressing the 

recurrence relation is

xQn{x} — bnQn+l{x^ T  ^nQnix) T CnQn—l{x), XI ^  0, (2.5)

where bn, Cn 7̂  0, Cnfbn-i > 0. An important converse theorem was proven by Favard 

[16].
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T h eo re m  2.1 (Favard’s Theorem). Let An, Bn, and Cn be arbitrary sequences of real 

numbers and let {Qn{a:)} be defined by the recurrence relation

Q n + l ( ^ )  ~  { A n X  -)- B n ' ) Q n i . ^ )  ~~ C n Q n —l ( . x f i  n ~ ^  Q,

together with Qo(x) =  1 and Q^i{x) = 0. Then the {(^„(a:)} are a system of orthogonal 

polynomials i f  and only if An Cn ^  0 , and CnAnAn~i > 0 for all n.

2 .1 .2  The A sk ey  S ch em e

We first introduce the Pochhammer symbol {a)n defined by

( a ) n  =  <
1, if n =  0,

a{a +  1) ■ • • (a +  n — 1), if n =  1, 2,3,.
(2 .6)

In terms of Gamma function, we have

{a)r
r(a +  n)

n > 0.

The generalized hypergeometric series rFg is defined by

{ai)k-

k=Q { b i ) k  • • • {bs) k  k \  ’

(2.7)

(2 .8)

where bi ̂  0 , —1, —2, . . .  for i =  {1, . . . ,  s} to ensure the denominator factors in the

terms of the series are never zero. Clearly, the ordering of the numerator parameters

and of the denominator parameters are immaterial. The radius of convergence p of the 

hypergeometric series is
00 if r  <  s +  1,

1 if r  =  s +  1, (2.9)

0 if r  > s +  1.

Some elementary cases of the hypergeometric series are:

Exponential series qFq,
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• Binomial series i Fq,

•  Gauss hypergeometric series 2-Fi­

l l  one of the numerator parameters a,, i =  1, . . . ,  r is a negative integer, say ai =  —n,

the hypergeometric series (2.8) terminates at the n*^-term and becomes a polynomial in 

z, the hypergeometric orthogonal polynomials,

j-i / 7 , \ (~n)fc • • • (or)fc 1
- - ^  . . .  (6,);  ̂ fc!'  ̂  ̂ ^

The Askey-scheme, which can be represented as a tree structure shown in figure 2.1, 

classifies the hypergeometric orthogonal polynomials and indicates the limit relations be­

tween them. The ‘tree’ starts with the Wilson polynomials and the Racah polynomials on 

the top. They both belong to the class 4F3 of the hypergeometric orthogonal polynomials 

(2.10). The Wilson polynomials are continuous polynomials and the Racah polynomials 

are discrete. The lines cormecting different polynomials denote the limit transition rela­

tionships between them, which imply that polynomials at the lower end of the lines can 

be obtained by taking the limit of one parameter from their counterparts on the upper 

end. For example, the limit relation between Jacobi polynomials and Hermite

polynomials Hn{x) is

a—>oo \ ^ / a  J  2”n!

and between Meixner polynomials M„(x; /3, c) and Charlier polynomials Cn(x;a) is

lim M„ ( x; /3, —^  ) =  C„(x; a).
/3-*oo \  0, +  p  J

For a detailed account of the limit relations of Askey-scheme, the interested reader should 

consult [65] and [112].

The orthogonal polynomials associated with the Wiener-Askey polynomials chaos in­

clude: Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk and Hahn polynomials. 

A survey with their definitions and properties can be found in appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

/ , ( « )

/>(3)

.F,(2)

,F,0)

/.(O) H ennite

C ontinuous
H ahn

Charlier

Dual H ahn

P o llaczek

M eixner
Jacob i

H ahn

R acahW ilson

K rawtchouk

Figure 2.1: The Askey scheme of hypergeometric orthogonal polynomials.

2.2 Representation of Stochastic Processes

2 .2 .1  K a rh u n en -L o ev e  Expansion

The Karhunen-Loeve (KL) expansion is method of representing a random process [79]. 

It is based on the spectral expansion of the correlation function of the process. It is 

particularly useful for the generalized polynomial chaos expansion as it provides a means 

of reducing dimensionality in random space. Let us denote the process by h(x; w) and its 

correlation function by y), where x  and y  are the spatial or temporal coordinates.

The KL expansion then takes the following form;

(2 .11)

where h{x) denotes the mean of the random process, and Ci(cn) forms a set of uncorre­

lated random variables. Also, (pi{x) and Aj are the eigenfunctions and eigenvalues of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

correlation function, respectively, i.e.,

R h h i^ ,y )M y )d y  = (2.12)/
In practice, a finite-term expansion of (2.11) is employed, where the summation is trun­

cated at finite number n. The number of terms n  is determined by the decay of eigenvalues 

from (2.12) to ensure the truncation error is acceptably small. Among other possible de­

compositions of a random process, the KL expansion is optimal in the sense that the 

mean-square error of the finite-term representation is minimized. It provides an effective 

way to represent the input random processes with known correlation function.

2.2 .2  W ie n e r -H e r m ite  E x p a n sio n

Wiener-Hermite expansion is the original polynomial chaos which was first introduced 

by Wiener [124]. It is also termed as the homogeneous chaos. It employs the Hermite 

polynomials in terms of Gaussian random variables. According to a theorem by Cameron 

and M artin [14], it can approximate any functionals in L 2 {C) and converges in the L 2 {C) 

sense, where C  is the space of real functions which are continuous on the interval [0,1] and 

vanish at 0. Therefore, polynomial chaos provides a means for expanding second-order 

random processes in terms of Hermite polynomials. Second-order random processes are 

processes with finite variance, and this applies to most physical processes. Thus, a general 

second-order random process X{ui), viewed as a function of uj, i.e. the random event, can 

be represented in the form

X  (w) =  uqH o
OO

il =  l 
00 i i

T  ^   ̂ ^  ^ ^i\l2 (^tl (^) j (< )̂ )
*1=1 *2 = 1 

OO *1 *2

4 "  "y ^  y  ̂ ^  ^ * 1 * 2 * 3 -^ 3(^*1 (^ ^ )  ) &2 ( ^ ) j  ?*3 ( ^ ) )

*1 =  1 *2 =  1 *3 =  1

+  •• . ,  (2.13)
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where . . .  ,Ci„) denote the Hermite polynomials of order n in terms of the multi­

dimensional independent standard Gaussian random variables 4 =  (Cin ■ i^i„) with zero

mean and unit variance. The above equation is the discrete version of the original Wiener 

polynomial chaos expansion, where the continuous integrals are replaced by summations. 

The general expression of the Hermite polynomials is given by

. . .  £ i j  =  (2.14)

For example, the one-dimensional Hermite polynomials are:

^0  = 1, W i = e ,  = ^3 =  e ' -  3C, . . .  (2.15)

For notational convenience, equation (2.13) can be rewritten as

OO

X (o ;) =  J ] a , - ^ , - ( C ) ,  (2.16)
1=0

where there is a one-to-one correspondence between the functions ■ ■ ■, (i„) and

^'j(^), and also between the coefficients aj and In equation (2.13), the summation

is carried out according to the order of the Hermite polynomials, while in equation (2.16) it 

is simply a re-numbering with the polynomials of lower order counted first. For clarity, the 

two-dimensional expansion is shown here, both in the fully expanded form (see equation 

(2.13))

X { lo) =  qqH q +  a i H i { ^ i )  +  a2Hi{^2)

+  011^^2(6) ^ l)  +  0.2iH2 {^2 , Cl) +  0221^2(^2, 6 )  +  . . . ,  (2.17)

and the simplified form (see equation (2.16))

X (w) = flô O T + U2 ^ 2  + 03^3 0 3 4 + 05^5 + . . .

=  ho +  a i^ i  +  ^2^2 +  h a(^ i — 1) +  a 3(^ i^2) +  %(C2 “  1) +  . . .  (2.18)
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The polynomial chaos forms a complete orthogonal basis in the L 2  space of the Gaussian 

random variables, i.e.,

(2.19)

where Sij is the Kronecker delta and (■, •) denotes the ensemble average. This is the inner 

product in the Hilbert space of the Gaussian random variables

i f i O g m  =  j  m g i m i m -  (2 .20)

The weighting function is

where n  is the dimension of W hat distinguishes the Wiener-Hermite expansion from 

many other possible complete sets of expansions is tha t the polynomials here are or­

thogonal with respect to the weighting function W (^)  which has the form of the multi­

dimensional independent Gaussian probability distribution with unit variance. We will 

use the term Hermite-chaos hereafter to denote the Wiener-Hermite polynomial chaos. 

For more details on the mathematical foundation of Hermite-chaos, see [27, 56, 124]; for 

its reformulation and applications to practical problems, see [39, 43].

2.3 Generalized Polynomial Chaos

2 .3 .1  C o n stru c tio n  an d  P r o p e r tie s

The Hermite-chaos expansion has been quite effective in solving stochastic differential 

equations with Gaussian inputs as well as certain types of non-Gaussian inputs, e.g., 

lognormal distributions [40, 39, 43]; this can be justified by the Cameron-Martin theorem 

[14]. However, for general non-Gaussian random inputs, the convergence may be slow. In 

some cases, the convergence rate is, in fact, severely deteriorated.

In order to deal with more general random inputs, we introduce the generalized poly­

nomial chaos expansion, the Askey-chaos, as a generalization of the original W iener’s 

Hermite-chaos expansion. The expansion basis of the Askey-chaos is formed by the com­

plete set of orthogonal polynomials from the Askey scheme (see section 2.1.2). Similar to
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section 2.2.2, we represent the general second-order random process X {u)  as 

X  (u) =  aolo
OO

+  ^  CiiA(Cii(^))
i l = l  

00 ii

+  y~! Ciit2-^2(Cii C i2(^))
i i= l  i2=l 

00 il

■h Ciii2i3/ 3(Cii(<^)i Ci2(‘̂ )) Cis(‘̂ ))
h  =  l  *2=1 *3 =  1

-I- (2.22)

where /n(C*i, ■ • . ,  Ci„) denotes the Askey-chaos of order n  in terms of the multi-dimensional 

random variables ^ =  (C*d • ■ • j C*n)- Askey-chaos expansion, the polynomials /„  are

not restricted to Hermite polynomials but instead they could be any member of the Askey 

scheme, as shown in figure 2.1. Again for notational convenience, we rewrite equation 

(2.22) as
OO

X(o;) =  X]c,-$,-(C), (2.23)
j = 0

where there is a one-to-one correspondence between the functions /n(C*ii • • • > C*n) 

#j(C), and their coefficients cj and Since each type of polynomials from the

Askey scheme form a complete basis in the Hilbert space determined by their corresponding 

random vector we can expect each type of Askey-chaos to converge to any L 2 functional 

in the L 2 sense in the corresponding Hilbert functional space as a generalized result of 

Cameron-Martin theorem ([14] and [95]). The orthogonality relation of the Askey-chaos 

polynomial chaos takes the form

(2.24)

where Sij is the Kronecker delta and (•, •) denotes the ensemble average which is the inner 

product in the Hilbert space of the variables C

( /(0 5 (C )) =  /  m g i O W i O d C  (2.25)
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or

(/(CWC))=EflC)9(C)W'«) (2.26)
c

in the discrete case. Here W(C) is the weighting function corresponding to the Askey 

polynomials chaos basis see appendix A for detailed formulas. We observe that

some types of orthogonal polynomials from the Askey scheme have weighting functions 

of the same form as the probability function of certain types of random distributions. 

Subsequently, we choose the type of independent variables C in the polynomials {#i(C)} 

according to the type of random distributions as shown in table 2.1. It is clear that the

Random variables C Wiener-Askey chaos {4*i(C}} Support
Continuous Gaussian Hermite-chaos (—oo, oo)

Gamma Laguerre-chaos [0,oc)
Beta Jacobi-chaos [a,b]

Uniform Legendre-chaos [a,b]
Discrete Poisson Charlier-chaos {0, 1, 2, . . . }

Binomial Krawtchouk-chaos {0, 1,
Negative Binomial Meixner-chaos {0, 1, 2, . . . }

Hypergeometric Hahn-chaos {0, 1, . . . , N}

Table 2.1: The correspondence between the type of generalized polynomial chaos and their 
underlying random variables (AT >  0 is a finite integer).

original Wiener polynomial chaos corresponds to the Hermite-chaos and is a subset of 

the Askey-chaos. The Hermite-, Laguerre- and Jacobi-chaos are continuous chaos, while 

Charlier-, Meixner-, Krawtchouk- and Hahn-chaos are discrete chaos. It is worth men­

tioning that the Legendre polynomials, which is a special case of the Jacobi polynomials 

with parameters a  =  /? =  0, correspond to an im portant distribution — the uni­

form distribution. Due to the importance of the uniform distribution, we list it separately 

in the table and term the corresponding chaos expansion as Legendre-chaos.

2 .3 .2  R e p r e se n ta tio n  o f  R a n d o m  V ariab les

Each set of generalized polynomial chaos from table 2.1 can be employed to  approximate 

a random variable, as they all form a complete set of bases. However, the convergence
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properties of such approximations differ significantly in practice. In this section, we demon­

strate the technique to represent a random variable with an arbitrary distribution by a 

chosen generalized polynomial chaos expansion. Such technique was first introduced in 

[130].

Suppose y{iv) is a random variable with continuous distribution function G{y) and 

probability density function (PDF) g{y) tha t satisfies G{y) = J^^g (y )d y .  Let {#(C}} be 

a set of generalized polynomial chaos whose underlying random variable ^ has distribution 

function F(^) and PDF /(^ ) such that F{^) =  /(^)d^. The representation of y takes

the form

=  »  =  (2.27)

Evaluation of the inner product (•, •) in the numerator needs caution as in most cases y 

and ^ belong to two different probability spaces. This difficulty can be circumvented by 

mapping both y and ^ to the space defined by the uniform random variable, i.e.

y{u^) =  (2.28)

where u(oj) € 17(0,1) is the uniform random variable in (0,1). Thus,

This integral is defined the closed domain [0,1] and can be evaluated by Gaussian quadra­

ture with accuracy. The analytical form of the inversion (2.28) is not known in general, 

and numerical inversion is needed.

A pproxim ation o f G am m a distribution  by H erm ite-chaos

Let us assume tha t y(cj) is a random variable with gamma distribution (A.10). We consider 

the specific case of a  =  0. In this case y is an exponential random variable with PDF

f (y )  = y > 0 .  (2.30)
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The inverse of its distribution function F(y) (equation (2.28)) is known as 

h{u) = F~^{u) =  - l n ( l  - u ) ,  u € ?7(0,1). (2.31)

We then use Hermite-chaos to represent y instead of the optimal Laguerre-chaos. The 

random variable ^ in equation (2.27) is a standard Gaussian variable with PDF g{^) =  

The inverse of the Gaussian distribution G{() is known as

Co +  Clt -H C2t^
l{u) = G ^{u) = sign  —

1 + dit + diG  +  d-iF J ’
(2.32)

where

and

t = \J  — In [min(u, 1 — u)]^

CQ =  2.515517, Cl =  0.802853, ca =  0.010328, 

di = 1.432788, da =  0.189269, ds =  0.001308.

The formula is from Hastings [50] and the numeric values of the constants have absolute 

error less than 4.5 x 10~^ (also see [30]).

.S

O
-0,5

index

Figure 2.2: Approximation of exponential distribution with Hermite-chaos; Left: The 
expansion coefficients, Right: The PDF of different orders of approximations.

In figure 2.2 we show the result of the approximation of the exponential distribution by 

Hermite-chaos. The expansion coefficients yi are shown on the left, and we see the major 

contributions of the Hermite-chaos approximation are from the first three terms. The
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PDF of different orders of approximations are shown on the right, together with the exact 

PDF of the exponential distribution. We notice tha t the third-order approximation gives 

fairly good result and fifth-order Hermite-chaos is very close to the exact distribution. 

The Hermite-chaos does not approximate the PDF well at x ~  0 where the PDF reaches 

its peak at 1. In order to capture this rather sharp region, more Hermite-chaos terms are 

needed. On the other hand, if we choose the appropriate generalized polynomial chaos, the 

Laguerre-chaos (see table 2.1), then the first-order expansion can represent the exponential 

random variable exactly.

A pproxim ation o f B eta  d istribution  by H erm ite-chaos

We now assume the distribution of y(w) is a beta distribution (A.17). We return to the 

more conventional definition of beta distribution in the domain [0, 1]

f { y ) :y“(l -  v Y ,  a , P >  -1 , 0 < y < 1, (2.33)
H(q; -j- 1, /3 -|- 1)

where B{p, q) =  r(p )r(y )/F (p  +  q) is the beta function. Figure 2.3 shows the PDF of

Figure 2.3: PDF of approximations of beta distributions by Hermite-chaos; Left: a  =  /? =  
0, the uniform distribution. Right: a  = 2, /3 = 0.

first-, third- and fifth-order Hermite-chaos approximations to the beta random variable. 

The special case of a  — /S =  0 is the uniform distribution. It can be seen tha t the 

Hermite-chaos approximation converges to the exact solution as the number of expansion 

terms increases. Oscillations are observed near the corners of the square. This is in 

analogy with the Gibb’s phenomenon which occurs when Fourier expansions are used to
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approximate functions with sharp corners. Since generalized polynomial chaos can be 

considered as spectral expansions in random space, the oscillations here can be regarded 

as the stochastic Gibb’s phenomenon. For uniform distribution, Hermite-chaos does not 

work very well due to the stochastic Gibb’s phenomenon even when more higher-order 

terms are added. On the other hand, the first-order Jacobi-chaos expansion is already 

exact.

These examples illustrate the flexibility of generalized polynomial chaos. W ith ap­

propriately chosen bases, the generalized polynomial chaos can significantly reduce the 

number of expansion terms, the approximation errors, and subsequently, the computa­

tional effort.

2 .3 .3  R e p r e se n ta t io n  o f  R a n d o m  P r o c e sse s

To represent a stochastic process, the multi-dimensional generalized polynomial chaos 

expansion is needed. The multi-dimensional chaos expansion {^*(|)} takes the tensor 

product form of its corresponding one-dimensional expansions, with each component in 

the random vector ^ =  (Ci,^2) • • •) being independent to the rest. (Equations (2.17) and 

(2.16) demonstrate the two-dimensional expansions for Hermite-chaos.) Thus, in order 

to represent a random process by generalized polynomial chaos, we need to decompose 

the process into functions of independent components ^j. Since each component defines a 

dimension in random space, the total number of needs to be minimized.

To this end, the Karhunen-Loeve can be employed. Following section 2.2.1, for a given 

random process h(x;cj) with correlation function Rhh{x,y), where x  and y are the spatial 

or temporal coordinates, the finite-term KL expansion takes the following form:

n

h{x; uj) =  h(x) -f V^0i(x)Ci(w), (2-34)

where h(x) is the mean of the random process, and ^i(w) forms a set of uncorrelated 

random variables. </>i(x) and Ai are the solutions of the eigen-problem (2.12).

We further assume tha t i =  1, • ■ • , n are independent. The generalized polynomial 

chaos is then a n-dimensional expansion in term  of ^ =  (^i, ■ • • , ^„). It should be noted
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that the (i from KL expansion (2.34) are uncorrelated. Except for the Gaussian distribu­

tion, they are not necessarily independent. As a result of the ‘independence assumption’, 

the model process h(x; u )  may not match the target process h(x; u j )  well. Alternative 

approaches to decompose an input non-Gaussian random process into independent com­

ponents are required, and more research effort is needed. In this thesis, we will adopt the 

‘independence assumption’ for KL decomposition of non-Gaussian processes, similar as in 

[5, 6, 21]. We note tha t this assumption does not intervene in our study of the properties 

of generalized polynomial chaos.

2 .3 .4  S o lu tio n s  o f  S to ch a stic  E q u a tio n s

Let us consider the stochastic differential equation

£(x , t ,  to; u )  =  / ( x ,  t \ u j ) ,  (2.35)

where u ;= u(x, t ;  u j )  is the solution and / (x ,  t ;  u j )  is the source term. Operator C generally 

involves differentiations in space/time and can be nonlinear. Appropriate initial and 

boundary conditions are assumed. The existence of random parameter uj  is due to the 

introduction of uncertainty into the system via boundary conditions, initial conditions, 

material properties, etc. The solution u, which is regarded as a random process, can be 

expanded by the Wiener-Askey polynomial chaos as

M
u{-K,t]uj) = Y ^U i{x ,t)^ i{^{u )) .  (2.36)

2 = 0

Note here the infinite summation has been truncated at the finite term M .  The total 

number of expansion terms is (M  -f 1), and is determined by the dimension (n) of random 

vector ^ and the highest order (p) of the polynomials {4>j};

(M +  1) ^  (2.37)
nlpi
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Upon substituting equation (2.36) into the governing equation (2.35), we obtain

£  ^x, t, w; =  /(x ,  t; u). (2.38)

A Galerkin projection of the above equation onto each polynomial basis {#i} is then 

conducted in order to ensure the error is orthogonal to the functional space spanned by 

the finite-dimensional basis {#i},

£  =  i f , fc =  0,1, • • • , M. (2.39)

By using the orthogonality of the polynomial basis, we can obtain a set of (M  + 1) coupled 

equations for each random mode Uj(x, t) where i = { 0 , 1 , M} .  It should be noted 

that by utilizing the Wiener-Askey polynomial chaos expansion (2.36), the randomness is 

effectively transferred into the basis polynomials. Thus, the governing equations for the 

expansion coefficients U{ resulted from equation (2.39) are deterministic. Discretizations 

in space x  and time t can be carried out by any conventional deterministic techniques, 

e.g., Runge-Kutta solvers in time and finite element method in physical space.

2 .3 .5  A p p lica tio n  to  S to c h a s t ic  O rd in ary  D iffe re n tia l  E q u a tio n s  

We consider the ordinary differential equation

dy{t)
dt

- k y ,  2/(0) =  y, (2.40)

where the decay rate coefficient k is considered to be a random variable k{to) with certain 

distribution and mean value k. The probability function is f{k )  for the continuous case 

or f{k i)  for the discrete case. The deterministic solution is

y{t) =  yoe (2.41)
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and the mean of stochastic solution is

y{t) = y f  e~^^f{k)dk or y(t) = y ^ e ~ ^ ^ ^ f { k i )  (2.42)
J s  i

corresponding to the continuous and discrete distributions, respectively. The integration 

and summation are taken within the support defined by the corresponding distribution.

By applying the Wiener-Askey polynomial chaos expansion (2.23) to the solution y 

and random input k
M  M

y{t) = Y ^ y i m u  k = (2.43)
i=0 i=0

and substituting the expansions into the governing equation, we obtain

M , / v M M

E  =  -  E  E  (2 -« )
1=0 1=0 j=Q

We then project the above equation onto the random space spanned by the orthogonal 

polynomial basis {$i} by taking the inner product of the equation with each basis. By 

taking (.,$ ;) and utilizing the orthogonality condition (2.24), we obtain the following set 

of equations:
ft ( t \  . M M
^  =  - 7 5 2 , E E '^ M ' ‘ -w W ' i =  (2,45)

' I ' i—Q j —o

where Ciji =  Note that the coefficients are smooth and thus any standard ODE

solver can be employed here. In the following the standard second-order Runge-Kutta 

scheme is used.

For the purpose of benchmarking, we will arbitrarily assume the type of distributions 

of the decay parameter k and employ the corresponding Wiener-Askey chaos expansion, 

although in practice there is certainly more favorable assumptions about k depending on 

the specific physical background. Since the only random input is k, the one-dimensional 

chaos expansion is employed, i.e. n =  1 in (2.37). Thus, the total number of expansion

terms is (M -M) =  F  -H 1, where P  is the highest order of polynomials. We define the two
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error measures for the mean and variance of the solution

i(i) =
y{ i )  2/exact (^)

2/exact ( 0

’’{i) ^exact(^)
*^exact(i)

(2.46)

is the variancewhere y{t) — E[y{t)] is the mean value of y{t) and cr{t) = E  (y{t) — y(t))^ 

of the solution. The initial condition is fixed to be y =  1 and the integration is performed 

up to t =  1 (nondimensional time units).

Gaussian D istribution  and H erm ite-chaos

In this section the distribution of k is assumed to be a Gaussian random variable with 

probability density function
1 -x^/2 (2.47)

which has zero mean value {k — 0) and unit variance (cr̂  =  1). The exact stochastic mean 

solution is

m  = (2.48)

The Hermite-chaos from the Wiener-Askey polynomial chaos family is employed as a 

natural choice due to the fact tha t the random input is Gaussian. Figure 2.4 shows the

 V,  —' Yz Va

yj, (m e a n )

I

p

Figure 2.4: Solution with Gaussian random input by 4th-order Hermite-chaos; Left: So­
lution of each random mode, Right: Error convergence of the mean and the variance.

solution by the Hermite-chaos expansion. The convergence of errors of the mean and 

variance as the number of expansion terms increases is shown on semi-log plot, and it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

is seen tha t the exponential convergence rate is achieved. It is also noticed that the 

deterministic solution remains constant as the mean value of k is zero; however the mean 

of the stochastic solution (random mode with index 0, yo) is nonzero and grows with time.

G am m a D istribution  and Laguerre-chaos

In this section we assume the distribution of the decay parameter k is the gamma distri­

bution with PDF of the form

f ( k )  =
e-^k^  

F (a  +  1) ’
0 < k < CO, a > —1. (2.49)

The mean and variance of k are: pk — k = a + 1 and — a  +  1, respectively. The mean 

of stochastic solution is

=  y (H l)5 + T -  (2.50)

The special case of a  =  0 corresponds to another im portant distribution; the exponential 

distribution. Because the random input has a Gamma distribution, we employ the

Vjfmaan)
 Vi

0.75
Tim e

i

P

Figure 2.5: Solution with Gamma random input by 4th-order Laguerre-chaos; Left: So­
lution of each mode {a — 0: exponential distribution), Right: Error convergence of the 
mean and the variance with different a.

Laguerre-chaos as the specific Wiener-Askey chaos (see table 2.1). Figure 2.5 shows the 

evolution of each solution mode over time, together with the convergence of the errors 

of the mean and the variance with different values of param eter a. The special case 

of exponential distribution is included (a =  0). Again the mean of stochastic solution
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and deterministic solution show significant difference. As a becomes larger, the spread 

of the Gamma distribution is larger and this leads to larger errors with fixed number of 

Laguerre-chaos expansion. However, the exponential convergence rate is still realized.

B eta  D istribution  and Jacobi-chaos

We now assume the distribution of the random variable k to be the beta distribution with 

probability density function of the form

(1 -  A;)“ (l +  
2a+/3+i^(a +  l,/3 +  l ) ’ -1 < fc < 1, a ,f3>  - 1 , (2.51)

where is the Beta function defined as B{p, q) =  r(p)r(g)/r(p -f- q). We then

employ the Jacobi-chaos expansion which has the weighting function in the form of the 

Beta distribution. An important special case is a = (3 = 0 when the distribution becomes 

the uniform distribution and the corresponding Jacobi-chaos becomes the Legendre-chaos.

§ 0

• yofmean) '-■ Vi
■ Y3
• y*
■ O e t» rn ^ is t l c  
-±-
0.25

P

Figure 2.6: Solution with Beta random input by 4th-order Jacobi-chaos; Left: Solution of 
each mode (a  =  /3 =  0: Legendre-chaos), Right: Error convergence of the mean and the 
variance with different a  and j3.

Figure 2.6 shows the solution by the Jacobi-chaos. On the left is the evolution of 

all random modes of the Legendre-chaos (a  =  /I =  0) with uniformly distributed random 

input. In this case, k has zero mean value and the deterministic solution remains constant, 

but the mean of stochastic solution grows over time. The convergence of errors of the
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mean and the variance of the solution with respect to the order of Jacobi-chaos expansion 

is shown on the semi-log scale, and the exponential convergence rate is obtained with 

different sets of parameter values a  and /3.

Poisson D istribution  and Charlier-chaos

We now assume the distribution of the decay parameter k to be Poisson of the form

(2.52)

The mean and variance of k are: /ifc =  fc =  A and al = A, respectively. The analytic 

solution of the mean stochastic solution is

y(t) =  *. (2.53)

The Charlier-chaos expansion is employed to represent the solution process and the re-

Vp (mean)

C0.4

OT 0.2

0.25
Time

i

Figure 2.7: Solution with Poisson random input by 4th-order Charlier-chaos; Left: Solu­
tion of each mode (A =  1), Right: Error convergence of the mean and the variance with 
different A.

suits with fourth-order expansion are shown in figure 2.7. Once again we see the noticeable 

difference between the deterministic solution and the mean of stochastic solution. Expo­

nential convergence rate is obtained for different values of param eter A.
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Binom ial D istribution  and K rawtchouk-chaos

In this section the distribution of the random input k is assumed to be binomial

N - k 0 < p  < 1, fe =  0 , l , . . . , i V .  

The exact mean solution of (2.40) is

y{t) =  y [1 -  (1 -  .

(2.54)

(2.55)

3  0,4

0,2

0,75
Time P

Figure 2.8: Solution with binomial random input by 4th-order Krawtchouk-chaos; Left: 
Solution of each mode (p =  0.5, N  = 5)), Right: Error convergence of the mean and the 
variance with different p and N.

Figure 2.8 shows the solution with 4th-order Krawtchouk-chaos. W ith different pa­

rameter sets, Krawtchouk-chaos expansion correctly approximates the exact solution, and 

the convergence rate with respect to the order of expansion is exponential.

N egative B inom ial D istribution  and M eixner-chaos

In this section we assume the distribution of the random input of k is the negative binomial 

distribution

/(fc;/3,c) =  ^ ( l - c ) V ,  0 < c <  1, / 3 > 0 ,  /c =  0, l , . . . . (2.56)
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In case of (3 being integer, it is often called the Pascal distribution. The exact mean 

solution of (2.40) is

y{ t )  = y
I — ce 

1 — c

t \ - P
(2.57)

Vj (maan)
—  y,

= 0.4

(0 o.s
i

Figure 2.9: Solution with negative binomial random input by 4th-order Meixner-chaos; 
Left: Solution of each mode (/3 =  1, c =  0.5)), Right: Error convergence of the mean and 
the variance with different j3 and c.

The Meixner-chaos is chosen since the random input is negative binomial (see table 

2.1). Figure 2.9 shows the solution with 4th-order Meixner-chaos. Exponential conver­

gence rate is observed by the Meixner-chaos approximation with different sets of parameter 

values.

H ypergeom etric D istribution  and H ahn-chaos

We now assume the distribution of the random input k is hypergeometric

A: =  0 , 1 , . . . ,  77, a,j3 > N. (2.58)

In this case, the optimal Wiener-Askey polynomial chaos is the Hahn-chaos (table 2.1). 

Figure 2.10 shows the solution by 4th-order Hahn-chaos. It can be seen from the semi-log 

plot of the errors of the mean and variance of the solution tha t exponential convergence 

rate is obtained with respect to the order of Hahn-chaos expansion for different sets of 

parameter values.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

Vj  (m ea n )

I

Tim e

g

Figure 2.10: Solution with hypergeometric random input by 4th-order Hahn-chaos; Left: 
Solution of each mode {a = P — 5, N  = 4)), Right: Error convergence of the mean and 
the variance with different a, P and N.

Effect of N on-optim al Basis

The flexibility of generalized polynomial chaos is demonstrated in section 2.3.2 for the 

approximation of an arbitrary random variable. Here we further stress this point by solving 

stochastic equations. We return to the stochastic ODE problem (2.40) with exponential 

random parameter k (2.49. If the optimal generalized polynomial chaos is chosen, in this 

case the Laguerre-chaos, only one term is needed to represent k exactly, and the errors 

in numerical solutions decay exponentially fast as the order of expansion increases (see 

figure 2.5). We can expect if the Hermite-chaos is used to solve the differential equation 

in this case, the solution would not retain the exponential convergence as realized by the 

Laguerre-chaos.

In figure 2.11 the errors of mean solution defined by equation (2.46) with Laguerre- 

chaos and Hermite-chaos to the ODE of equation (2.40) are shown. The random input of k 

has exponential distribution which implies tha t the Laguerre-chaos is the optimal Wiener- 

Askey polynomial chaos. It is seen from the result that the exponential convergence rate 

is not obtained by the Hermite-chaos as opposed to the Laguerre-chaos.

Efficiency o f Generalized Polynom ial Chaos

We have demonstrated the exponential convergence of the generalized polynomial chaos 

expansion. From the results above, we notice tha t it normally takes an expansion order
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10'

gUJ
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Figure 2.11; Error convergence of the mean solution of the Laguerre-chaos and Hermite- 
chaos to stochastic ODE with random input of the exponential distribution

P  =  2 ~  4 for the error of the mean solution to reach the order of O(10~^). Equation 

(2.45) shows tha t the Wiener-Askey chaos expansion with highest order of P  results in a 

set of (P  -f-1) coupled DDEs. Thus, the computational cost is slightly more than (P  + 1) 

times of that of a single realization of the deterministic integration. On the other hand, 

if the Monte-Carlo simulation is used, it normally requires O(IO^) ~  0(10®) number of 

realizations to reduce the error of the mean solution to O(10~®). For example, if k is an

exponentially distributed random variable, the error convergence of the mean solution of

the Monte-Carlo simulation is shown in table 2.2.

N  1 X 10^ 1 X 10® 1 X 10  ̂ 1 X 10®
£m ean  4.0 X 10~^ 1.1 X 10~^ 5.1 X 10~® 6.5 X 10~^

Table 2.2: Error convergence of the mean solution by Monte-Carlo simulation: N  is the 
number of realizations and Smean is the error of mean solution defined in (2.46); Random 
input has exponential distribution.

Monte-Carlo simulations with other types of random inputs as discussed in this paper 

have also been conducted and the results are similar. The actual numerical values of the 

errors with given number of realizations may vary depending on the property of random 

number generators used, but the order of magnitude should be the same. Techniques such
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as variance reduction are not used. Although such techniques, if appUcable, can greatly 

speed up Monte-Carlo simulation by an order or more depending on the specific problem, 

the advantage of generalized polynomial chaos expansion is obvious. For the ordinary dif­

ferential equation discussed in this paper, speed-up of order O(IO^) ~  0 (10'̂ ) compared 

with straight Monte-Carlo simulations can be expected. However, for more complicated 

problems where there exist multi-dimensional random inputs, the multi-dimensional gen­

eralized polynomial chaos is needed. The total number of expansion terms increases fast 

for large dimensional problems (see equation(2.37)). Thus the efficiency of the chaos 

expansion can be reduced.
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Chapter 3

Elliptic Equations

The objective of this chapter is to give a broad algorithmic framework to solve stochastic 

elliptic partial differential equations based on the generalized polynomial chaos expansion. 

The class of problems we solve has the form

V  ■ [K{x;ij)'Vu(x]u>)] = f{x;co), {x;u>) e D x Q
(3.1)

u{x-,u;) =  g(x-,uj), € dD  x O

where D is a bounded domain in (d =  1, 2,3) and is a probability space. / ,  g 

and K are R-values functions on D x Q. This can be considered as a model of steady 

state diffusion problems subject to internal (diffusivity k) and/or external (source term 

/  and/or Dirichlet boundary condition g) uncertainties. Babuska was among the first 

to study rigorously existence of solutions of the random Dirichlet problem [4j. Becus k, 

Cozzarelli studied the existence and properties of the general solution to (3.1), see [7, 8, 9]. 

Also, in [5, 6, 21] the problem subject to random diffusivity and/or random source terms 

was studied and existence and uniqueness of the solution in the finite element concept, 

both in physical space and random space, were addressed. Equation (3.1) is also the model 

used for flow in porous media, and a large quantity of literature exist on its probabilistic 

solutions. Most work, however, is based on perturbation methods or moment equations 

approach (of. [18, 19, 90, 127, 126, 137]). Extensive research efforts have also be devoted to 

the evaluation of the ‘effective diffusivity’ or ‘effective permeability’ of the media [100, 101].

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

In this chapter, we solve the steady state diffusion problem (3.1) by generalized poly­

nomial chaos expansion, where the uncertainties can be introduced through k, f ,  or g, or 

some combinations. It is worth noting that when both k and u are random, it is not obvi­

ous how to give a mathematical meaning or justification to the product of two stochastic 

processes if they are not smooth. However, the product is well defined in terms of the 

chaos expansion by using the concept of Wick product and Kondratiev space [54, 85].

3.1 Stochastic Formulations and a Block-Jacobi Iterative 

Algorithm

In this section we present the detailed algorithm for the application of the generalized 

polynomial chaos expansion to equation (3.1). By applying the chaos expansion, we 

expand the variables as

k {x -,u ) =  ^ K j(x )4 > i(0 , u{x;u) = /(x ; w) =  ^ / i ( a ; ) $ j ( ^ ) ,
i=0 i=0 i=0

(3.2)

where we have replaced the infinite summation of ̂  in infinite dimensions in equation (2.23) 

by a truncated finite-term summation of in the finite dimensions of ^ =  (^i , . . . ,  ^n)- 

The dimensionality n of |  is determined by the random inputs. The random parameter u  

is absorbed into the polynomial basis $($), thus the expansion coefficients k{ and Ui are 

deterministic. By substituting the expansion into governing equation (3.1), we obtain

V-
’ M  /  M

i=0 \i=o

M

i—O

Upon simplification, it can be written as

M M  M
+ V K i ( r )  ■ Vuj{x)] =  y ^ / t ( r ) 4»i. (3.4)

i=0 j=0 i=0

A Galerkin projection of the above equation onto each polynomial basis {4>t} is then 

conducted in order to ensure tha t the error is orthogonal to the functional space spanned
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by the finite-dimensional basis {#i}. By projecting with for each A; =  {0 , . . . ,  M} and 

employing the orthogonality relation (2.24), we obtain for each fc =  0 , . . . ,  M,

M M
-t- VKi(x) • Vuj{x)] Cijk =  fk{x){^l ) ,  (3.5)

j=0 j=0

where eyfc =  By defining

M M
=  X ]  hjk{x) =  ' Y l v  Ki{x)eijk = Vbjk{x),

i=0 1=0

we can rewrite the above equation as 

M
[bjk{x)V^Uj{x) + hjk{x) • Vuj{x)]  =  fk{x){^l ) ,  Vfc € [0, M]. (3.6)

i=o

Equation (3.6) is a set of (M  -I- 1) coupled elliptic partial differential equations. These 

equations are deterministic and can be solved by any conventional method, e.g. finite 

elements. In this paper we employ the spectral//ip element method [63]. The total number 

of equations (M  + 1) is determined by the dimensionality of the chaos expansion (n) and 

the highest order (p) of the polynomials {#}, i.e. (M  •+• 1) =  (n -f p)!/(n!p!) from equation 

(2.37).

While it is possible to solve equation (3.6) via a direct solver, we choose to use an 

iterative method to take advantage of the diagonal dominance of the block m atrix B  =  

{bjk}- In particular, we employ a block Gauss-Seidel iteration in the following form: for 

all fc =  0 , . . . ,  M,

bkk{x)'V' ûl'^̂ {x) + hkk{x) • Vu -̂^ îx) =  fk{x){^k)
fc-i

-  X^ \bjk(x)V‘̂ u^'^^{x) -b hjk{x) • V «”+^(a;)

M
-  X^ \p3 k{x)y'^u]{x)  +  hjkix) ■ Vu"(x)] , (3.7) 

j=fc+i

where the superscript n denotes the iteration number. The convergence criterion is defined
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as
\ \u l+\x)  -  ul{x)

< (3.8)

where e is a small positive number and different types of norm || • || can be used. Here the 

Loo norm is used and e is set to be 10~^ ~  10“ .̂ For all the results we present here, the 

block Gauss-Seidel iteration normally converges within about 10 steps. A similar iteration 

technique was used in [2] for stochastic modeling of elasto-plastic body problems with the 

Hermite-chaos and fast convergence was reported too.

3.2 Numerical Examples

In this section we present numerical results of the proposed generalized polynomial chaos 

expansion to stochastic diffusion problem. We first consider an one-dimensional model 

problem where the exact solution is available; then a more complicated two-dimensional 

problem where we use Monte Carlo simulation to validate the chaos solution. Among the 

types of chaos expansions listed in table 2.1, we choose two continuous chaos: Hermite- 

chaos and Jacobi-chaos; and two discrete chaos; Charlier-chaos and Krawtchouk-chaos 

for demonstration purposes. Finally, we solve the random heat conduction problem in a 

grooved channel as an example of a more practical application.

3 .2 .1  O n e-D im en sio n a l M o d e l P ro b lem

Consider the following problem

d
dx

with boundary conditions

du
K(x-,U!) —  {x:iO] 

dx
=  0, x  € [0,1], (3.9)

u(0;u;) =  0, u(l;w) =  1.

The random diffusivity has the form

k {x ;u>) =  1 - f  e{u>)x, (3.10)
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where e(oj) is a random variable, and k (x \u ) > 0. The exact solution to this problem is

J  ln[l  +  e(w)s] / ln [ l  +  e(w)], for e{u) /  0;
Ue{x]Uj) -  < (3.11)

I a:, for e(a;) =  0.

The ‘mean-square’ error of the numerical solution from the generalized chaos expansion 

Up(x,u;) is computed

e 2 {x)  -  [up{x,  to) -  Ue{x,  cn ) ]^  j  ^ ,

where E denotes the ‘expectation’ operator and p is the order of the chaos expansion. 

Specifically, we examine the ‘mean-square’ convergence (L2 convergence in random space) 

of the Loo norm (in physical space) of 62(0;) as p increases.

Jacobi-chaos and B eta  D istribution

We assume e(a>) =  cr^{uj) in equation (3.10) is a beta random variable, where a > 0 

measures the magnitude of input uncertainty and ^(o;) is a standard beta random variable 

in (-1 ,1 )  with PDF (A.17

(1 -  f)“(l + 6)^
/ ( C ;  a ,  /5) =  2 « + / 3 + i B ( a  +  l , / 3  +  l ) ’ C e  [ - 1 , 1 ] ,  a , /?  > - 1 ,

where B{a,f3) is the Beta function defined as B{p,q) = r (p )F (g )/r(p  +  q). The corre­

sponding generalized polynomial chaos, according to table 2.1, is the Jacobi-chaos. An 

important special case is when a  =  /? =  0, then e(cj) becomes an u n i f o r m  random variable 

and the corresponding chaos becomes the Legendre-chaos (see table 2.1).

In figure 3.1 the mean-square convergence of the Jacobi-chaos solution is shown with 

different values of a. It can be seen on the semi-log scale tha t the Jacobi-chaos solution, 

including the Legendre-chaos for uniform random variables, converges exponentially fast 

as the expansion order p increases. The exponential convergence rate is retained for large 

input uncertainty such as <r =  0.9, which is close to the limit of the existence of the solution 

(cr < 1). This is in contrast to the perturbation-based method which normally works for 

a < 0 . 1 .
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1 0 ®
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 A   0*0.1 (aaO, ^*0)
 V   0=0.5 (oaO, P=0)
 B  0=0.9 {ossO, 0=0)

CT=0.1 { as1 ,0 = 3 )
 sjj? 0=0.5 (o » l ,  0=3)
 □ --------0=0.9 (a=1, 0=3)
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P

Figure 3.1: Convergence of Jacobi-chaos for the one-dimensional model problem. 

H erm ite-chaos and G aussian D istribution

We now assume e{u>) =  a^{u)  in equation (3.10), where ^(cj) is a standard Gaussian ran­

dom variabls with zero mean and unit variance. The corresponding generalized polynomial 

chaos is the Hermite-chaos (table 2.1).

While the random input has infinite support and rigorous analysis of the existence 

and uniqueness of the solution is lacking to ensure k{x , uj) >  0 in equation (3.10) in some 

stochastic sense, it is intuitive to assume tha t the solution exists for random input with 

small deviation a. In this paper, we assume a =  0.1 and the mean-square convergence of 

the Hermite-chaos solution is shown in figure 3.2. Again, exponential convergence rate is 

achieved.

Charlier-chaos and Poisson  D istribution

We now assume e(o;) =  cr̂ {Lo) in equation (3.10) is a discrete random variable, where {̂u>) 

has a Poisson distribution

/(e;A) =  e - ^ |^ ,  C - 0 , 1 , 2 , . . . ,  A > 0. (3.12)
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Figure 3.2: Convergence of Hermite-chaos for the one-dimensional model problem.

The corresponding generalized polynomial chaos is the Charlier-chaos (table 2.1). The 

exponential convergence of the Charlier-chaos expansion is shown in figure 3.3 for two 

different values of the parameter A.

I
_r

-Tl

p

Figure 3.3: Convergence of Charlier-chaos for the one-dimensional model problem.
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K rawtchouk-chaos and B inom ial D istribution

In this section e(a;) =  in equation (3.10) is assumed to be a discrete random variable

with binomial distribution, i.e. ^{uj) has PDF

(3.13)

The corresponding generalized polynomial chaos is the Krawtchouk-chaos (table 2.1). Ex­

ponential convergence of the Krawtchouk-chaos expansion can be seen in figure 3.4 with 

different values of the parameters (N, q) .

—A   <7s0,l, N s5 , q=0.5
^ --------a= 0 .1 , N s5 , q=0.2

P

Figure 3.4: Convergence of Krawtchouk-chaos for the one-dimensional model problem.

3 .2 .2  T w o -D im en sio n a l M o d e l P ro b lem  

In this section we consider the two-dimensional problem

V  ■[K{x,y;u)Vu{x,y,u)] = f{x,y-uj),  (x,y)  € [-1 ,1] x [-1 ,1] (3.14)

with boundary conditions

dui du
u{- l , y;uj )  =  1, — (l,y;u;) =  0, u (x , -1 ;  w) =  0, — (x, 1;cj) =  0.
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The diffusivity K{x,y;uj) and source term f{x,y;u>) are stochastic processes with cer­

tain distribution and given correlation function C{xi , yi \X 2 , y^)- The mean fields are: 

K{x,y]oj) = 1 and /(x ,y ;  w) =  0. The Karhunen-Loeve decomposition is applied to the 

correlation function to reduce the dimensionality in the random space; the generalized 

polynomial chaos expansion is then applied to the solution.

The B essel C orrelation Function

The most commonly used correlation function for stochastic processes is the exponential 

function. In the one-dimensional case, it takes the form

C(xi,X2) = e-\^^-^^^^\ (3.15)

where b is the correlation length. This correlation function is the result of first-order 

autoregression

Ct =  < t - i  +  et, a > 0, (3-16)

where is the random series at t =  • • • , —2, —1,0,1, 2, • • • and et is an independent identi­

cally distributed random series. This is a unilateral type of scheme where the dependence 

is extended only in one direction, and it is the simplest realistic time series. For space 

series, a bilateral autoregression is more realistic

Ct =  aCt-i +  b^t+i + £<5 (3.17)

where it is intuitively clear that a and b cannot be too large. It is shown tha t the bilateral 

type of scheme is not necessary in one dimension as it can be effectively reduced to a 

unilateral one [123]. Thus the exponential correlation function can be considered as the 

‘elementary’ correlation in one dimension. It has been used extensively in the literature 

and its Karhunen-Loeve decomposition can be solved analytically [43].

In two dimensions, the exponential correlation function can be written as C(r) — 

where r is the distance between two spatial points. This function has been also used in 

the literature. However, as W hittle pointed out in [123], it is necessary to introduce au­
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toregression schemes with dependence in all directions for more realistic models of random 

series in space. The simplest such model is

(3.18)

where ^st is random field at grid (s, t) and Cst is independent identically distributed random 

field. This model corresponds to a stochastic Laplace equation in the continuous case:

A
dx '"'I) i { x ,y )  = e{x,y), (3.19)

where ^  =  1 /a  —4. The ‘elementary’ correlation function in two dimensions can be solved 

from the above equation:

(3.20)
b  ̂ Vb.

where K \  is the modified Bessel function of the second kind with order 1, b scales as 

the correlation length and r is the distance between two points. On the other hand, the 

exponential correlation function C{r) =  in two dimensions corresponds to a rather 

artificial system

d Y
dy

^(x ,y)  = e(x,y). (3.21)

It is difficult to visualize a physical mechanism which would lead to such a relation. For 

a detailed discussion on this subject, see [123].

In this paper, we employ (3.20) as the correlation function of k and / .  Since no 

analytical solution is available for the eigenvalue problem (2.12) of the Karhunen-Loeve 

decomposition for this correlation function, a numerical eigenvalue solver is employed. 

Figure 3.5 shows the distribution of the first twenty eigenvalues. Here the parameter 6 

is set to 6 =  20. In figure 3.6 and 3.7 the eigenfunctions corresponding to the first four 

eigenvalues are plotted.
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1 0 ’

20
index

Figure 3.5: Eigenvalues of KL decomposition with Bessel correlation function (3.20), b 
20 .

0.399197

0.5-0.5

0.0316553

-0.0316553

-0.5

Figure 3.6: Eigenfunctions of the KL decomposition with the Bessel correlation function
(3.20), b = 20; Left: first eigenfunction, Right: second eigenfunction. (Dashed lines denote 
negative values.)
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LeveJ v4 
6 0.0076245

-0,0015249

-0.5

Figure 3.7: Eigenfunctions of the KL decomposition with the Bessel correlation function
(3.20), b = 20; Left: third eigenfunction, Right: fourth eigenfunction. (Dashed lines 
denote negative values.)

Legendre-chaos and U niform  D istribution

In this section we assume n(x,y]uj) and f{x,y ,oj)  are random fields resulted from the 

Karhunen-Loeve decomposition (2.11) of the Bessel correlation function (3.20), and with 

the underlying random variables having uniform distributions. For computational simplic­

ity, we further assume k and /  are fully cross-correlated. Due to the fast decay of eigenval­

ues as shown in figure 3.5, we choose the first four eigenmodes from the Karhunen-Loeve 

decomposition. This results in a four-dimensional (in random space) chaos expansion. 

The corresponding chaos in this case is the Legendre-chaos (table 2.1).

The spectral/hp  element method is used for spatial discretization. Specifically, an 

array of 5 x 5 elements are used in the domain and sixth-order polynomials are employed 

as the (spatial) expansion basis in each element Numerical tests show that this is sufficient 

to resolve the solution in space. The standard deviations of the random inputs are — 

Of — 0.4. Resolution checks in random space were conducted, and it was shown that 

third-order (p =  3) Legendre-chaos results in converged solution. For 4-dimensional chaos 

(n =  4), the total number of expansion terms is 35 (see equation (2.37)).

Since no analytical solution is available, we employ Monte Carlo simulations to validate 

the chaos solution. Here we conduct the Monte Carlo computation after  the Karhunen- 

Loeve decomposition, i.e., we generate the random number ensemble on the reduced basis 

from the Karhunen-Loeve decomposition. In this way the error from generalized polyno­
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mial chaos expansion is isolated, while the error introduced by the finite-term truncation 

of KL decomposition, which is well-understood, is excluded.

The solution profile along the horizontal centerline through the domain is considered in 

figure 3.8. The mean solution of Legendre-chaos and Monte Carlo simulation with different 

number of realizations are shown, together with the corresponding deterministic solution. 

A noticeable difference between the stochastic mean profile and the deterministic profile 

is observed. In figure 3.9 the variance of the stochastic solution along the horizontal 

centerline is shown. It is seen tha t the Monte Carlo solution converges to the chaos 

solution as the number of realizations increases. Good agreement is obtained with 50, DOG 

realizations.

C h a o s : p=3  
•—  M C: 1 ,0 0 0

M C: 2 0 ,0 0 0  
M C: 5 0 ,0 0 0

—  D otsrm fn lstlc  
C h a o s : p=S 
M C: 1 ,0 0 0  
M C: 1 0 ,0 0 0  
M C: 2 0 ,0 0 0  
M C: 5 0 ,0 0 0

Figure 3.8: Two-dimensional model problem: uniform random distribution and Legendre- 
chaos; Left: Mean solution along the horizontal centerline, Right: Close-up view.

0.05

C h a o s :  p » 3
— MG: 1 ,0 0 0
— M C: 1 0 ,0 0 0  

M C: 2 0 ,0 0 0
— M C: 5 0 ,0 0 0

 M C: 1 ,0 0 0
 M C: 1 0 ,0 0 0
  M C; 2 0 ,0 0 0
  M C: 5 0 ,0 0 0

Figure 3.9: Two-dimensional model problem: uniform random distribution and Legendre- 
chaos; Left: Variance along the horizontal centerline. Right: Close-up view.
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Similar results are obtained for other solution profiles in the domain, for example, the 

vertical centerline.

H erm ite-chaos and G aussian D istribution

We now assume the random field k{x,  y \ w) and f { x , y , u>)  are Gaussian processes with 

cr̂  = a f  = 0.2. All the remaining parameters are the same as the above example. The 

corresponding generalized polynomial chaos is the Hermite-chaos.

The same solution profiles along the horizontal centerline of the domain are shown in 

figure 3.10 and 3.11, for the mean solution and the variance, respectively. In this case, 

a fourth-order Hermite-chaos {p =  4) is required to obtain converged result in random 

space. This corresponds to a 70-term expansion from formula (2.37) for n =  4,p =  4. 

The corresponding solution of the Monte Carlo simulation converges relatively fast in this 

case, and for 20,000 realizations it converges to the Hermite-chaos solution.

— D eterm in istic  
C h a o K  p s 4

-  MC: 1 ,0 0 0
-  MC: 5 ,0 0 0  

  M C: 1 0 ,0 0 0
— M C: 2 0 ,0 0 0

C h a o s :  p=4
M C: 1 ,0 0 0
M C: 5 ,0 0 0
M C: 1 0 .0 0 0
MC: 2 0 ,0 0 0

Figure 3.10: Two-dimensional model problem: Gaussian random distribution and
Hermite-chaos; Left: Mean solution along the horizontal centerline. Right: Close-up view.

Charlier-chaos and Poisson D istribution

As an example of the discretely distributed random fields, we now assume the diffusivity 

k{x,  y; u )  and source term  f { x ,  y; w) are processes resulted from Poisson random variables 

in the Karhunen-Loeve decomposition (2.11), with = a-f = 0.2. The parameter A =  1 

as in equation (3.12).
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0.05

C h a o s : p s 4
-  MG: 1 ,0 0 0
-  M 0 :5 ,0 0 0  

  M C; 1 0 ,0 0 0
-  M C: 2 0 ,0 0 0

•0,5

-  MC: 1 ,0 0 0
-  MC: 5 ,0 0 0
- MC: 1 0 ,0 0 0  

— MC: 2 0 ,0 0 0

Figure 3.11: Two-dimensional model problem: Gaussian random distribution and
Hermite-chaos; Left: Variance along the horizontal centerline, Right: Close-up view.

The third-order {p =  3) corresponding generalized chaos, the Charlier-chaos, results in 

resolution-independent solution in random space. The Monte Carlo solution converges to 

the solution of Charlier-chaos; with 100,000 realizations we obtain good agreement. The 

solution profiles of the mean and variance along the horizontal centerline are shown in 

figure 3.12 and 3.13, respectively.

> C h e o s ; p s 3
 M C: 1 ,0 0 0

M C: 1 0 ,0 0 0
 M C: 5 0 ,0 0 0
  M C: 1 0 0 ,0 0 0

— MC: 1 .0 0 0  
MC: 1 0 ,0 0 0

- -  MC: 5 0 ,0 0 0
—  M C: 1 0 0 ,0 0 0

Figure 3.12: Two-dimensional model problem; Poisson random distribution and Charlier- 
chaos; Left: Mean solution along the horizontal centerline, Right: Close-up view.

K rawtchouk-chaos and B inom ial D istribution

Finally, the random field of k{x,  y; w) and f { x ,  y; to) are assumed to have the binomial dis­

tributed random variables with {N = 5, q = 0.5) from equation (3.13) in their Karhunen-
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0-02

C h a o s :  p = 3
-  M C: 1 ,0 0 0  

  M C: 1 0 ,0 0 0
-  M C: 5 0 ,0 0 0

-  M C; 1 0 0 ,0 0 0

 M C: 1 ,0 0 0
- - MC; 1 0 ,0 0 0

 M C: 3 0 ,0 0 0
  MC: 1 0 0 ,0 0 0

Figure 3.13: Two-dimensional model problem: Poisson random distribution and Charlier- 
chaos; Left; Variance along the horizontal centerline, Right: Close-up view.

Loeve expansion. The standard deviations are =  <7/ =  0.2.

Figure 3.14 shows the mean solution along the horizontal centerline of the domain, 

while figure 3.15 shows the variance profile. The third-order (p =  3) Krawtchouk-chaos 

is sufficient to resolve the problem in random space. On the other hand, the solution of 

Monte Carlo simulation converges to the chaos solution with 50,000 realizations.

C h a o s :  p s S  
M C: 1 ,0 0 0

-  M C; 1 0 ,0 0 0
-  M C: 2 0 ,0 0 0

-  MC: 50,000

0.5

0.4

0,46

0.44

0.42

0 ,3 ^

D eterm ln lst(c  
C h a o s ; p s S

-  M C: 1 ,0 0 0  
-  M C: 1 0 ,0 0 0

M C: 2 0 ,0 0 0
—  MC: 5 0 ,0 0 0

Figure 3.14: Two-dimensional model problem: binomial random distribution and
Krawtchouk-chaos; Left: Mean solution along the horizontal centerline, Right: Close-up 
view.
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0,04

C h a o s :  p s S
  M C: 1 ,0 0 0
-  M C: 1 0 ,0 0 0

M C: 5 0 ,0 0 0

  MC: 1 ,000
0,055

-  MC: 2 0 ,0 0 0
-  MC: 5 0 ,0 0 0

Figure 3.15: Two-dimensional model problem: binomial random distribution and
KraA^^tchouk-chaos; Left: Variance along the horizontal centerline, Right: Close-up view.

3 .2 .3  R a n d o m  H e a t C o n d u ctio n  in  a  G rooved  C h a n n e l

In this section we consider the steady state heat conduction in a grooved channel subject 

to uncertainties in boundary conditions and diffusivity.

V • [k {x , y; oj)Vu{x, y; w)] =  0, {x, y) e  D, (3.22)

where the computational domain D  is shown in figure 3.16. The boundary of the domain 

consists of four segments: the top of the channel F t ,  the bottom  of the channel Fb , the 

two sides of the channel F5 and the boundaries of the cavity Tc-  The diffusivity «:(x, y,ui) 

is a random field with uniformly distributed random variables in its Karhunen-Loeve 

decomposition, with mean field K{x,y\u)  = 1 and the same Bessel correlation function as 

in section 3.2.2. The boundary conditions are

u u\ Vb
du
dx

=  0, u
Ts

lro =  l + f . (3.23)

where ^ is a random variable with uniform distribution. For the spectral/fip element 

solver in space, four elements are used in the domain, as shown in figure 3.16. W ithin 

each mesh, lO^^-order (Jacobi) polynomials are employed. In the random space, the third- 

order Legendre-chaos, corresponding to the uniformly distributed random inputs, is used. 

Resolution checks indicate that the above discretization is sufficient to resolve the problem,
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Figure 3.16; Schematic of the domain of the grooved channel

We consider two cases: the first case is when only the diffusivity k is random, while the 

boundary condition along F c is deterministic, i.e. =  1. Same as in section 3.2.2, the 

first four eigenmodes of the Karhunen-Loeve decomposition are employed to represent k . 

This results in a four-dimensional (n =  4) chaos expansion. For third-order chaos (p =  3), 

a total of 35 expansion terms are needed from (2.37). In the second case, we further 

assume the boundary condition along the wall of cavity F c  is random as in (3.23), and is 

independent of the random field «. This introduces one more dimension in the random 

space and a total of 56 expansion terms are needed for third-order chaos expansion; n =  5, 

p =  3 from (2.37).

In figure 3.17, the contours of the standard deviations of the solution are plotted. 

The solution of the first case is shown on the left, while solution of the second case on 

the right. In both cases, the standard deviations of the random inputs are a — 0.2. 

No noticeable difference is observed between the mean solutions of the two cases, and 

tha t of the corresponding deterministic case. However, the standard deviations of the 

solutions are very different for the two cases. From figure 3.17, we can see that the effect 

of uncertainty in the diffusivity is subdominant (maximum deviation about only 0.15%). 

By introducing the uncertainty in boundary condition along the walls of the cavity, the
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output uncertainty is greatly enhanced in the entire domain (maximum deviation about 

12%), and its structure is changed; the maximum of the output uncertainty moves from 

the center of the channel to  the lower wall of the cavity.

D.00144697
0.00131Q94
Q.0011465
D.00081763
0.000488761
0.000159891

0.109533

0.00771457

Figure 3.17: Standard deviations of heat conduction in the grooved channel; Left: solution 
subject to random diffusivity only; Right: solution subject to random diffusivity and 
random boundary conditions.

3.3 Problems with Random Boundary: Roughness

In this section we consider problems with random boundary. Such problems are important 

subjects in wave scattering theory, flow drag reduction, etc., where the roughness of the 

boundary has non-negligible effect. Here, we propose an approach based on a mapping 

technique tha t transforms the problem in a random domain to a problem with random 

coefficients in a fixed deterministic domain. We illustrate the method via a model elliptic 

problem.

Consider a two-dimensional elliptic equation in a domain with random boundary.

V'^u{x,y,oj) = f { x , y ) ,  (x, y) e  H(o))

u{x ,y ,u )  = g(x), {x,y) e  dfl{u}).
(3.24)

Here for simplicity, we assume the source term  and boundary condition are deterministic. 

In the previous sections, randomness in such terms has been dealt with. The physical 

domain fl(w) is random due to the uncertainty in the location of boundary <90(w).
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Our approach is to define a random mapping H{oj) between the random domain 

and a det ermini s t i c domain W  whose boundary is at the mean location of the original 

random domain, i.e., dU' — {dQ{u))). The map takes the form

H{uj) ~  f i ',s .t. d n '  = (a O H )} . (3.25)

Correspondingly, the original governing differential equation is transformed, with its Jaco- 

bians being functions of the mapping H{oo). Hence, the uncertainty in the random domain 

is translated into the Jacobians of the governing equation, which is now in a fixed domain. 

The generalized polynomial chaos can be readily applied to solve the transformed problem.

To illustrate the approach, we employ the domain in figure 3.18, where only one bound­

ary {ub) is uncertain. We denote { x \  y') the coordinates in the transformed domain fi' 

whose boundary (y^) is at the mean location of yb- The mapping H{uj) then takes the 

form

x' = x, y' =  h{y{bo)), (3.26)

where the function h{y)  depends on the specific form of yb(tu) to ensure y  ̂ =  (yb). The 

governing equation (3.24) is transformed to

+  (3.2T)

where the Jacobian J ( cj) =  d y ' / d y .

Equation (3.27) is an elliptic equation with uncertain coefficient Similar pro­

cedure as in section 3.1 can be applied. As an illustrative example, here we assume the 

domain is (x, y) € [0,1] x [0,1 -f a^], where ^ ~  f7(—1,1) is a uniform random variable. 

The boundary conditions are u( x ,  0) =  0, u{x,  1 =  1, and periodic in x-direction. In

figure 3.19, the mean-square error of the Legendre-chaos solution is shown with a =  0.1, 

and we observe exponential convergence of the error as the order of expansion increases.

Further research based on this preliminary example is currently ongoing, where more 

realistic models for rough surfaces, i.e., stochastic processes with short correlation length, 

are considered.
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H(ra)

aa((o): y,=y,(x^;co)

H (co): S2(co)->£2’

Figure 3.18: Schematic of the mapping of a uncertain domain.

order d  chaos

Figure 3.19: Mean square error convergence for a model problem with uncertain boundary.
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Chapter 4

Parabolic Equations

In this chapter we consider parabolic equations subject to uncertain inputs. We first focus 

on a simplified system with constant random diffusivity, and study the well-posedness of 

the semi-discrete system resulted from generalized polynomial chaos expansion (section

5.1 and 5.2). In section 5.3, we demonstrate the applications to unsteady heat transfer 

problems where the heat capacity and media conductivity are modeled as random pro­

cesses. A number of papers have addressed this problem, using perturbation methods 

[28, 51, 52, 60] and the classical Hermite polynomial chaos in one physical dimension [40].

4.1 Stochastic Formulation with Uncertain Diffusivity

We consider the time-dependent diffusion problem with constant diffusivity

— =  KV‘̂ u{x,t), u{x,to) =  f{x) ,  (4.1)

where {x, t) € R ‘̂ x  R  with d =  1,2,3 and t > to.

We define the well-posedness of problem (4.1) following the classical deterministic 

analysis (cf. [48]).

D efin ition  4.1 (Deterministic well-posedness). The problem (4-1) is well-posed if, for  

every to and every f  E C°°{x):

•  There exists a unique solution u(x, t) € C°°{x, t), which is 2-K-periodic in every space

57
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dimension, and

» There are constants a and K ,  independent of f{ x )  and to, such that ||u(a;, t)|| < 

Ke°‘̂ ^~^°'^\\u{x,to)\\, where |1 • || denotes certain norm in space.

It is easy to show tha t (4.1) is well-posed if and only if k > 0.

Hereafter, we will assume k is a random variable and is the only random input in 

problem (4.1);

k{u)) = p, + n ,a  > 0, (4.2)

where p is the mean value of k . Also, ^ is a random variable with zero mean and certain 

probability density function (PDF), and a  scales as its corresponding standard deviation. 

The problem (4.1) becomes stochastic, i.e.,

du{x,t-,io) _   ̂  ̂ 2
dt

=  k(w)V u(a:, i;w), u{x,to-,uj) = f{x) ,  (4.3)

with {x, t) R{d = 1,2,3) and w 6 D where D is a properly defined probability space.

We call this problem well-posed if its every realizations is well-posed in the deterministic 

sense.

D efin ition  4.2 (Stochastic well-posedness). Problem (4-3) is (strongly) well-posed if, for  

every u  € Q., it is well-posed according to definition (4-1)-

Based on this definition, it is obvious tha t problem (4.3) is well-posed if k(w) >  0 for 

all u) ^ fl.

4.2 W ell-posedness of Generalized Polynom ial Chaos Ex­

pansion

To solve (4.3) via generalized polynomial chaos, the random quantities are expanded as

M M
u(x, t;io) = Y^Uk{x,  t)#fc(C(w)), k{uj) = Kk^ki^{uj)). (4.4)

k—0
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Since the only random input is the random variable ^ from k , the polynomial chaos 

expansion is one-dimensional, and M  is the highest order of the expansion. The type of 

generalized polynomial chaos {#^(^(0;))} will be specified according to the random input 

k{uj). Upon substituting into (4.3), we obtain

Af o / ,\ M M
(4-5)

fc= 0  i==0 j= Q

A Galerkin projection is employed to ensure the truncation error due to the finite-term 

expansion is orthogonal to the finite-dimensional space spanned by the bases {$fc(C), k — 

0, ■ ■ • , M}, thus

r) ( ,  M  M
k = 0 , l , . . . , M ,  (4.6)

' fc/ j = 0

where

The system of the coupled partial differential equations (4.6) can be rewritten as

— t), Vfc =  0 ,1 , . . . ,  M, (4.7)
i= o

where
1 ^E  (4-8)

This equation can also be written in m atrix form

= (4.9)

where

U{ x , t )  = [ u o , u i , . . . , U M f , -Bm+1 =  [M (m + i)x (m + i)  ■ (4-10)

Here the superscript T  denotes the matrix transpose.

We further assume tha t the random diffusivity (4.2) is a continuous random variable
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whose generalized polynomial chaos expansion takes the simple form

kq = 11, Ki = a, Kk =  0, for 2 < fc < M. (4.11)

This expansion can be realized if k is a Gaussian, beta, or gamma random variable, and the 

corresponding Hermite-chaos, Jacobi-chaos, or Laguerre-chaos is employed, respectively.

Lem m a 4.1. Assume the random diffusivity (4.2) has the generalized polynomial chaos 

expansion in the form of (4-11), then the (M-f-1) x (M -f 1) matrix defined in (4-10) 

has (M 4-1) real and distinct eigenvalues.

Proof. Since the eigenvalues of a square matrix are the same as those of its transpose, it 

suffices to study the eigenvalues of B m + i - Given the form of expansion of n  (4.11), the 

entries of matrix B m + i are, according to (4.8),

1 ^  1 
^jk — ^^2  ̂ ^  ' ^Bk) ■ (4.12)

Prom the definition of polynomial chaos, eojjt =  and

eijk = =  I

By using the three-term recurrence relation (2.5), this integral can be evaluated as

ei jk = -  j  { b j ^ j + i { 0 + l j Q j { 0  +  C j Q j - i ( . 0 ) Q k i 0 w { 0 d ^

=  — (bj dj +i ^k +  l j dj , k +  Cj 5j - i ^k)  i ^k) -

Substituting these results back in (4.12), we obtain

bjk =  (m -  <^lj)hk -  (^bj6j+i^k -  crcjSj-i^k- (4.13)
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Hence the (M  +  1) x (M  +  1) matrix B m +x is a tridiagonal matrix

/ i  -  (7 7 0  - o - b o  0  

—(jci (ji — a7 i —(t6i

B m +1 =
-crcj fj, — a'jj —crbj

0

0

0 -crcM fJ- -  ajM

The eigenvalues of this matrix are determined by solving its determinant equation

S m +i ■= det (-Bm+1 -  A/) =  0, (4.14)

where I  is the (M  + 1) x (M  +1) identity matrix and A is the eigenvalue. Upon expanding 

Bm+I) we obtain

Bm +i =  [(p — A) — u7m ] Bm — ct̂ cm^m - i Bm - I i M  > 0. (4.15)

This defines a three-term recurrence formula for {Bm}- By letting p — A =  x, Am =  1, 

Em  =  —cr'jM, and Cm =  u^cm^m-1i this recurrence relation takes the same form as 

(2.4). By defining Bq =  1 and S_i =  0, all the conditions in Favard’s theorem (2.1) are 

satisfied when <7 > 0. Hence {Sm}  is an orthogonal polynomial system in terms of (p —A). 

From the well-known theory of orthogonal polynomials, Bm+i(p — A) has {M + 1) real 

and distinct zeros at {zi, i =  0, ■ ■ ■ ,M ) ,  i.e. (4.14) has (M  +  1) real and distinct roots at 

— X = Zi,i = 0, ■ ■ ■ , M .  Thus, matrix Bm+x has {M + 1) real and distinct eigenvalues
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Xi = fi — Zi,i ~  0, ■ ■ ■ , M . □

Because the matrix has (M  +  1) real and distinct eigenvalues, it has a full set

of independent eigenvectors. We can diagonalize this m atrix =  A m +i , where

S  is the eigenvector matrix of and A m +x is the diagonal matrix whose entries are

the eigenvalues of (All matrices here are of size (M  +  1) x (M  +  1).) Equation

(4.9) can be decoupled as

d W { x , t ) _   ̂ ^ 2rxrr^ _  a - h
d t

or, in index form

A M + iV W (x ,t), W { x , t ) ^ S - ^ U { x , t ) ,  (4.16)

=  fc =  0 , - - - , M ,  (4.17)

where W {x ,t)  =  [wojrui, • • • , WAf]  ̂=  S~^U{x,t).

Equations (4.17) are a set of decoupled deterministic equations. This system is well- 

posed if Afc > 0, for all fe =  0 ,1, • ■ • , M , i.e. (4.9) is well-posed if all the eigenvalues of 

Bm+x are non-negative.

Now we examine the well-posedness of different generalized polynomial chaos expan­

sions.

4 .2 .1  G a u ss ia n  In p u t an d  H erm ite -ch a o s

T h eo re m  4.1 (Hermite-chaos). Let the M ^-order Hermite-chaos be employed to derive 

the system (4-9), and assume that diffusivity k = p is a Gaussian random variable 

and has its Hermite-chaos expansion of the form (4-11), where ^ is a standard Gaussian 

random variable with zero mean and unit variance. Then for any given p ,a  > 0, there ex­

ists an integer N  > 0 such that for expansion order M  > N ,  at least one of the eigenvalues 

of BJ^+i is negative.

Proof. By using the recurrence relation of Hermite polynomials, the S m + x in (4.15) takes 

the form

S m + x =  { i^ - X ) S m - - ^ \ M - 1 ) S m - x , M > 0 . (4.18)

Together with 5_ i =  0 ,5*0 =  1, this three-term recurrence relation defines a system of
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scaled Hermite orthogonal polynomials

S m (X) = a ^ H M  ^  ^

where are the regular Hermite polynomials defined in (A.1.1) with recurrence

relation (A.6) (see Appendix A). As shown in Appendix B, the largest zero of (x) ,

denoted as ^maxi satisfies Zmajc > V n  ~  1 (see (B.3)). Thus, the largest root of Sm +i =  0 

satisfies

^  > x/M.
a

2It follows that the smallest eigenvalue satisfies Amin < /r — a \ fM .  Let N  =  ceil (;r/cr) 

where ceil(a;) is the ceiling function, then for M  > N,  Amin < 0, i.e. at least one of the 

eigenvalues of is negative. □

This theorem indicates that, for given n, a > 0, there exists a ‘critical order’ N ,  such 

that for Hermite-chaos expansion of orders higher than N ,  the system (4.9) becomes ill- 

posed; for orders lower than N ,  it is well-posed. The proof of Theorem 4.1 gives us directly 

the following corollary on the upper bound of this critical order.

C oro lla ry  4.1 (Upper bound). Under the same assumptions of Theorem f . l ,  for any 

given /r, cr > 0, there exists a critical expansion order

= ceil
O

(4 .19)

such that for expansion order M  >  , at least one eigenvalue of the matrix is

negative.

We now estimate the lower bound of the critical order N.

C oro lla ry  4.2 (Lower bound). Under the same assumptions of Theorem f . l ,  for any 

given p , a > 0 ,  there exists a critical expansion order

Nc =  floor (4.20)
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such that for expansion order M  < Nc, all eigenvalues of the matrix are non­

negative.

Proof. For Hermite polynomial H n{ x) ,  the largest zero satisfies z <  2(n — \ ) / ^ /n  — 2 (see 

B.4). Correspondingly, the largest root of S'm+i =  0 satisfies

H Amin 2Af

Thus, the smallest eigenvalue satisfies A m in  > /a — 2 a M / \ / M  — 1. The condition A m in  > 0 

defines a quadratic inequality in term of M. It is easy to show tha t for M  <  Nc  where 

Nc is defined in (4.20), the inequality is always satisfied. Hence Amin > 0, and all the 

eigenvalues of are non-negative. □

A numerical experiment is conducted to validate these two estimates. Specifically, 

the mean value is fixed at // =  1. The order of Hermite-chaos expansion M  is increased 

and the eigenvalues of are evaluated. The numerical critical expansion order is

obtained once the smallest eigenvalue of is negative. In figure 4.1, this critical

order is plotted, together with the upper and lower bound estimates, for various values of 

a. It is seen that the numerical critical order stays within the two bounds as expected. 

Note that in deriving the lower bound (4.20), a sharp estimate for the largest zero of 

Hermite polynomials was employed. Hence, the lower bound of the critical order is a 

sharp estimate, and the numerical estimate approaches it quickly for A/ 1.

4 .2 .2  B e ta  In p u t a n d  J aco b i-ch a o s

T h eo rem  4.2 (Jacobi-chaos). Let the M^^-order Jacobi-chaos with parameter o, /? > —1 

be employed to derive the system (4.9), and assume that diffusivity k — p. is a

beta random variable and has its Jacobi-chaos expansion in the form of (4-11), where 

^ Be{a, jd) is a beta random variable defined in domain (—1,1) with probability density 

function (A.17). Then all the eigenvalues are non-negative i f  a  <  p.

Proof. Upon using the coefficients of the recurrence relation for Jacobi polynomials (A.18),
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10"
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numerical 
upper bound 
lower bound

^  ^  ^  - ^  0 -

lO''

Figure 4.1: Critical expansion order (N) versus a for the well-posedness of Hermite-chaos 
( p  =  l ) .

equation (4.15) becomes, for M  > 0,

S m +1 = (p -  A) -  a
/ ? 2 - a 2

S m

— a

(2M  -f- Q; -j- j3^(2M -)- CK -|- /? +  2)
4M (M  + a){M  + p){M  + a  + ^)

(2M + a + p -  1)(2M -f a  +  /3)2(2M + a + p  + l) S m -1-

By comparing with the normalized recurrence relation of Jacobi polynomials (A.19), we 

observe that the above recurrence relation defines a set of scaled Jacobi polynomials, i.e.

< S 'm (A ) =  CT^PM
pi — X

a

where {p m (x )} are the normalized Jacobi polynomials defined in (A.19). Since the zeros 

of the Jacobi polynomials as defined in this paper are in [—1,1], the roots of S'm+i =  0 

(4.14) satisfy,

< 1

It is easy to show tha t for cr < /r, all eigenvalues satisfy A > 0. □
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4 .2 .3  G am m a In p u t an d  L agu erre-ch aos

T h e o re m  4.3 (Laguerre-chaos). Let the M ^-order Laguerre-chaos with parameter a  > 

—1 be employed to derive the system (4-9), and assume that diffusivity k = p ±  is a 

gamma random variable and has its Laguerre-chaos expansion in form of

Kq =  /Li, Hi = q̂ cr, Kk =  0, for 2 < k < M, (4.21)

where ^ is a gamma random variable with zero mean and probability density function

(A. 10). Then,

® i f  K — p + (xf,, all the eigenvalues of are positive;

® i f  K = p  — a^, there exists an integer A'' > 0 such that for expansion order M  > N ,

at least one of the eigenvalues of is negative.

Proof. First note tha t the switch of sign in the expansion of k in (4.21) is due to the def­

inition of Laguerre polynomials, i.e. the leading coefficients of the odd order polynomials 

are negative. For k = p i 4 , i  the recurrence relation (4.15) for S'm+i becomes

Sm+1 ~  [ ( m  ~  ^ )  T (t ( 2 M  - |-  q; -[-1 ) ]  Sm — oc) S m —1i ^  ^  0-

Comparing with the normalized recurrence relation for Laguerre polynomials (A. 12), we 

observe that the above recurrence relation defines a set of scaled Laguerre polynomials, 

i.e.

Sm(A) =  { T < x ) ^ q M  ^ ^
TO-

where {qM{x}} are the normalized Laguerre polynomials defined in (A.12). The zeros of 

Laguerre polynomials are non-negative. Thus

t ^ > 0.
Tcr

• If K =  /Li -t- cr ,̂ then {p — Ainin)/(—cr) >  0. It follows immediately that Amin > p > 0. 

Hence all A > 0.
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• M K = fi — cr ,̂ then (fi — X)/a > 0. It is obvious tha t A cannot be bounded from 

below since the largest zero of Laguerre polynomial ^max grows unbounded as the 

order increases. Specifically, ^max > n +  a  +  1, where n is the order of the Laguerre 

polynomial (cf. [117]). Thus

M ~  -̂ min  ̂ nnj- , -I----------- > 2M  +  a  -  1.
a

Let N  =  ceil [(/r/cr — a  +  l)/2], then for M  > N, Amin < 0, i.e. at least one eigen­

value of is negative.

□

Similarly as the Hermite-chaos expansion under Gaussian assumption, there exists a 

critical order for Laguerre-chaos expansion when the random input takes the form k = 

/i — cr .̂ Above this critical order, the expanded system is ill-posed; and below it, the 

system is well-posed.

C oro lla ry  4.3 (Upper and lower bounds for Laguerre-chaos). Let the -order Laguerre- 

chaos with parameter a > —1 be employed to derive the system (4-9), and assume the 

dijfusivity k = p. — is a gamma random variable and has its Laguerre-chaos expansion 

in form of

Kq — p , k \ — cr, Kk — 0, for 2 < k < M, (4.22)

where ^ is a gamma random variable with zero mean. Then, for any given p,cr > 0,

» there exists a critical expansion order

1 f p
= ceil

9  V/T “  ^I  \a
(4.23)

such that for expansion order M  > N^, at least one eigenvalue of the matrix 

is negative.

• there exists another critical expansion order

1 — 1/4
Nc =  floor 2s

— a  — 1 (4.24)
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where s — jj,ja, such that for expansion order M  < Nc, all eigenvalues of the matrix 

-®M+l non-negative.

Proof. The proof for the upper bound (4.23) follows immediately from the proof of Theo­

rem 4.3. For the lower bound, we use the classical analysis on the estimate of the largest 

root of Laguerre polynomial (cf. [117])

< 2n +  Q! +  1 +
1/2

By substituting {p — A m i n ) f o r  Zjnax and setting Amin > 0, one obtains (4.24) from the 

resulting inequality. □

Again we examine the two estimates of the upper and lower bounds by numerical 

experiment. In figure 4.2, the numerical critical expansion order is plotted, together with 

the upper and lower bounds from (4.23) and (4.24). It is seen tha t the numerical result 

stays within the two bounds, and approaches the lower bound for large N  as the lower 

bound is the result of a sharper estimate of the largest zero of Laguerre polynomials.

O
§
O

numerical 
upper bound 
lower bound

Figure 4.2: Critical expansion order (N)  versus a  for the well-posedness of Laguerre-chaos 
(/r =  1, a  =  0).
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4 .2 .4  D iscu ss io n

The diffusivity k in our model problem (4.3) is a physical quantity. For any realistic 

material, it is strictly non-negative. The mathematical requirement for well-posedness, 

i.e. K > 0, is merely a manifestation of the physics. When k is assumed to be random, 

the condition has to be satisfied for all realizations, i.e. k{lo) > 0 for all u; e  0 .

For many applications in practice, when the actual distribution of a random quantity 

is unclear, a Gaussian distribution is often employed. This, however, may pose a mathe­

matical challenge if the underlying physical quantities are ‘bounded’. For example, in the 

diffusion problem with random diffusivity considered here, if one assumes k ~  iV(/x, is 

a Gaussian random variable with certain mean value /i and standard deviation a, then it 

allows K < 0 with non-zero probability for any ;U, a  >  0. This contradicts the condition on 

well-posedness for the diffusion problem and renders the problem unsolvable mathemati­

cally. Consequently, the Hermite-chaos expansion becomes ill-posed for expansion order 

higher than a critical value which depends on p, and cr. In other words, under the assump­

tion of ~  N{p,  cr^), one cannot completely resolve problem (4.3) by using Hermite-chaos 

with arbitrarily high order expansions. This difficulty due to Gaussian assumption has 

been realized for the diffusion problem and in practice the lognormal distribution is often 

employed to avoid the negative tail.

It should be emphasized tha t the ill-posedness is not an intrinsic drawback of the 

Hermite-chaos. It is a direct result of the inappropriate Gaussian assumption made on k . 

In fact, in this case, the Hermite-chaos accurately models the problem (4.3), which employs 

the inaccurate assumption on k . The difficulty arises from the fact tha t Gaussian has a 

long tail on the negative side which allows negative values of k with non-zero probability. 

Similarly, if k is modeled as a gamma random variable with the tail on the negative side, 

the corresponding Laguerre-chaos becomes ill-posed above the critical expansion order, as 

shown in Theorem 4.3.

In practice, observation data or experimental measurements often suggest tha t the 

distribution of a random input resembles Gaussian, but physical consideration or mathe­

matical assumption requires that it has bounded support, i.e. no long tails. In this case, 

the common approach is to simply ‘truncate’ the support of a Gaussian distribution and
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re-normalize it to ensure the total probability is unity. An alternative is to  use a finite- 

term  Jacobi-chaos expansion to approximate Gaussian distribution. This approach was 

first proposed in [133], and is included in Appendix C of this thesis.

4.3 Applications to Transient Heat Conduction

The objective of this section is to model transient heat conduction with uncertain inputs 

by the generalized polynomial chaos expansion. In particular, we focus on media with 

random heat conductivity and capacity.

4 .3 .1  A lg o r ith m

The unsteady stochastic heat equation for a spatially varying medium, in the absence of 

convection, is

dT
=  V • [k(x;o;)Vr] +  /( t,x ;o ;)  { x , u ) e D x n  (4.25)

subjected to the following initial and boundary conditions

T{0,x;u)=^To(x,u;), (4.26)

T{t, x;w) =  Tb, X e  dD\] —k ^ ( t ,  x; u)  =  x  € (4.27)

where U is a bounded domain in [d — 1,2,3) and O is a probability space. The 

temperature T  =  T{t, x\ lu) and heat source f ( t ,  x;cu) are K-valued functions on [0, oo]xD x  

Cl. The initial condition To and the volumetric heat capacity of the medium c are E-valued 

functions on DxCt, and k (x ;lu) — [kij{x, w)] is the conductivity tensor defined on Cl.

dDi and dD^ denote the subsets of the boundary with fixed temperature and heat flux, 

respectively. We further assume that the medium is isotropic with kn{x) — k{x), Vi € [1, d\ 

and kij =  0, i j .  The governing equation (4.25) can be rewritten as

c ( x ;w ) ^  =  V • [k{x',Lu)VT] -f f(t,x-,uj) {x,u>) € D xCl (4.28)
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with initial condition (4.26) and boundary condition (4.27). Note this assumption on k 

simplifies the demonstration of the algorithm, but does not limit its applicability.

By using the generalized chaos expansion, we expand the random processes in the 

system of (4.28), (4.26) and (4.27) in the following form

M M  M
k{x-,u) =  T{t ,x\Lo)  =  ^ T i ( t , x ) $ i ( C ) ,  =  Y ^ f i { t , x ) ^ i { i ) .

1=0 i=0 i=0
(4.29)

Note here we have replaced the infinite summation of ^ in infinite dimensions in equa­

tion (2.23) by a truncated finite-term summation of {$} in the finite dimensions of 

I  =  (Cl, • • • ,^n)- The dimensionahty n of C is determined by the random inputs. The 

random parameter uj is absorbed into the polynomial basis #(C), thus the expansion coef­

ficients ki, Ti and fi are deterministic. Similar expansions are applied to other quantities 

c. To, Tb and qb- By substituting the expansion into governing equation (4.28), we obtain

M ^  frr

i=0 j=0

M /  M
Y,h{x)^iV ij2Tj{t ,x)^j
i=Q \ i =0

M

i=0

A Galerkin projection of the above equation onto each polynomial basis {4>,} is then 

conducted in order to ensure tha t the error is orthogonal to the functional space spanned 

by the finite-dimensional basis By projecting with for each k = {0 , . . .  ,M }  and

employing the orthogonality relation (2.24), we obtain for each k = 0 , . ,  M ,

M M  ^rp M M
^ ^ C i ( o : ) y e i , - f c  =  • [ki{x)VT^{t,x)]ei^k + fk { t ,x ){^ l) ,  (4.31)
i=0 j =0 i=0 j=0

where eijk =  By defining

M M
bjk{x) = ^  ''̂Ci{x)ejjk, Sjk{x') = ^  ki{x êjjk 

i=0 i=0
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we can rewrite the above equation as 

M  ^r p M
Y , b j k { x ) - ^ { t , x )  =  [sjk{x)VTj{t,x)] +  fk { t ,x ){^ l) ,  Vfc € [0,M], (4.32)
i= o  3=0

Equation (4,32) is a set of (M +  1) coupled partial differential equations. The total num­

ber of equations (M +  1) =  (n +  p)\/{n\pl where n is the dimensionality of the chaos 

expansion and p the highest order of polynomials {#} (see equation (2.37). The ini­

tial condition (4.26) and boundary condition (4.27) are expanded in the same form as

(4.29). By matching the coefficients in the expansions, we obtain the initial conditions 

and boundary conditions for each expanded equation in (4.32) to complete the system.

By defining B (x) =  [6^ (x)], S(x) =  [sij{x)\ with the indices running through [0, . . . ,  M] 

and solution vector T (t, x) =  [To{t, x), Ti{t, x), ■ ■ ■ , T ^ i i ,  a;)]*, equation (4.32) can be writ­

ten more concisely as

d T
B ( x ) ^ ( t ,  x) = V -  [S(x)VT(t,  x)] +  F(t, x), (4.33)

where F(x) =  [/o(4>o),. . . ,  Here we have used the symmetry of matrices B(x)

and S(x), i.e. B(x) =  B*(x) and S(x) =  S‘(x). It can be seen that each expansion mode 

of the solution Ti( t ,x ) , i  € [0, . . . ,  M] in (4.33) is coupled on the left-hand-side and the 

right-hand-side. In order to solve the equation efficiently, we invert the matrix B(x) such 

tha t D(x) =  [dij{x)] =  B~'-(x) and rewrite (4.33) as

BT
^ ( t ,  x) =  D (x)V  • [S(x)VT(t, x)] +  D (x)F(t, x) (4.34)
ot

or, in index form, Vfc E [0, . . . ,  M]

^  M  M  M

- ^ ( t , a ; )  ■ [ S j , { x ) VTi { t , x ) ]  +  J ] 4 i ( x ) / i ( t , x ) ( 4 > f )  ( 4 . 3 5 )

1=0  j —0 i = 0

The left-hand-side is then decoupled and the equations can be integrated successively in 

time. To avoid the severe restriction on the size of time step, a mixed explicit-implicit 

method is employed where we keep the diagonal terms on the right-hand-side implicit and
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the others explicit. In addition, we employ a high-order stiffly-stable integration scheme.

To illustrate the algorithm, we denote the first term  on the right-hand-side of equation

(4.35) as

M M  M

X ! ■ [Sji{x)VTi{t, a:)] =  ^  dkj{x)V ■ [Sjk{x)VTk{t, x)] -f-
j= 0  j=Q j=0

M  M

j =0
=  Rikit, x) -h R2^{t,x). (4.36)

The scheme, in matrix form, can be written as

=  R«+i(x) H- ^  /3gR r^(^) +  D(rr)F’̂ +i(x) (4.37)
q-O

where J  is the order of accuracy in time and the superscripts (n -I-1) and (n — q) denote 

the time level and t" ” ®, respectively. The coefficients in the scheme are listed in 

table 4.1 for different temporal orders. Due to the diagonal dominance of matrix S(x), the 

restriction on time step is significantly relieved. The equations in (4.37) are deterministic

Coefficient 1st order 2nd order 3rd order
70 1 3/2 1 1 /6
ao 1 2 3
a\ 0 -1 /2 -3/2
Ct2 0 0 1/3
/3q 1 2 3
/?! 0 -1 -3
/?2 0 0 1

Table 4.1: Coefficients in the mixed explicit-implicit integration (4.37) (see [63], chapter

and can be discretized by any conventional method, e.g. finite elements, finite difference, 

etc. In this paper we employ the spectral/hp element method to obtain high accuracy 

in physical space [63]. Specificly, the Jacobi polynomials, similar to the ones used in the 

aforementioned chaos expansion corresponding to beta distribution, are used for spatial
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discretization. This produces a unified discretization in both the physical space and the 

random space.

4 ,3 .2  R a n d o m  H e a t C o n d u ctio n  in  an  E lec tro n ic  C hip

In this section we consider the heat conduction in an electronic chip subject to uncertainties 

in heat conductivity and capacity (see equation (4.28)). The computational domain D  is 

shown in figure 4.3 along with the spatial discretization. The boundary of the domain 

consists of four segments: the top ry ,  the bottom Fb , the two sides and the boundaries 

of the cavity F c , which has a depth of 0.6. Adiabatic boundary conditions are prescribed 

on Fb and F5 . The cavity boundary F c  is exposed to heat flux =  1. Two types

of conditions on the top Ft  are considered: one is maintained at constant temperature 

T  =  0 (case 1) and the other is adiabatic (case 2). Due to non-zero net heat flux into the 

domain, there is no steady state in case 2. The initial condition is zero everywhere. For 

the spectral/hp element solver in space, 16 elements are used in the domain, as shown in 

figure 4.3. Within each element, 6^^-order (Jacobi) polynomials are employed. Numerical 

tests indicate tha t this is sufficient to resolve the problem in physical space. Six reference 

points are placed at the vertices of some chosen elements in the domain, as shown in figure

4.3. We are interested in the stochastic solution at these points and their cross-correlation 

coefficients. For example, the cross-correlation coefficient between reference point A and 

B is

E [{T{t, XA\oj) -  E[T{t, XA\w)])(T(t, XB-,u>) -  E[T(t, x b ', a;)])]
p A B { t )  = ---------------------------------------------------- 7--------- c— J--------- : ----------------------------------------------- , ( 4 . 3 8 )

crrit, XA)<7T[t,XB)

where axit, x) is the standard deviation of the solution T{t, x\u>).

The uncertain heat conductivity and capacity of the medium are random fields, with 

mean fields k(x,y;Lo) =  1, c{x, y,to) =  1 and auto-correlation functions of the form

C{r) =  ( ^ )  , (4.39)

where K i  is the modified Bessel function of the second kind with order 1, b scales as 

correlation length and r is the distance between two points. The Karhunen-Loeve (KL)
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Figure 4.3: Schematic of the domain of the chip geometry. It consists of 16 spectral 
elements of order 6**̂ (7 points).

decomposition (2.11) is employed, following a similar procedure as in section 3.2.2. For 

demonstration purposes, relatively strong auto-correlations are assumed for k and c with 

parameter 5 =  20, which results in fast decay of the eigenvalues from the KL decompo­

sition. Subsequently, we employ the first three eigenmodes for k and the first eigenmode 

for c, and assume the random variables in (2.11) are uniform random variables. In figure

4.4, we plot the first two eigenmodes of the KL decomposition resulted from the numer­

ical eigensolution of the Bessel type correlation function (4.39). We further assume zero 

cross-correlation between k and c, with uncertain intensity of ak = ctc = 0.2. This results 

in a four-dimensional (n = 4) Wiener-Legendre chaos expansion, with three dimensions 

from k and one from c. Third-order (p =  3) Legendre chaos expansion is used. Resolution 

checks indicate tha t this is sufficient to resolve the problem in random space. For n =  4 

and p =  3, the total number of chaos expansion terms is 35 (see equation (2.37)).

n  0 296161 
10 02SA6S6
9 0.283011
6 0.291436

0.0483379 
0.03228aa 
00161336 
1 3877BE-17 

-Q.016132S

-0 0463979 
-00S453C6 
-0.0806632

Figure 4.4: Eigenmodes of the correlation field. Left: the first eigenmode; Right: the 
second eigenmode.
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We first consider case 1, where the temperature at the top boundary is maintained at 

T(,|p^ =  0. In this case, the temperature reaches steady state. In figure 4.5 the contours of 

the stochastic solution of the temperature field, including the mean and standard devia­

tion, are plotted. It is seen that the largest output uncertainty, indicated by the standard 

deviation, occurs near the corners between the cavity and the bottom  boundary. In figure 

4.6 we show the evolution of stochastic solution at the reference points, with mean on 

the left and COV (coefficient of variance) defined as COV(x, t) =  ctt{x , t)/'E[T{x, w)] 

on the right. We observe that the solution reaches steady state quickly and there is a 

non-negligible response in COV at the early transient stage. The time evolution of cross­

correlation coefficients between reference point A and the other points is shown in figure 

4.7. It is seen tha t all the points except point B are negatively correlated with point A, 

and the cross correlation between A and B is weak. Note tha t from the definitions, the 

COV and cross-correlation coefficients are not defined at f =  0, as our initial condition is 

zero everywhere. Thus in the following, the value of these coefficients is not plotted near 

t = 0.

Figure 4.5: Contours of temperature distribution in the electronic chip at steady state 
(case 1). Left: mean field; Right: standard deviation.

For the second case, we consider the top boundary as adiabatic. Due to the net inward 

heat flux from the cavity boundary, the temperature field will keep increasing and thus 

there is no steady state. The equation is integrated to f =  1 and the contours of mean 

field and standard deviation field are shown in figure 4.8. It is seen tha t the variation of 

the standard deviation across the width of the domain is small and the maximum value is 

along the vertical center line. This is qualitatively different from the steady state solution 

of case 1. The solutions at reference points A through F are plotted in figure 4.9. It can be 

seen that while the mean temperature keeps growing over time, the CO Vs of temperature 

approach steady state. Relatively strong variation in COV is again visible at the early

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

Figure 4.6: Temperature evolution at reference points (case 1). Left: mean temperature; 
Right: COV (coefficient of variance).

time

Figure 4.7: Time evolution of cross-correlation coefficients between reference point A and 
other points (case 1).

. . . . . r  ■
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1
t l l l l i l M

W l ! ! 1 | | I{ i \ v 'fii.

r.u

Figure 4.8: Contours of temperature distribution in the electronic chip (unsteady state at 
f =  1, case 2). Left: mean field; Right: standard deviation.
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transient stage. Note tha t the reference point F, which has the highest mean temperature, 

is the least sensitive to the input uncertainty. Its COV reaches steady state very fast with 

value less than 10%. In figure 4.10, the cross-correlation coefficients of reference points 

B,C,D,E and F with respect to point A, are plotted. Again the statistics approach steady 

state over time. In contrast to  the result from case 1 in figure 4.7, all points are positively 

correlated to point A with strong correlation. In figure 4.11, the evolution of temperature 

at reference points are plotted in error bars, with the lines centered at the mean values 

and the length of the bars equal to two standard deviations (one up and one down).

. £  0.4

Figure 4.9: Temperature evolution at reference points (case 2: unsteady problem). Left: 
mean temperature; Right: COV (coefficient of variance).

8

0.5
time

Figure 4.10: Time evolution of cross-correlation coefficients between reference point A and 
other points (case 2: unsteady problem).
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Figure 4.11: Stochastic solution at reference points (case 2; unsteady problem).
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Monte Carlo simulations were also conducted, for both cases, to validate the results 

by polynomial chaos expansion. For case 1 (steady problem) we conducted 20,000 realiza­

tions. For case 2 (unsteady problem) we employed 150,000 realizations due to the shorter 

integration interval in time {t = 1). In figure 4.12 we show the evolution of solution statis­

tics at some reference points. On the left, the cross-correlation coefficients at reference 

points A and B for case 1 are plotted. The integration was conducted up to f =  20 when 

the solutions reach steady state, and we show the close-up view up to t =  6 to focus on 

the early transient state. It can be seen that the results between Monte Carlo Simula­

tion and polynomial chaos agree well; both reveal the negative cross-correlation between 

points A and C. The agreement between other reference points is equally good and thus 

it is not shown here. On the right of figure 4.12, we show, for case 2, the evolution of 

COVs at reference points A and D (note in this case, point D has the maximum response 

in COV). Again the results of MCS (150,000 realizations) agree well with those of chaos 

expansion. Oscillations in MCS result can be seen during the early sharp transition of 

point D. Good agreement is obtained for the other statistics, e.g. the mean, standard 

deviation and cross-correlation, and thus they are not shown here.

■P5§"

>ou

Figure 4.12: Comparison of results obtained by Monte Carlo simulation and generalized 
polynomial chaos expansion. Left: evolution of cross-correlation coefficients at reference 
points for case 1 (20,00 realizations for MCS); Right: evolution of COVs at reference 
points for case 2 (150,000 realizations for MCS).

Another issue we are interested in is the individual effect of the uncertainty in k and 

c on the output for the unsteady case (case 2). Two simulations are performed with
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one having random conductivity k only and the other random heat capacity c only. All 

other parameters are the same as those in case 2. In figure 4.13 we plot the evolution of 

temperature COV at the reference points, with random capacity c only (left) and random 

conductivity k only (right). It can be seen tha t the COVs of the random capacity only 

case are smaller than those of random conductivity only, indicating the uncertainty in 

heat conductivity has more influence on the output than tha t in heat capacity, for this 

particular problem. Comparison on the cross-correlation coefficients are shown in figure 

4.14, where we observe a stronger correlation for the random capacity only case. Note that 

for this unsteady problem where the temperature grows exponentially fast, the influence of 

heat capacity can be much more substantial if its probability distribution has unbounded 

support, e.g. Gaussian distribution. This was illustrated for a one-dimensional heat 

conduction problem in [40], and we have verified the results independently.

time

Figure 4.13: Temperature COV evolution at reference points. Left: random capacity only; 
Right; random conductivity only.
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Figure 4.14: Evolution of cross-correlation coefficient between reference point A and the 
other points. Left: random capacity only; Right: random conductivity only.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Advection-Diffusion Equation

5 .1  Linear Advection-Diffusion

In this section, we consider the two-dimensional advection-diffusion equation with random 

transport velocity. This can be considered as a model of transport phenomena in random 

media, which has been a subject of intensive research; see, for example, [99, 100, 110, 127, 

128]. A study of one-dimensional advection equation using Hermite-chaos can be found 

in [57]. In this section, we use this equation as a means of examining the approximation 

properties of generalized polynomial chaos. Different types of random distributions are 

considered, and convergence rate is examined using exact solutions.

Consider the two-dimensional advection-diffusion equation with random transport ve­

locity

—  (cc, t] Lo) -f u(cc; u) ■ V4> = {x, e  D  x  x Q, (5.1)

where D is a bounded domain in and 0  is a probability space. In this paper, we 

will assume deterministic boundary and initial conditions. The transport velocity field 

is u{x-,u>) =  u{x, y;uj)ex + v{x, y,uj)ey, and we will focus on large-scale random per­

turbations, i.e. the random field is strongly correlated and retains certain smoothness. 

Stochastic advection-diffusion subject to white noise input will not be considered here. 

The solution process and the transport velocity field are expanded in term of generalize

83
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M M

polynomial chaos

4>{x,t]ui) u{x;ui) = Y^Ui{x)^i{${uj)). (5.2)
i=0 i=0

By substituting the expansions into governing equation (5.1) and conducting the Galerkin 

projection onto each basis for fe =  {0, . . . ,  M }, we obtain for A; =  {0, . . . ,  M},

O i M M
~ w  +  T p y  (5.3)

'  kl i—Q j —Q

where eijk =

Equation (5.3) is a set of (M  +  1) partial differential equations coupled through the 

advection terms. These equations are deterministic and can be solved readily by any 

conventional numerical schemes. In this paper, we employ the spectral/hp element method 

in physical space and a second-order stiffly stable method in time.

5 .1 .1  M o d e l prob lem : co n vergen ce

We first consider a simple model problem where its exact solution is available. Assume 

the transport velocity is a circular motion plus a constant random perturbation, i.e.

u{x\Lo) — {y + a {o j) ,-x -h {u j) ) ,  (5.4)

where a{ui) and h{uj) are random variables. The initial condition is a Gaussian-shape cone

0; w) =  . (5.5)

The exact stochastic solution can be obtained as

<^e(x,t;a;) =  (5.6)
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where
X ■= X + b{uj) — (xo +  b(uj)) cost — (po +  a(w)) sint, 

p = y + a(u>) + (xo +  b(u>)) s in t — (po +  <i(u;)) cost.

By using the exact solution, we examine the ‘mean-square’ error of numerical solutions,

62(cc, t) =  [(j)p{x, t; w) -  ^e(x, t; cu)]'
1/2

(5.7)

where i?(-) denotes the ‘expectation’ operator and is the numerical solution obtained 

by p^^-order expansion. We then examine the Loo-norm of 62(01, t) at some fixed time t in 

the physical space. Here we set v — 10“ ,̂ A =  1/8 and a(w) =  6(cu) =  0.05^, where ^ is a 

continuous random variable with zero mean. The final integration time is set as t =  Stt.

B eta  random  input and Jacobi-chaos

Here we assume ^ ~  1,1) is a beta random variable defined in (—1,1) with PDF

(A.17) and parameters «,/? > —1. Correspondingly, the Jacobi-chaos is employed.

The result of uniform random input (a  =  /3 =  0) by Legendre-chaos is shown in Figure 

5.1. We observe tha t errors in both the mean and variance decrease exponentially fast 

as the order of chaos expansion (p) increases. This is in accordance with the results in 

[129, 130, 131].

10‘

&

-  M e a n
-  V a r ia n c e

P

Figure 5.1: L°° error of Legendre-chaos with uniform random input at T =  37t.
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In Figure 5.2, the error convergence of 1) random input is shown, and

similar exponential convergence is obtained.

10 ' '

- !

— A t  M e a n
- H  V a r ia n c e

P

Figure 5.2: L°° error of Jacobi-chaos with 1,1) random input at T  =  Stt.

G aussian  random input and H erm ite-chaos

Figure 5.3 shows the convergence rate of Hermite-chaos expansion when the input follows 

a Gaussian distribution, i.e. ^ ~  A^(0,1).

I h

I
Q)

—A —  M e a n  
~ m  V a r ia n c e

P

Figure 5.3: error of Hermite-chaos with Gaussian random input at T =  3n.

In Figure 5.4, the probability density function (PDF) of the solution a t its peak location
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is shown at t = tt, along with the corresponding PDF from the exact solution (5.6). The 

peak of the solution is in the range of [0, ^max] where (?̂ max < x'^+2 vt — Thus, its 

PDF should be strictly bounded on both sides, i.e. with no tails present. It is seen from 

Figure 5.4 tha t the Hermite-chaos approximates the exact PD F well, except the apparent 

Gibb’s oscillations near the corner. However, the numerical PD F is clearly not bounded 

from below and has a thin tail along the negative axis. In fact, since Gaussian random 

variables have infinite support, i.e. ^ € (—00, 00), we expect Hermite-chaos expansions, 

which are polynomial functions of Gaussian variables, have infinite long tail on at least 

one side, depending on the sign of the highest expansion order. In this particular problem, 

the long tail indicates the existence of unphysical solution with very small but nonzero 

probability.

0.50•1 -0.5

Figure 5.4: PDF of the peak solution at T  =  tt with Gaussian input and Hermite-chaos 
expansion.

‘Truncated’ G aussian input and Jacobi-chaos

One alternative to the Gaussian distribution is a ‘truncated’ Gaussian distribution, first 

introduced in [133]. This is a Jacobi-chaos approximation to Gaussian distributions. It 

approximates Gaussian distributions closely with no long tails. It has been shown that the 

long tails of Gaussian distribution can result in ill-posedness of Hermite-chaos expansion 

for certain applications where the boundedness of stochastic inputs is critical, (see [5, 133] 

and section 4.2.1.) Thus, the ‘truncated’ Gaussian distribution can be used to represent
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Gaussian-like inputs with no tails. Details on the construction of ‘truncated’ Gaussian 

can be found in Appendix C. Here, we examine the performance of truncated 

Gaussian, although for random transport velocity the tails of the Gaussian assumption 

will not pose ill-posedness of the problem. In particular, we employ the fifth-order Jacobi- 

chaos approximation with a  =  /3 =  10, i.e., The corresponding Jacobi-chaos with

a  =  /? =  10 is used to solve the problem. The error convergence is shown in Figure 5.5, 

where we use the exact solution from Gaussian input. We can see tha t the error converges 

fast, and it is almost exponential with respect to polynomial order. This indicates that 

the error from the difference between and N{Q, 1) is subdominant compared to

the overall error.

i h

WL

I

-  V a ria n c e

P

Figure 5.5: L°° error of Jacobi-chaos with truncated Gaussian random input at
r  =  37t.

In Figure 5.6 we show the PDF of the solution at its peak location at f =  tt. The 

solution of Jacobi-chaos approximates the exact PDF well, except the apparent Gibb’s 

oscillations near the corner. Note that here the PDF of the Jacobi-chaos solution is strictly 

bounded on both ends with no tails, consistent with the physics of the advection-diffusion.

The stochastic response at the solution peak is shown in Figure 5.7, along with the 

deterministic solution denoted by dotted line. The presence of the random perturbation 

in the transport velocity introduces extra ‘diffusion’ in the mean solution, compared to
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-0.5

Figure 5.6: PDF of the peak solution at T  =  tt with input and Jacobi-chaos
expansion.

the deterministic solution. It should be noted tha t for this particular type of random 

perturbation (5.4), the stochastic effect disappears at t = 2mr,n = 0 ,1 ,. . .  (see exact 

solution (5.6)). This can be clearly seen from the error bars.

Figure 5.7: Error bars of the evolution of the peak solution with input and Jacobi-
chaos expansion. The circles represent the stochastic mean solution and the dotted line 
the deterministic solution.

In Figures 5.8 to 5.13, the evolution of the mean solutions and variances under the 

truncated Gaussian input is shown at different times. The initial condition is

a symmetric Gaussian-shape cone with circular contours. We observe that as the cone
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travels, it becomes asymmetric with elliptic contours due to the random perturbation 

introduced in the transport velocity (5.4), After one evolution {t =  27t), it returns to the 

symmetric shape as the random effect disappears at this instance. This is confirmed in 

Figure 5.11; the solution variance here at t =  27t is of the order O(10~^). The deformation 

resumes after this. The corresponding deterministic solution is free from such deformation, 

and the cone will remain a symmetric cone shape and simply decay over time.

0.668464
0.557054
0.445643
0.334232
0.222821
0.111411

0.0835263
0.0698052
0.0556842
0,0417631
0.0278421
0,013921

Figure 5.8: Jacobi-chaos solution with random input at T  =  O.Stt. Left: mean
solution; Right: variance.

Levsi U 
6 0.668464
5 0.557054
4 0.445643
3 0.334232
2 0,222821
1 0.111411

6 0.101694
5 0.084745
4 0,067796
3 0.050847
2 0.033898
1 0.016949

Figure 5.9: Jacobi-chaos solution random input at T  =  tt. Left: mean solution;
Right: variance.
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Level U 
6 0.668464
5 0,557054
4 0.445643
3 0.334232
2 0.222821
1 0.111411

0.0829396
0.0691164
0.0552931
0.0414698
0.0276465
0.0138233

Figure 5.10: Jacobi-chaos solution random input at T  =  I.Stt. Left; mean solution;
Right: variance.

Level U 
6 0.668454
5 0.557054
4 0.445643
3 0.334232
2 0.222821
1 0.111411

%

9.88666E-07 
8,22221 E-07 
6.57777E-07 
4.33333E-07 
3.28889E-07 
1.64444E-07

Figure 5.11: Jacobi-chaos solution random input at T  =  27t. Left: mean solution;
Right: variance.

0.S68464
0.557054
0.445643
0.334232
0.222821
0.111411

0.0818675
0.0682229
0.0545783
0.0409338
0,0272892
0.0136446

Figure 5.12: Jacobi-chaos solution random input at T  =  2.5?r. Left: mean solution;
Right: variance.
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0-668464
0.557054
0.44564S
0.334232
0,222821
0.111411

0.0999746
0.0833121
0.0666497
0.0499873
0.0333249
0.0166524

Figure 5.13; Jacobi-chaos solution random input at T  =  Stt. Left: mean solution;
Right: variance.

5 .1 .2  R e su lts  w ith  tw o -d im en sio n a l ‘tr u n c a te d ’ G a u ssian  in p u t

In this section we assume the random transport velocity takes the following form

u  = {y + 0.05y^i, —x  — 0.05x^2), (5.8)

where and ^2 are two independent Gaussian random variables with zero mean and unit 

variance. To avoid the unphysical tails in the solution, we use the ‘truncated’ Gaussian 

(O(io,io) approximate and ^2 , and employ the Jacobi-chaos to solve the equations.

The evolution of the stochastic response at the peak is shown in Figure 5.14, along 

with the deterministic solution denoted by dotted line. The extra diffusion introduced 

by randomness in transport velocity can be seen clearly, compared to the deterministic 

solution. As opposed to the example in Section 5.1.1, the random effect does not disappear 

after every 27r evolution in time.

The evolution of the stochastic solutions at different times is plotted in Figures 5.15 

to 5.20. On the left are the mean solutions, and on the right are the variances. Compared 

to the results of one-dimensional ‘truncated’ Gaussian perturbation in Section 5.1.1, the 

mean solution under the two-dimensional random perturbation deforms in a different way 

and does not return to the symmetric shape after each period 2?r.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

Figure 5.14: Error bars of the evolution of the peak solution with two-dimensional ‘trun­
cated’ Gaussian input and Jacobi-chaos expansion. The circles represent the stochastic 
mean solution and the dotted line the deterministic solution.

1.5

0.329707

0-5

> 0

-0.5

•1.5

0.0182121
0,0150427
0.0118733
0.0087039
0.0055345
0.0023651

Figure 5.15: Jacobi-chaos solution with 2D-Gaussian random input at T  =  O.Stt. 
mean solution; Right: variance.

Left:
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0,751153
0.610671
0,470189
0.329707
0.189225
0,0487434

0.0433822
0,0381506
0,0289189
0,0216873
0,0144566
0.00722393

Figure 5,16: Jacobi-chaos solution of 2D-Gaussian random input at T  =  tt. Left: mean 
solution; Right: variance.

0,610571

0.189225

-0,5

0,070692
0,0589093
0,0471267
0,0353441
0.0235614
0,0117788

Figure 5,17: Jacobi-chaos solution of 2D-Gaussian random input at T  =  l,57r. Left: mean 
solution; Right: variance.

Level U 
6 0.751153
5 0,610671
4 0,470189
3 0,329707
2 0,189225
1 0.0487434

0.0992443
0,0827026
0,0661609
0.0496192
0,0330776
0.0165359

Figure 5.18: Jacobi-chaos solution of 2D-Gaussian random input at T  =  27t. Left: mean 
solution; Right: variance.
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Level U 
6 0.751153
5 0.610671
4 0.470189
3 0.329707
2 0.189225
1 0-0487434

0.128868
0.107389
0.0859094
0.0644299
0.0429504
0.0214709

Figure 5.19: Jacobi-chaos solution of 2D-Gaussian random input at T  =  2.57t. Left: mean 
solution; Right: variance.

0.329707

0.5

0.156315
0.13026
0-104204
0.0781489
0.0520933
0.0260378

Figure 5.20: Jacobi-chaos solution of 2D-Gaussian random input a t T  
solution; Right: variance.

Stt. Left: mean
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5.2 Nonlinear Advection-Diffusion: Burgers’ Equation

We consider the viscous Burgers’ equation,

Ut +  UUx =  VUxx, X e  [ - 1, 1],
(5.9)

« ( - ! )  =  1 +  5, •u(l) = - 1 ,

where 5 > 0 is a small perturbation to the left boundary condition {x = -1 )  and iy >  0 is 

the viscosity. The presence of viscosity smoothes out the shock discontinuity which will 

develop otherwise. Thus, the solution has a transition layer, which is a region of rapid 

variation and extends over a distance 0{v)  as zy |  0. The location of the transition layer 

2, defined as the zero of the solution profile u{z) = 0, varies with time, and its eventual 

location at steady state is extremely sensitive to the boundary data. This phenomenon, 

termed supersensitivity in deterministic asymptotic analysis, was first observed by Lorentz 

[81]. In this section, we will present numerical solutions tha t exhibit supersensitivity under 

both deterministic and random perturbations on the boundary condition. In particular, 

we consider the following two cases:

1. 0 < 5 <C 0(1) is a deterministic value;

2. 5 € (0, e) is a random variable in (0, e) with e <C 0(1) and a given continuous 

probability distribution function (PDF) f{5).

For problems with deterministic perturbations, extensive research efforts by asymptotic 

analysis have been devoted to the Burgers’ equation and more general viscous conservation 

laws in one spatial dimension (see [66, 67, 68, 69, 70, 105, 106]). In [33], numerical simula­

tions were conducted for both one-dimensional Burgers’ equation and its two-dimensional 

generalization. The results agree well with the asymptotic estimates. In this section we 

first revisit the deterministic supersensitivity problem. Two numerical approaches are em­

ployed. First, we solve the exact formula at steady state. This formula defines the steady 

state solution implicitly in a nonlinear way. Although it has been known in the literature, 

its solution has rarely been sought. Here we solve it iteratively with high accuracy for 

some chosen parameters. Subsequently, we conduct direct numerical simulations by inte­

grating the Burgers’ equation (5.9) via the spectral/fip element method [63]. It is shown
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that the results from the direct simulations agree with the exact solution for up to seven 

significant digits.

5 .2 .1  D e te r m in is t ic  S u p e r se n s it iv ity

In this section we study the viscous Burgers’ equation (5.9) with a small deterministic 

perturbation 5 > 0 on the upstream boundary condition.

Exact solution

The viscous Burgers’ equation (5.9) has an exact solution at steady state

u{x) =  —A  tanh —  ( a: — Z e x ) ex) (5.10)

where Zex is the location of transition layer where u(zex) =  0 and —A  =  I _ its slope
^  ̂ ( J X  ! X — Z e x

at this location. These two unknowns are determined by the two boundary conditions

d ta n h
2iy

(1 +  Zex) =  l  +  <5, d ta n h
21/ (1 =  1. (5.11)

We can eliminate Zgx and obtain a single equation for A

(1 +  5 +  A^) tan h (A /1/) =  (2 +  5)A. (5.12)

Thus, we can solve (5.12) for A  first and then solve Zex from one of the equations in (5.11). 

Iterative methods are needed for these nonlinear equations. It should be noted tha t the 

convergence is very sensitive to the choices of initial guess due to the ‘supersensitive’ 

nature of the original problem.

A sym ptotic analysis

There has been a great number of publications on the asymptotic analysis of the supersen­

sitivity of Burgers’ equation and other viscous conservation laws, see [66, 67, 68, 69, 70, 

105, 106] and the references therein. Here we briefly summarize the results for Burgers’ 

equation (5.9). Based on the asymptotic expansions of (5.10) and (5.11), it can be shown
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tha t if the viscosity u is small and 6 satisfies

S = 0  , as 6,u IQ  (5.13)

for some constant a € (0,1) which does not depend on 5 or u, then the position of

the transition layer, defined as the zero of the solution profile u{z) =  0, varies on a

transcendentally slow time scale

t* = (5.14)

The limit of the transition layer position at steady state is

-̂ as =  1 +  i^ln(V2)) t * O Q .  (5.15)

The asymptotic relation (5.13) implies that 6 is transcendentally small (in the sense of 

asymptotic analysis) compared to u, but dominates as |  0. Equation (5.15) shows 

that this transcendentally small perturbation 6 leads to a measurable, i.e. order one, effect 

on the final location of the transition layer. This phenomenon is called su persen sitiv ity .

D irect numerical sim ulations

Although numerical solutions can be obtained by solving the exact solutions (5.10) and 

(5.11), it is nontrivial to construct robust initial conditions tha t guarantee convergence 

of the iterative solvers in the parameter range of supersensitivity. Hence we seek high 

accurate numerical solutions by integrating Burgers’ equation (5.9) directly. Equation

(5.9) is integrated by the semi-implicit scheme. Since we are only interested in the steady- 

state solution, a first-order scheme is employed.

y^n+l _
At +  {uuxT = (5-16)

where the superscript n  denotes the time level t"  =  uAt .  However, high resolution is 

required in space in order to capture accurately the location of the transition layer, which 

is ‘supersensitive’ to the small perturbation on the boundary condition.

In [33], Garbey and Kaper used a domain decomposition method with two nonover­
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lapping subdomains, where the interface is adaptively located near the position of the 

transition layer. The Chebychev collocation method is employed and they found that 

with N  = 39 collocation points in each subdomain the computed location of transition 

layer converges with three significant digits.

In this work we employ the spectral/hp element method tha t combines the high accu­

racy of traditional spectral methods and the flexibility of mesh control from finite element 

methods [63]. Improved solution can be obtained by either redistributing the elements 

nonuniformly across the computational domain (h-refinement) or increasing the order of 

polynomials within each element (p-refinement), or both (hp-refinement). Thus, spec­

tral element methods offer a dual-path of convergence. Here we employ the modal-basis, 

continuous-Galerkin method, where Jacobi polynomials are used as the basis polynomials 

within elements (see [63] for details).

In Figure 1.1 the steady state solution of (5.9) with u = 0.05 is shown. The solid line 

is the perturbed solution with 5 = 0.01, and the unperturbed solution with J =  0 is shown 

in dashed line for reference. Also shown in the figure is the distribution of five elements. 

The first element occupies (—1, —0.2) and the rest divide the interval (—0.2,1) equally. 

Smaller mesh size is used in the right half of the domain where the transition layer moves 

through. This mesh will be used throughout this paper, and better resolution is obtained 

by p-refinement, i.e. by increasing the basis polynomial order within each element. Prom 

Figure 1.1, we can see clearly that with perturbation 6 as small as 0.01, the location of the 

transition layer, defined as the zero of the solution u{z) =  0, is of order one. Specifically, 

we obtain .2 =  0.73746 in this case.

Computations are conducted for different magnitudes of perturbation 5, and with dif­

ferent viscosity v. To ensure steady states are reached, we require du/dt  ~  (n"+^ — 

u ^ ) /A t  < 10“ ^̂ . Systematic p-refinement was conducted by increasing the order N  of 

the basis polynomials in each element until resolution-independent solutions in space are 

obtained. In these computations we require the location of the transition layer to con­

verge to eight significant digits, which in most cases require 20^’̂ -order {N = 20) spectral 

elements. In Table 5.1 and 5.2, we present locations of transition layer from our direct 

numerical computations and those from solution of the exact formulas (5.11), along with
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the asymptotic estimates from (5.15) and results from [33] for comparison. It can be seen 

that the direct numerical solutions are accurate for up to seven digits when compared with 

the exact solution. Also, the numerical results from [33] and those of asymptotic estimates 

agree well with the exact solutions in general. Details of the resolution independence tests 

are reported in Appendix D .l to verify the convergence of the simulations.

Table 5.1: Locations of transition layer of Burgers’ equation with v  =  0.1 subject to 
deterministic perturbation on boundary condition. Zas is the asymptotic estimate from 
(5.15), ZQK is the numerical result from [33], z is the present direct numerical computation, 
and Zex is the numerical solution from exact formula (5.11).

(5 ^as 2GK ^ex
10-^ 0.700427 0.72464 0.72322525 0.72322525
10-2 0.470176 0.47486 0.47492742 0.47492741
10-^ 0.240724 0.24133 0.24142361 0.24142361
10-^ 0.052606 0.05265 0.052669616 0.052669612
10-^ 0.005504 0.00537 0.0055085545 0.0055085559

Table 5.2: Locations of transition layer of Burgers’ equation with v = 0.05 subject to 
deterministic perturbation on boundary condition. Zas is the asymptotic estimate from 
(5.15), ZQK is the numerical result from [33], 2; is the present direct numerical computation, 
and Zex is the numerical solution from exact formula (5.11).

5 ^as ZGK 2; Zex
10“ ^ 0.850213 0.86237 0.86161262 0.86161262
10-2 0.735084 0.73755 0.73746015 0.73746015
10-3 0.619955 0.62055 0.62030957 0.62030957
10-^ 0.504826 0.50485 0.50487263 0.50487264
10-^ 0.389696 0.38962 0.38970223 0.38970229
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5 .2 .2  S to c h a stic  S u p e r se n s it iv ity  

G eneralized polynom ial chaos

Since the only random input in (5.9) is 6 through the boundary condition, the one­

dimensional finite-term generalized polynomial chaos expansion is employed

M
u{x, t;u)) = ' ^  Ui{x, (5.17)

i= 0

where M  is the highest order of the expansion. Depending on the distribution of the ran­

dom variable different types of orthogonal polynomial bases are chosen. The appropriate 

correspondence is shown in Table 2.1.

In this paper, we assume S has a continuous distribution with bounded support. Thus, 

the Jacobi-chaos, i.e. an expansion in terms of beta random variables is employed. This 

includes the special case of Legendre-chaos which is in terms of uniform random variables.

Upon substituting (5.17) into (5.9) and conducting a Galerkin projection onto the 

bases spanned by obtain

duk 1 duj d'^Uk r„ , /c io\+  VA;€[0,M], (5.18)
' i—Q j=Q

where Cijk — Equation (5.18) is a set of (M  -f- 1) coupled nonlinear equa­

tions. Here we employ again the semi-implicit scheme where the viscous terms are treated 

implicitly and the nonlinear terms explicitly.

The boundary conditions are also expanded in the form of (5.17). For example, if we 

assume S E (0, e) is a beta random variable (0, e) with a , P >  —1, the left boundary

condition can be rewritten as

u ( - l )  =  l  +  (5 =  (l +  J) +  ae, (5.19)

where 5 is the mean of 6 and ^ € (—1,1) is a beta random variable 1,1) with
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zero mean and probability density function (A.17)

2“+ ^ + ir(a  +  i)r(/3  +  i)^   ̂ ’

Here a  scales as its standard deviation. Under this expression, the generalized polynomial 

chaos expansion for the left boundary condition takes the form

uo(—1) =  1 +  1, u i(—1) =  cr, =  0 for A: > 2. (5.20)

The right boundary condition tt(l) =  —1 takes a simpler expansion form of uo(l) =  —1 

and Ufc(l) =  0 for fc > 1.

Perturbation m ethod

Again 5 6 (0, e) is a random variable and we further assume e <C 1. The left boundary 

condition is written as

u ( - l )  =  l  +  (̂  =  Ai +  e, (5.21)

where n = 1 + 6 is the mean value and ^ 6 (—e/2,e/2). In the perturbative approach,

the stochastic quantities are expanded via a Taylor series around the mean value of the

random inputs, i.e.

u{x,t\Lo) =  uo{x,t) + ^ui{x , t )  + ^ ‘̂U2 {x,t) H-----  (5.22)

where
d^u{x, t] io)

Uk{x,t) =  kl fc =  0 , l , 2 , . . . .  (5.23)dk^

Upon substituting the expansion (5.22) into (5.9) and equating the terms of different 

orders, under the assumption tha t 0 (1) 3> O(^) 0 (^^) ; » • • • ,  we obtain the following

set of equations:

0(e'=) : L(uk) = Fk{uo,--- ,Uk-i) k > l ,  (5.25)

, duo d^uo . .
0 { n  ■■ — + u o - w - = i ^ ^ ,  (5.24)
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duk , d{uQUk) d'^Uk 
=  ^  + - f e —

is a linear operator, and the right-hand-side terms are

P n p  dui d{uiU2) d{uiU3) du2F i = 0 ,  F2 = - ui —  , F3 = -------— F4 = -------  U 2 - ^ , - - -  (5.27)ox ox Ox ox

The boundary conditions are matched by the orders of ^ as well. For the left boundary, 

uo(—1) =  = 1 and Uk{—1) =  0 for /c > 2; for the right boundary, uo(l) =  —1

and Ufc(l) =  0 for >  1.

M onte Carlo Sim ulation

The brute-force Monte Carlo simulation (MC) is also employed, where samples of 5 € (0, e) 

are drawn according to its distribution and the deterministic solver is executed for each 

sample input. Two deterministic solvers are available: the iterative solver of the exact 

solution (5.10) and (5.11); and the direct numerical integration of (5.9). Due to the

supersensitive nature of the problem, it is nontrivial to construct robust initial conditions

for the iterative solver to converge for all the random realizations. Thus, we employ the 

direct integration of Burgers’ equation. (Note tha t this is the traditional approach in 

Monte Carlo simulations as the exact solutions are not known in general.) This approach, 

however, is time consuming, especially for the supersensitivity problem which reaches 

steady states on a very slow time scale t* (see equation (5.14)). Here we conduct MC 

simulations for one specific case of v and 5 to validate the results obtained by generalized 

polynomial chaos.

N um erical R esu lts w ith  U niform  R andom  Input

Here we present the numerical results of the viscous Burgers’ equation subject to random 

perturbations on the boundary condition (5.9). We focus on the statistics of the location 

of the transition layer at steady state. In particular, we document the mean position of 

the transition layer and its standard deviation, denoted as z  and az hereafter, respectively. 

The same mesh as shown in Figure 1.1 is used.
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We assume d U{0, e) is a uniform random variable in (0, e), which is a special case 

of beta random variable with a = /3 = 0, i.e. S ~  (0, e).

In Figure 5.21 and 5.22, the stochastic solutions by Legendre-chaos with S ~  17(0,0.1) 

are shown at two viscosity values z/ =  0.05 and =  0.1, respectively. The mean solution 

profile, the standard deviation, and the upper and lower bounds of the solution are plotted. 

The upper and lower bounds are the deterministic solutions with boundary condition 

corresponding to the bounds of the random inputs, i.e. S = 0.1 and d =  0 in this case. 

They give the extreme solutions which constitute a rather wide response interval, and the 

mean location of the transition layer is not centered in the interval. The standard deviation 

peaks near the mean location of the transition layer. A 10% random input results in more 

than 40% peak response of the random output for i' =  0.05. Also, the profiles of the 

standard deviation give us sharper estimations of the variation of the stochastic output.

The stochastic solutions in Figure 5.21 and 5.22 are obtained by high-order discretiza­

tion, with lO'^^-order chaos expansion (M = 10) and 22'̂ ’̂ -order (N  =  22) spectral ele­

ments. In Table 5.3, we tabulate the results at =  0.05 and z/ =  0.1 under uniform 

random input S ~  U(0, e), with different values of e. Examples of the detailed resolution 

refinement tests are shown in Appendix D.2. Note that in these cases, even very small ran­

dom perturbation of 0.1% can result in more than 30% stochastic response in the output.

Table 5.3: The mean locations (z) of the transition layer and their corresponding standard 
deviations (a^) subject to uniform random perturbation S ~  77(0, e) on the boundary 
condition.

V =  0.05 z/ =  0.1
e 10-^ 10-^ 10-^ 10-^ 10“ ^ 10-3
z 0.81390488 0.69062979 0.57410655 0.62781226 0.38156021 0.15912335

0.41403291 0.37864690 0.37322135 0.41400822 0.37591977 0.30390529

One of the advantages of the generalized polynomial chaos expansions is that the 

solutions take an analytical form in terms of the random inputs. Thus, one can in principle 

apply various manipulations to obtain the desired output statistics. Here we show the 

probability density functions of the solutions at various spatial locations, in particular, at
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Figure 5.21: Stochastic solutions by Legendre-chaos with S ~  ?7(0,Q.l) and i/ =  0.05. The 
upper and lower bounds are the deterministic solutions corresponding to the bounds of 
the random inputs, J =  0.1 and <5 =  0, respectively.

0.4

0.2

- 0.2
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- 0.6
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Figure 5.22: Stochastic solutions by Legendre-chaos with S ~  17(0,0.1) and v = 0.1. The 
upper and lower bounds are the deterministic solutions corresponding to the bounds of 
the random inputs, 6 = 0.1 and 6 = 0, respectively.
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X — 0.6,0.7,0.8 and 0.9 which are located inside the transition layer. The results with 

J G f7(Q, 0.1) are shown in Figure 5.23 and 5.24. Figure 5.23 shows the results at i/ =  0.05. 

In this case the point x  =  0.6 is located at the entrance of the transition layer, and the 

PDF here has a clear cutoff on the right and a tail on the left. The stochastic Gibb’s 

phenomenon is present as we observe numerical oscillations. Inside the transition layer at 

X — 0.7 and x — 0.8, the PDFs are wider, with cutoff on the left as well. Near the end of 

the transition layer at x =  0.9, the PDF becomes narrower. Not all the PDFs are uniform. 

Figure 5.24 shows the results for u = 0.1. Here the first point x = 0.6 is already inside 

the transition layer. Again the PDF is sharp near the end of the layer at x =  0.9. From 

these results, we observe that the uniform random input at the left boundary is widened 

inside the transition layer, and sharpened near the end of the layer.

Monte Carlo simulations based on the direct numerical simulations of (5.9) are con­

ducted for the case o iv  = 0.05,5 ^  U{0,0.1) to validate the results obtained by generalized 

polynomial chaos. Because of the slow convergence 0{^/n)  where n  is the number of re­

alizations, we relax the spatial resolutions as the sampling error will be predominant. In 

particular, we require du/dt  < 10~^ for steadiness and employ N  = 14 spectral element. 

Deterministic results in Appendix D .l show tha t at this spatial resolution the location 

of transition layer can be accurate up to five significant digits, which ensures the spatial 

errors to be subdominant. The results of Monte Carlo simulations are shown in Table 5.4. 

It is seen that as the number of realizations increases, the Monte Carlo solutions converge, 

nonmonotonically, to the solution of Legendre-chaos in Table 5.3. W ith n  = 10,000, the 

mean and standard deviation agree with the Legendre-chaos results in three significant 

digits, and the difference is certainly within the sampling error range of the MC simula­

tions. Furthermore, in Figure 5.25 and 5.26 we show the solution PDFs by Monte Carlo 

computation with n  =  10,000 realizations at the four points x = 0.6,0.7,0.8, and 0.9, 

along with the PDFs from Legendre-chaos expansion. We observe good agreements be­

tween the two sets of results, in spite of the C ibb’s oscillations of Legendre-chaos near the 

sharp corner. These results serve as validations of the Legendre-chaos computations.

We also solve the case oi u — 0.05 and S ~  17(0,0.1) by a perturbation method. The 

results are tabulated in Table 5.5. The spectral element order is N  =  20 which ensures
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  x=0,6
-  -  x=0.7 

-  x=0.8 
x=0.9

-0 .5 0.5

Figure 5.23: Probability density functions at various locations for 5 ~  17(0,0.1) and 
u =  0.05. Gibb’s oscillations are present at x =  0.6 and 0.5.

  x=0.6
-  -  x=0,7

0,6 0.0-0,( - 0.2 0-2 0.4- 0.1 -0 .4

Figure 5.24: Probability density functions at various locations for S ~  17(0,0.1) and
i> =  0.1.

Table 5.4: The mean location of the transition layer (z) and its standard deviation (a^) 
from Monte Carlo simulations, n  is the number of realizations, 5 ~  17(0,0.1) and v = 0.05. 
Also shown are the converged Legendre-chaos solutions for comparison.

n =  100 n =  1,000 n =  2,000 n =  5,000 n = 10,000 Legendre-chaos
z 0.81853 0.81407 0.81448 0.81436 0.81397 0.81390488

0-2 0.38705 0.41801 0.41699 0.41676 0.41418 0.41403291
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—  Legendre-chao; x=0.6
—  Monte Carlo; x=0.6 

L egendre-chaos: x=0.9
—  Monte Carlo: x=0.9

Figure 5.25: Probability density functions at a; =  0.6 and x  — 0.9 for S ~  If(0,0.1) and 
II — 0.05 by Monte Carlo simulation and Legendre-chaos expansion. (The oscillations at 
X =  0.9 are due to Gibb’s phenomenon.)

4.5
—  L egendre-chao: x=0.7
—  Monte Carlo: x=0.7
—  L egendre-chaos: x=0.?
—  M onte Carlo: x=0.8

3.5

2.5

0.5

0.5-0 .5

Figure 5.26: Probability density functions at x =  0.7 and x  =  0.8 for 5 ~  17(0,0.1) and 
u = 0.05 by Monte Carlo simulation and Legendre-chaos expansion.
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convergence in physical space. Up to a fourth-order perturbative expansion is employed. It 

is seen that while the mean location is close to the converged solution of polynomial chaos 

computation, the standard deviations have as high as 20% error compared to the chaos 

solution. Also, there is no clear sign of convergence as we increase the order of expansion. 

In fact, the first-order results are better than the rest, and the standard deviations of the 

third-, fourth-order results are noticeably worse than the first- and second-order results.

Table 5.5: The mean location of the transition layer (z) and its standard deviation (cr )̂ 
from the perturbation method, k is the order of the perturbative expansion, 6 ~  t / (0,0.1) 
and u = 0.05. Also shown are the converged results from Legendre-chaos.

k = 1 k = 2 k = 3 fc =  4 Legendre-chaos
z 0.82316323 0.82381706 0.82381706 0.82379866 0.81390488

(̂ z 0.34931667 0.34896352 0.32800483 0.32801031 0.41403291

Two reasons can be attributed to the poor resolution of the perturbation method. 

First, although the random input is only 10% in maximum value, the response of the 

solution has fluctuations as high as 40%, as shown by the generalized polynomial chaos 

computation. This is clearly out of the effective regime of perturbation methods, and 

explains the relatively poor results, especially in standard deviation. Second, the nature 

of perturbative approach does not guarantee convergence as one increases the order of ex­

pansion. In fact, for a given magnitude of perturbation, there exists an optimal expansion 

order that gives the best result, see for example, [88, 89, 96, 120]. This is a well-known 

fact in asymptotic analysis, and it appears tha t the first-order expansion is optimal in this 

case.

N um erical R esults w ith  ‘Truncated’ G aussian R andom  Input

In this section we model the random input at boundary with a “Gaussian-like” distribu­

tion. We employ the ‘truncated Gaussian’ model b) where (a, b) is the bounded

support of the distribution (see Appendix C). Here we employ the fifth-order Jacobi-chaos 

model with a  =  ,0 =  10, as shown in Figure C.3.

In Table 5.6 we show the mean location of the transition layer and its standard devi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

ation with 6 ~  (0,0.1) as the random perturbation on the left boundary condition

of (5.9). These solutions are obtained by O^^'-order Jacobi-chaos with a  =  /? =  10 (M  =  9) 

and 22*^-order spectral elements {N — 22) to ensure the solutions converge to eight sig­

nificant digits. Compared to the uniform perturbation 5 ~  17(0,0.1), under ‘Gaussian’ 

perturbation S ~  0.1) the mean location of transition layer is further to the

right, but with much smaller standard deviation.

Table 5.6: The mean location of the transition layer (z) and its standard deviation (ctz) 
with truncated Gaussian random inputs 5 ~  (0,0.1), for u =  0.05 and u =  0.1.

r /=  0.05, J ~  0.1) r/ =  0 .1 ,J ~ G ^ i“’̂ <^H0,0.1)
2 0.82217889 0.64435795

CTz 0.13195896 0.13367561

The solutions with 5 ~  0.1) are shown in Figure 5.27 and 5.28, for u =  0.05

and u =  0.1, respectively. The corresponding PDF of the solutions at locations x  = 

0.6,0.7,0.8 and x  =  0.9 are shown in Figure 5.29 and 5.30. Again, point x =  0.6 is located 

at the beginning of the transition layer for u = 0.05. We observe from Figure 5.29 that 

the distribution is widened inside the transition layer at x =  0.7 and x  =  0.8, and is 

sharpened near the end of the layer at x =  0.9. This sharpening process is clearly seen 

from Figure 5.30, which is for the case of =  0.1. In this case, the first point x = 0.6 is 

inside the transition layer. Since the random inputs at the boundary are extremely close 

to Gaussian, we naturally compare the PDFs at these locations to Gaussian distributions. 

In Figure 5.31 and 5.32, the PDFs at these locations for v  =  0.05 are shown. Also shown 

with dashed lines are the reference Gaussian PDFs obtained at these locations with same 

mean values and standard deviations. It is seen tha t except at x =  0.9, the distributions 

are non-Gaussian. The PDFs are skewed and with clear cutoff at the tails. Near the end 

of the transition layer at x =  0.9, the skewness is smoothed and the distribution becomes 

close to Gaussian, (see Figure 5.32). Note tha t although the PDF is close to Gaussian, it 

is not Gaussian as it does not possess long tails. In Figure 5.33 and 5.34, the comparisons 

of the PDFs at these locations are shown for u =  0.1, and we observe similar results.
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Figure 5.27: Stochastic solution by Jacobi-chaos (a  =  /5 =  10) with <5 ~  0.1)
and V =  0.05. The upper and lower bounds are the deterministic solutions corresponding 
to the bounds of the random inputs 5 =  0.1 and 5 = 0, respectively.
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Figure 5.28; Stochastic solution by Jacobi-chaos {a = f3 = 10) with 5 ~  (0,0.1)
and V = 0.1. The upper and lower bounds are the deterministic solutions corresponding 
to the bounds of the random inputs 5 =  0.1 and J =  0, respectively.
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Figure 5.29: Probability density functions at various locations {S ~  0.1) and
u = o m ) .
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Figure 5.30: Probability density functions at various locations (6 ~  0.1) and
u  —  0 .1).
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with V — 0.05, 6 ~  (0,0.1). Left:
X =  0.6, Right; x = 0.7.

with 1/ =  0.05, ^ ~  (0,0.1). Left:
X =  0.8, Right: x — 0.9.

Figure 5.33: Probability density functions with v =  0.1, 6 ~  G^^^’̂ °)(0,0.1). Left: x  =  0.6, 
Right: X =  0.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

Figure 5.34: Probability density functions with v  =  0.1, 5 ~  0.1). Left: x  =  0.8,
Right: X =  0.9.

S u m m ary

In this paper the supersensitivity of the viscous Burgers’ equation subject to small per­

turbations on the boundary condition was studied numerically. We presented the de­

tailed simulations for both the deterministic and stochastic supersensitivity problems. 

High-resolution stochastic simulations are conducted by high-order spectral/hp element 

method in physical space, and high-order generalized polynomial chaos expansions in ran­

dom space. Extensive numerical experiments are conducted to ensure the results are 

accurate and convergent.

It is found tha t small random perturbations on the upstream boundary condition can 

result in order one changes on the eventual mean location of the transition layer. The un­

certainty of this transition layer, measured by the standard deviation of its mean location, 

is also high. As high as 30% output uncertainty can be obtained by only 0.1% random 

input. The generalized polynomial chaos expansion is shown to be capable of capturing 

this highly nonlinear problem accurately. Its convergence is demonstrated by resolution 

refinements both in physical space and random space. Its accuracy is verified by conduct­

ing Monte Carlo simulations. Perturbation methods of up to fourth-order expansions are 

also employed. The resolution, however, is poor, due to its inherent limitations. High- 

order perturbation methods do not offer advantages compared to first-order method, at 

least for this particular problem.

The stochastic supersensitivity problem is a natural extension of its well-studied de­
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terministic counterpart. It is a highly nonlinear problem where small random inputs can 

result in large stochastic outputs, and ignoring the uncertain inputs will completely “miss 

the picture” . We expect tha t similar problems will arise in compressible fluid mechanics 

problems.
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Chapter 6

Incompressible Navier-Stokes 

Equations

In this chapter we present the solution procedure for solving the stochastic Navier-Stokes 

equations by generalized polynomial chaos expansion. The randomness in the solution 

can be introduced through boundary conditions, initial conditions, forcing, etc..

6.1 S t o c h a s t i c  Formulation

6 .1 .1  G ov ern in g  E q u a tio n s

We employ the incompressible Navier-Stokes equations

V u  =  0, (6.1)

-h (u -V )u  =  - V U  + Re-'^V^u, (6.2)

where II is the pressure and Re the Reynolds number. All flow quantities, i.e., velocity 

and pressure, are considered stochastic processes.

u — u{x,t;uj)] n  =  n(x, t] Lo). (6.3)

116
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We then apply the finite-term generalized polynomial chaos expansion, (2.23), to these 

quantities and obtain

M  M

u(x ,t;u ;) =  ^ U i(x ,i)# i(C (a ;)) ; II(x ,t;w ) =  ^  IIi(x, t)$i(4(w)), (6.4)
i=0 1=0

By substituting (6.4) into Navier-Stokes equations ((6.1) and (6.2)) and conducting a 

Galerkin projection onto each polynomial basis, we obtain for each k = 0 , . . .  M,

V-Ufe =  0, (6.5)
n . m m
^  +  =  - v n t  +  i i e - ' w ,  (6.6)

\ k/ i—Q j —0

where Cijk = The set of equations consists of (P  -|-1) system of ‘Navier-Stokes-

like’ equations for each random mode coupled through the convective terms.

6 .1 .2  N u m er ica l F orm u lation

We employ the semi-implicit high-order fractional step method, which for the standard 

deterministic Navier-Stokes equations ((6.1) and (6.2)) has the form [62]:

u  -  E L o =  - ^ / 3 , [ ( u • V ) u r ^  (6.7)
g=0

^  =  - v n ”+i, (6.8)

=  ^ g - i v 2un+i (6.9)
A t   ̂ ^

where J  is order of accuracy in time and a, (5 and 7 are integration weights. A pressure

Poisson equation is obtained by enforcing the discrete divergence-free condition V =

0

y 2 n r * + l  =  1  V  • U ,  (6.10)
A t
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with the appropriate pressure boundary condition given as

dn
—n ^  + R e-'^ V  X

A t
(6 .11)

where n  is the outward unit normal vector and a; =  V x u is the vorticity. The method is 

stiffly-stable and achieves third-order accuracy in time; the coefficients for the integration 

weights can be found in table 4.1.

In order to discretize the stochastic Navier-Stokes equations, we apply the same ap­

proach to the coupled set of equations (6.5) and (6.6):

For each k = 0 , . . . ,  M ,

n—qV-'J n
~  2Jg=0 

A t

Ufc -  Ufc
A t

7oUfc~^^ -  Ufc 

A t

= - v n ”+ \

M M

X] X  • V )uj

n —q

(6 .12)

(6.13)

(6.14)

The discrete divergence-free condition for each mode V • =  0 results in a set of

consistent Poisson equations for each pressure mode

(6.15)

with appropriate pressure boundary condition derived similarly as in [62]

dUk
dn A t

+ R e -^ V  X w”n+l (6.16)

where n  is the outward unit normal vector along the boundary, and =  V x Ufc is the 

vorticity for each random mode.
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6.2 MicroChannel Flow

We consider a pressure-driven channel flow as shown in flgure 6.1, where the boundary 

conditions are considered to be uncertain. The domain (see figure 6.1) has dimensions

y=1

y
F=2v

y=-1

Figure 6.1: Schematic of the domain for pressure-driven channel flow with random bound­
ary conditions.

such that y 6 [—1,1] and x E [—5,5]. The pressure gradient, acting like a driving force, is 

equal to twice the kinematic viscosity, and thus for a no-slip wall condition the solution 

is a parabolic profile with centerline velocity equals unity.

6 .2 .1  U n ifo rm  B oundary  C o n d itio n s

We assume that the boundary conditions at the two walls are uncertain with zero mean 

value, i.e., u i =  0 +  cri^i and U2 = 0 + 0 -2 ( 2 , where and ^2 are two idependent random 

variables, and oi and 0 2  are their corresponding standard deviations. Since the bound­

ary conditions are uniform in space, with periodic boundary conditions specified in the 

streamwise direction, the nonlinear terms in the stochastic Navier-Stokes equations (6.6) 

vanish, and we obtain the exact solution

u {x,y) = (1 - y ^ )  -I- y  r , 1 + y ^—cn?i H— —0-2(2 , v{x, y) =  0. (6.17)
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The solution consists of a parabolic profile for the mean solution and two linear random 

modes (^i and ^2) linearly distributed across the channel width. Note the form of the 

exact solution is independent of the distribution type of random variables and ^2-

0.02

0.0160,75

3°  0.5 0.01 ^

0.0050.25

0.5-0.5
y

0.0001

5E-D5

-5E-05

■0.0001

-0.00015

-0.0002

-0.00025

Time

Figure 6.2: Solution of the pressure-driven channel with uniform Gaussian random bound­
ary conditions; Left: the solution profile, Right: development of random modes of v- 
velocity with nonzero initial conditions.

On the left of figure 6.2 we show the solution profile across the channel. The and 2̂ 

are two independent Gaussian random variables with o\ — 0.02 and 0 2  =  0.01. The two- 

dimensional (n =  2) Hermite-Chaos, the optimal Askey-Chaos in this case, is employed. 

Although the solution suggests that only a first-order expansion (p =  1) is needed, higher- 

order terms (p > 1) are included in the computation but are identically zero as expected. 

Another test is to set the initial condition of the flow to an arbitrary random state. We add 

perturbation terms to the exact solution (equation (6.17)) for each random mode in the 

form of Uk{x, y, 0) =  a ^ f{x ,  y) and Ufe(x, y, 0) =  ofig{x, y) for A: =  0 , . . . ,  M.  Here p is the 

order of the chaos expansions and 0 < a  < 1 to ensure the decaying of the perturbation. 

On the right of figure 6.2 we show the time history of some dominant random modes of 

u-velocity at the center of the channel. It is seen tha t due to the nonlinear interactions 

between the random modes some of them are amplified in the early stage, but eventually 

all modes converge to the exact solution.

Computations with other types of random inputs have been conducted with their 

corresponding Askey-Chaos expansions. More specificly, we set and 2̂ to be beta and
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gamma random variables and employ the Jacobi-Chaos and Laguerre-Chaos, respectively. 

Similar results were obtained with the results shown in figure 6.2.

6 .2 .2  N o n -u n ifo rm  B o u n d a ry  C o n d itio n s

Next we consider the case of non-uniform random boundary conditions, i.e. the wall 

boundary conditions at different locations are partially-correlated. The wall boundary 

conditions are assumed to be random processes with correlation function in the form

C(xi, X2 ) = cr^e '  ̂t , (6.18)

where b is the correlation length.

0.0003
0.000219308
0,00010488
1.23655E-05

-1.12158E-05
-7.852B5E-05
-0.0002S4204
■0.0005

8 0.000271429
7  0.000194089
6 6.48499E-05
5 1.42057E-O5
4 -1.42857E-05
3 -4.89169E-05
2 -9.14149E-05
1 -0.000133S09

Figure 6.3: Deviation of mean solution from a parabolic profile in pressure-driven channel 
flow with partially-correlated random boundary conditions at the lower wall; Upper: u- 
velocity, Lower: u-velocity.

By setting a relatively large correlation length b =  100, the eigenvalues of the Karhunen- 

Loeve expansion are

Ai =  9.675354, A2 =  0.1946362, A3 =  0.05014117,

Due to the fast decay of the eigenvalues, we use the first two terms in the Karhunen-Loeve 

expansion given by equation (2.11). This results in a two-dimensional chaos expansion 

(n =  2). Resolution-independence checks were conducted and the fourth-order chaos
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expansion {p =  4) were found to be sufficient to resolve the problem in the random space. 

Using equation (2.37) this results in a fifteen-term expansion (M  =  14). Only the lower 

wall boundary condition is assumed to be uncertain with a = 0.1, while the upper wall 

is stationary and deterministic. A parabolic velocity profile is specified at the inlet and 

zero Neumann condition at the outlet. A mesh with 10 x 2 elements is employed and 

basis Jacobi polynomials of sixth-order in each element results in resolution independent 

solution in space.

Figure 6.4: Contours of rm s  of u-velocity (upper) and u-velocity (lower).

We first consider the lower wall boundary condition a Gaussian random process and 

employ the Hermite-Chaos expansion. Figure 6.3 shows the velocity contour plot of the 

deviation of the mean solution at steady-state from a parabolic profile. The mean of u- 

velocity remains close to the parabolic shape and the mean of u-velocity, although small 

in magnitude, is non-zero. Figure 6.4 shows steady-state solutions of the rm s  (root-mean- 

square) of u and u-velocity. We see the development of a ‘stochastic boundary layer’ close 

to the lower wall. All the higher-order expansion terms are non-zero, which implies that 

although the random input is a Gaussian process, the solution output is not Gaussian. 

Since no analytic solution is available, Monte Carlo (MC) simulation is used to validate 

the result. Figure 6.5 shows the solution of mean velocity u and v along the centerline 

of the channel. It is seen that the Monte Carlo solution converges non-monotonically to 

the Hermite-Chaos result as the number of realizations increases. In this case, it is only
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1,0006 —  MC: 4 ,0 0 0
—  M C: 8 ,0 0 0
— M C: 10 ,000

1.0004
MQ: 40 ,0 0 0

1.0002

X

0.0006

MC: 4 ,0 0 0  
M C: 8 ,000  
MC: 10 ,000  
M C: 12 ,000  
M C: 20 ,0 0 0  
M C: 40 ,0 0 0

0.0004

0.0002

0  -

X

Figure 6.5: Monte Carlo (MC) and Hermite-Chaos (EC) solution of the mean velocities 
along the centerline of the channel; Left: n-velocity, Right: u-velocity.

after 40,000 realizations tha t Monte Carlo solution can capture the solution accurately, 

especially the nonlinear interactions close to the inlet. The polynomial chaos solver, with 

15 terms in the expansions, is more than two thousands times faster than the Monte Carlo 

computation without using any special optimization techniques. In figure 6.6 the solution

1,006

  CT=0.1
- -  osO.2 
• -  0=0.3 
•— 0=0.4 
—  0=0.5

1.005

1.004

1.003

1.002

1.001

0.999

X

0.006

0.004

0.002

•0.002

X

Figure 6.6: Hermite-Chaos solution of the mean velocities along the centerline of the 
channel with different <r; Left: n-velocity, Right: u-velocity.

of the mean velocity along the centerline is shown corresponding to different values of a. 

It can be seen that as the intensity of the input uncertainty a  increases the stochastic 

solution responses increase nonlinearly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

In figure 6.7 we plot the mean solution along the centerline of the channel with dif­

ferent types of stochastic inputs. Specifically, we assume the random processes of the low 

wall boundary condition are zero-mean Gaussian, uniform and exponential processes with 

the same exponential correlation structure (equation (6.18)) and fixed parameter a = 0.4. 

The corresponding Askey-Chaos, i.e., the Hermite-, Legendre- and Laguerre-Chaos, re­

spectively, are employed. The variance of the velocity, non-dimensionalized by the input 

variance cr ,̂ is shown in figure 6.8. It is seen that the uniform random process results in 

a smoother solution with smaller variances due to the fact that the uniform distribution 

has finite support.

1.004 —— Gaussian: Hermite-Chaos
 Untform: Legendre-Chaoa
 Exponential: Laguerre-Chaos

1.003

1.002

1.001

X

0.004

0.003

0.002

0.001

- 0.001

-0.002

X

Figure 6.7: Chaos solution of mean velocities along the centerline of the channel with 
different types of input processes; Left: u-velocity. Right: u-velocity.

Figure 6.9 shows the solution of mean velocity along the centerline of the channel 

corresponding to uniform stochastic process as the lower wall boundary conditions, with 

the same correlation structure as above (a = 0.4). The Legendr e-Chaos expansion is em­

ployed. The Monte Carlo solution converges to the chaos solution; with 120,000 realiza­

tions it captures the nonlinear interactions near the inlet accurately. The Legendr e-Chaos 

corresponds to dimension n =  2 and polynomial order p =  4, which according to the 

formula of equation (2.37) gives 15 terms in the expansion.
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0.06

0.05

0.04

0.03

0.02

0.01
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0.03

  Gaussian: Hermite-Chaos
 Uniform: Legendre-Chaos

 Exponential: Laguerre-Chaos

0.02

0.01

X

Figure 6.8: Chaos solution of variance along the centerline of the channel with different 
types of input processes; Left: variance of tt-velocity, Right: variance of u-velocity.

1.0025

1.002

1.0015

1.001
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0.002

0.001

-0.001
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Figure 6.9: Monte Carlo (MC) and Legendre-Chaos solution of the mean velocities along 
the centerline of the channel with uniform stochastic inputs; Left: u-velocity, Right: v- 
velocity.
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6.3 Flow Past a Circular Cylinder

In this section we simulate two-dimensional incompressible flow past a circular cylinder 

with random fluctuations superimposed to the free-stream. More specifically, the inflow 

takes the form = u-i- where ^ is a random variable or process. Here we focus on 

the Gaussian process and Hermite-Chaos solution. The computational domain is shown 

in figure 6.10. The size of the domain is [—15,25] x [—9,9] and the cylinder is at the origin 

(0,0) with diameter D =  1. The definition of Reynolds number is based on the mean 

value of the inflow velocity u and the diameter of the cylinder. The domain consists of 412 

triangular elements with periodic conditions specified in the crossflow direction. Sixth- 

order Jacobi poljmomial in each element is observed to result in resolution-independent 

solution in space for Reynolds number less than 200. The Reynolds number is defined as 

Re  =  UooD/v, where Uoo is the inflow and v the kinematic viscosity.

Figure 6.10: Schematic of the domain for flow past an elastically mounted circular cylinder. 

6 .3 .1  O n set o f  in s ta b ility

It is well known tha t for two-dimensional flow past a circular cylinder, the first critical 

Reynolds number is around Re  ~  40, where the flow bifurcates from steady state to 

periodic vortex shedding [125]. Here we study the effects of the upstream random pertur­

bations close to this Reynolds number. We set Uin =  u + a^, where ^ is a Gaussian random 

variable and a is its standard deviation. The one-dimensional Hermite-Chaos expansion
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is thus employed. The pressure at the rear stagnation point of the cylinder is extremely 

sensitive to the vortex shedding state and is monitored in our computation.

-0.16

-0.18

-0.2

-0.22

-0.24

-0.26

-0.28

-0.3

-0.32

CTsO.1, p s4
0=0.1, p=6
Deterministic pressure

300
t

-0.2472

-0.2476

-0.248

-0.2484

-0.2488

-0.2492

-0.2496

cr=0.1,p=6
Deterministic pressure

950
t

Figure 6.11: Time history of mean pressure at the rear stagnation point at Re  =  40 
(Gaussian perturbation with a =  0.1); Left: The time history, Right: Close-up view.

Figure 6.11 shows the time history of the mean pressure at the rear stagnation point at 

Re =  40, which is close to the critical Reynolds number. Solution with fourth-order and 

sixth-order Hermite-Chaos are shown, together with the deterministic pressure history as 

reference. A negligible difference is observed between fourth-order and sixth-order chaos 

solutions (less than 0.1%). Thus, the solution can be considered as resolution-independent 

in the random space. In the close-up view we see that the 10% random perturbation 

(cr =  0.1) triggers an instability and the flow becomes weakly periodic, as opposed to the 

deterministic solution which remains steady.

Next, we lower further the inflow Reynolds number to Re  =  35. In figure 6.12 we 

show the time history of the mean pressure signal at the rear stagnation point. Again, 

resolution independence checks show a negligible difference (less than 0.1%) in the solutions 

by fourth-order and sixth-order Hermite-Chaos. It is shown tha t at this Reynolds number 

a 10% random perturbation (cr =  0.1) is unable to trigger an instability and the flow 

remains steady. On the other hand, with a larger perturbation (cr =  0.2) the flow becomes 

weakly unsteady again.

These results suggest tha t the inflow random perturbations have noticeable effects
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Figure 6.12: Time history of mean pressure at the rear stagnation point at Re  =  35; Left: 
The time history, Right: Close-up view.

on the stability of the flow near its critical Reynolds number. In fact, the existence of 

upstream perturbation induces the instability and forces the transition to occur at lower 

Reynolds number. This study is similar to tha t of [58] where the convective instability 

is studied by introducing random perturbations at the inflow of the backward-facing step 

flow. Instead of running many realizations of the deterministic flow solver, here we can 

resolve the propagation of inflow uncertainty by chaos expansion in one single run of the 

stochastic solver.

6 .3 .2  V o rtex  S h ed d in g

We consider another case at Re =  100 with freestream random velocity partially corre­

lated. The inflow is Uin = u + g(y) where g{y) is a Gaussian process with the exponential 

covariance kernel of equation (6.18) with a — 0.02. Again, a relatively large correlation 

length is chosen (b =  100) so tha t the first two eigenmodes are adequate to represent 

the process by Karhunen-Loeve expansion (2.11). Thus, we employ a two-dimensional 

Hermite-Chaos expansion (n =  2) and fourth-order chaos (p =  4).

Figure 6.13 shows the pressure signal, together with the deterministic signal for refer­

ence (denoted as Pd in dotted line). We see that the stochastic mean pressure signal has a 

smaller amplitude and is out-of-phase with respect to the deterministic signal. Although
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initially, the stochastic response follows the deterministic response, eventually there is a 

change in the Strouhal frequency as shown in figure 6.14. Specifically, the Strouhal fre­

quency of the mean stochastic solution is slightly lower than the deterministic one and 

has a broader support.

In figure 6.15 we present velocity profiles along the centerline for the deterministic and 

the mean stochastic solution at the same time instant. We see tha t significant quantitative 

differences emerge even with a relatively small 2% uncertainty in the freestream. In figure 

6.16 we plot instantaneous vorticity contours for the mean of the vorticity and compared 

it with the corresponding plot from the deterministic simulation; we observe a diffusive 

effect induced by the randomness. In figure 6.17 we plot contours of the corresponding 

rm s  of vorticity. It shows that the uncertainty influences the most interesting region of 

the flow, i.e., the shear layers and the near-wake but not the far-field.

Figure 6.13: Pressure signal of cylinder flow with non-uniform Gaussian random inflow. 
Upper: High modes. Lower: Zero mode (mean).

6.4 Flow in a Grooved Channel

In this section we study two-dimensional incompressible flow in a periodically grooved 

channel, a typical model of a waU bounded flow with separation. Groove flows serve as a 

prototype in which the multiple interactions of free shear layers and steady or unsteady
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Figure 6.14: Frequency spectrum for the deterministic (high peak) and stochastic simula­
tion (low peak).
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Figure 6.15: Instantaneous profiles of the two velocity components along the centerline 
(in the wake) for the deterministic and the mean stochastic solution.
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Figure 6.16: Instantaneous vorticity field : Upper - Deterministic solution with uniform 
inflow; Lower - Mean solution with non-uniform Gaussian random inflow.

Figure 6.17: Instantaneous contours of rm s  of vorticity field with non-uniform Gaussian 
random inflow.
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vortices can be investigated in great detail. Detailed stability analysis has been performed 

in [20, 36], and here we focus on the effect of uncertainty in boundary conditions on the 

critical Reynolds number.

In figure 6.18, the computational domain of the grooved channel is shown. The depth 

of the cavity is 1.75. The domain is discretized into 66 non-uniform elements, where the h- 

refinement is employed close to and inside the cavity. The boundary conditions are no-slip 

condition at the rigid walls and periodicity in the streamwise direction. The flow is driven 

via a forcing term  f  =  {2u, 0), where u is the kinematic viscosity. This is equivalent to the 

imposition of a constant mean pressure gradient. The equivalent pressure drop is scaled 

with the kinematic viscosity so tha t it maintains the flow rate (Q) approximately constant 

at different Reynolds numbers. The Reynolds number for this geometry is defined as

Re =  3(3/4i/. (6.19)

Since the mass flow is not known a priori, it is convenient to use the inverse viscosity and 

regard it as a reduced or modified Reynolds number;

r = l/u .  (6.20)

A systematic resolution independence test was conducted, and it is found tha t the 

gth-order spectral element is able to resolve the problem. In table 6.1 we show the corre­

spondence between the Reynolds number (Re) and the modified Reynolds number (r) by 

high-order deterministic simulations. When r  =  275, the flow becomes weakly periodic 

and the Reynolds number varies between 296.1 and 296.6. We further identify tha t the 

critical Reynolds number for the appearance of the first (Hopf) bifurcation, where the 

flow transits from steady state to weakly periodic state, is at r  =  270, where Re pa 291.1. 

This is consistent with the results from [20], where the first critical Reynolds number is 

reported to be around Re Psi 300.

Next we examine the effect of uncertainty in boundary conditions on the first critical
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>  -0.5

Figure 6.18: Flow in a grooved channel: the computational mesh. (The history point is 
shown as a solid dot.)

r  200 225 250 275
Re 217.3 243.7 270.1 (296.1, 296.6)

Table 6.1: Reynolds number (Re) and the modified Reynolds number (r) in a grooved 
channel (Equation (6.19) and (6.20)).
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Reynolds number. Instead of no-slip condition, we assume a slip condition

ut =  (6.21)

on the wall, where ut denotes the tangetial velocity along the wall, ^ ~  1) is a

uniform random variable and cr > 0 scales as its deviation. We applied this condition to 

the different segments of the solid walls of the grooved channel, and found tha t it has the 

most significant effect when applied to the top channel wall.

Figure 6.19 shows the time evolution of the mean velocities at the history point (shown 

in figure 6.18). The no-slip condition is employed at all solid walls, except at the top wall 

where (6.21) is applied with a = 0.1. We observe that, after long-term integration, the 

flow fields become (weakly) periodic with a frequency /  «  0.1075 (period T  Rs 9.30). 

The modified Reynolds number is r  =  220. The mean Reynolds number, calculated from 

(6.19) by the mean flow rate (0 )j is Re «  238.6. The corresponding deterministic flow 

with no-slip wall conditions is steady at this Reynolds number, as shown in figure 6.19 

in dashed lines. By introducing the uncertain slip condition, the first critical Reynolds 

number reduces from 291.1 to 238.6. Hence, an approximately 18% reduction in critical 

Reynolds number for a  =  0.1.

In figure 6.20 and 6.21 we show the mean velocity fields and their standard deviations 

at time f =  5,000, respectively. We observe tha t the maximum of uncertainty in the u- 

velocity is close to the top boundary, as this is where the random input is. The standard 

deviation of the u-velocity shows a cell-structure, and the local maximum values are close 

the center of the channel, and behind the tip of the lower wall inside the cavity, which is 

where the shear layer resides.

The pattern in the standard deviation from figure 6.21 closely resembles the distorted 

(due to cavity) Tollmein-Schlichting (TS) wave pattern from [36]. In [36], it was demon­

strated that the grooved channel instability is a process of the free-shear-layer destabilizing 

the otherwise stable Tollmien-Schlichting waves, and tha t the frequency of oscillation is 

dictated by the least stable mode of the TS wave. The frequency of TS wave is calculated
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Figure 6.19: Evolution of mean velocity field at the history point (solid lines), with the 
reference deterministic results shown in dashed lines, r =  220 and Re =  238.6. Left: 
u-velocity, Right: u-velocity.

0.8

>  -0.5

-2.6

X

Figure 6.20: Mean velocity fields at t 
Right: u-velocity.

5,000. r =  220 and Re =  238.6. Left: u-velocity,
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Figure 6.21: Standard deviation of velocity fields at t =  5,000. r  =  220 and Re =  238.6. 
Left: u-velocity, Right: n-velocity.

from the Orr-Sommerfeld equation for a straight channel, (see, for example, [25])

— a^) ‘̂(j) -  2ia4> = \{D^ -  o?)4>̂ (6 .22)

with boundary conditions a<j) =  D4> =  0 at y =  ±1. Here the base steady flow is U  

(1 — y^, 0) and the perturbation takes the form

u'(x , t) — v(y) exp(mx +  At), (6.23)

where A =  cr+ z27r/ is complex. Equation 6.22 defines an eigenvalue problem, from which 

the least stable mode can be solved in the following form

•̂ (cTTS, / ts; a, Re) =  0. (6.24)

Such problem was first solved accurately in [97] by a spectral method, and several 

different approaches were proposed afterwards, (cf. [15, 55], etc.) Here we adopt the 

pseudospectral method based on Chebyshev polynomials developed in [55], where two 

distinct interpolation polynomials are employed for the second and fourth derivates to 

effectively eliminates the spurious eigenvalues produced by a direct spectral tau method 

[34, 86]. In table 6.2, the results of the current computation via N  = 100 Chebyshev points
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Re a A /a (present) A /a ([97])
10,000 1 0.00373967 -  0.23752649z 0.00373967 --  0.23752649i

5772.22 1.02056 -6 .9 (-1 0 ) -0.26400174Z -5 .9 (-1 0 )  -- 0.26400174Z
5772.23 1.02056 -1 .6 ( -8 )  -0.26400166Z -1 .9 ( -8 )  - • 0.26400166f

Table 6.2: Comparison of the least stable mode (A =  a  +  i27rf) of the Orr-Sommerfeld 
equation for plain Poiseuille flow.

are presented, along with results from [97]. It can be seen tha t the present computation 

agrees with tha t of [97] up to 10“ ®, which is the accuracy limit of [97] due to its single­

precision arithmetic.

Following similar approach in [36], we observe that the velocity perturbation from 

figure 6.21 has n = 1 wave. Thus the wave number is a  =  2TxnjL =  1.25664 (the channel 

length is L =  5). The corresponding TS wave frequency is calculated to be / t s  =  0.094. 

The frequency from figure 6.19 is /  =  0.1075 and is reasonably close to / t s -  Hence we 

conclude th a t the observed instability is again the least stable Tollmein-Schlichting wave 

mode destabilized by the random boundary condition and the free-shear-layer. Since the 

deterministic flow at this Reynolds number is steady, the dominant destabilization factor 

is the random boundary condition.

This preliminary study demonstrates the effect of uncertainty in boundary conditions 

on flow instability. Future research is to study the effect of more realistic noisy slip con­

ditions, i.e. random processes incorporated in various slip models for microflow [61], and 

their effects on the first critical Reynolds number as well as the second critical Reynolds 

number where the three-dimensional modes are excited.
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Chapter 7

Summary

The concept of generalized polynomial chaos is developed in this thesis. This is a frame­

work, which extends the original Wiener-Hermite polynomial chaos, for the purpose of 

uncertainty quantification in practical applications. Here, we studied the mathematical 

properties of generalized polynomial chaos, and further applied it to various differential 

equations subject to random inputs. In particular, the systems we have studied include:

® Ordinary differential equation, where the spectral converge of generalized polynomial 

chaos is presented. The effect of using non-optimal bases is also studied.

® Elliptic equation, i.e., steady state diffusion equation with random diffusivity, source 

terms, and/or boundary conditions. A random mapping technique is also proposed 

to solve problems with uncertain domain (roughness).

• Parabolic equation. Here the well-posedness of the semi-discrete equations from the 

chaos expansion is studied via a simple unsteady diffusion equation with random 

diffusivity. On the apphcation side, the unsteady heat conduction in an electronic 

chip is simulated with uncertain heat capacity and heat conductivity.

• Advection-diffusion. This includes both a hnear advection-diffusion equation sub­

ject to random transport velocity, and nonlinear advection-diffusion, i.e. Burgers’ 

equation with random perturbation on the boundary condition. In particular, the 

stochastic supersensitivity is simulated via high-order expansion, both in physical

138
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space and random space.

• Incompressible flow. A microchannel flow with random boundary conditions is con­

sidered, where Monte Carlo simulations are employed to validate the results from 

generalized polynomial chaos, and good agreements are obtained. Two flows, flow 

past a circular cylinder (external flow) and flow in a periodically grooved channel 

(internal flow), are then studied, where the effect of uncertainty in boundary con­

ditions on the flow instability is examined. It is found that the random inputs can 

triggered flow instability at lower Reynolds numbers.

In all the applications, extensive validations are conducted, where the results from 

generalized polynomial chaos are compared to exact solutions if known, or results from 

Monte Carlo simulations. It is shown that the results from chaos expansion are accurate 

and converge fast. The generalized polynomial chaos, with appropriately chosen bases, 

achieves exponential convergence for model problems. Compared to Monte Carlo simu­

lations, the computational cost of generalized polynomial chaos is signiflcantly lower, in 

many cases, by two to three orders.

Although the generalized polynomial chaos is shown to be highly efficient compared 

to sampling methods, it is still a new concept and there exist several open issues. Among 

them, we list the following prominent ones:

• Mathematical framework. More rigorous mathematical analysis is needed to clearly 

define the functional space determined by each set of polynomial bases. Correspond­

ingly, various mathematical properties can be studied. This will help us further 

understand the applicability of generalized polynomial chaos. For example, many 

theoretical results in Gaussian Hilbert space rely heavily on the rotational invariance 

of Gaussian measure. For the non-Gaussian measures utilized by the generalized 

polynomial chaos, such invariance does not exist and its effect needs to be studied.

• Convergence. Although exponential convergence has been demonstrated in various 

model problems, the rigorous analysis on the convergence rate is still lacking. Also, 

the poor convergence of polynomial chaos for some problems, e.g., see examples in 

[98], needs to be explained.
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• High-dimensional expansion. Similar to many numerical techniques, the generalized 

polynomial chaos suffers from the ‘curse of dimensionality’. The number of expansion 

terms grows rapidly when the dimensionality increases, so does the computational 

cost. Thus, the efficiency of generalized polynomial chaos decreases drasticly for 

high-dimensional expansions.

In conclusion, generalized polynomial chaos has been shown to be a very promising 

tool for uncertainty quantification in real systems, as many of the examples in this thesis 

have demonstrated. It remains a relatively new concept, and much more research efforts 

are needed to further exploit its advantage.
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Appendix A

Some Important Orthogonal 

Polynom ials in Askey-schem e

Here we summarize the definitions and properties of some im portant orthogonal polyno­

mials from Askey scheme. Denote (Qn(x)} as orthogonal polynomial system with the 

orthogonal relation

j ^ Q n { x ) Q m { x ) w { x ) d x  =  h^Smn,  

for continuous a;, or in the discrete case

Y ^ Q n { x ) Q m { x ) w { x )  =  h lS m n ,
X

where S  is the support of w{x). The three-term recurrence relation takes the form 

~xQn{x)  =  hnQn+\{x) + JnQn{x) + CnQn-l{x), n > 0,

with initial conditions Q _i(x) =  0 and Qo{x) =  1. Another way of expressing the recur­

rence relation is

Q n + l ( x )  — (AfiX -f- B j i J Q n i x )  C n Q n —l i x ) ,  U > 0, (A.l)

141
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where An, Cn 7̂  0 and CnAnAn-i > 0. It is straightforward to show that, if we scale 

variable x  by denoting y = ax  iov a > 0, then the recurrence relation takes the form

Sn+i{y) =  {Any +  aBn)Sn{y) ~  a^C„5„_i(y). (A.2)

A .l Continuous Polynom ials

A . l . l  H e r m ite  P o ly n o m ia l il„(rc) an d  G a u ssia n  D is tr ib u tio n

Definition:
n n — 1 2

' 2 ’ff„(x) =  (2x)” I -7; ,  — ; - 3  I ■ (A-3)

Orthogonality:

where

Recurrence relation:

Rodriguez formula:

/OO

H m { x ) H n { x ) w { x ) d x  =  n\6mn,  (A-4)
-CX)

w{x) = (A.5)

iJ„+i(x) =  x H n { x )  -  n H n - i { x ) .  (A.6)

A .1.2  L agu erre P o ly n o m ia l l I ^ \ x ) an d  G a m m a  D is tr ib u tio n

Definition:

Li^)(x) = (^..± --1” i F i ( - n ; a  +  l;x ) . (A.8)

Orthogonality:

[  L { ^ \ x ) L ^ f > { x ) w { x ) d x  =  Oi > -1 ,  (A.9)
Jo

where

w(x)
r ( a  +  1)'

(A.IO)
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Recurrence relation:

(n +  l)L^^^(x) -  (2n +  a  +  1 -  x )l I ^ \ x ) + {n + a)L^“}^{x) =  0. (A.11)

Normalized recurrence relation:

xqn{x) = qn+i{x) + {2n + a + l)qn{x) + n(n +  a)qn-i{x), (A.12)

where

L(-){x) =  ^ g n ( x ) .

Rodriguez formula:

e-":r“ 4 « )(x ) -  (e-"z"+ “ ) . (A.13)

Recall that the gamma  distribution has the probability density function

rjtOCp x / (3
(a .14)

The weighting function of Laguerre polynomial (A.IO) is the same of gamme distribution 

with the scale parameter (3= 1.

A .1.3  J acob i P o ly n o m ia l P ^ ' ^ \ x )  an d  B e ta  D is tr ib u tio n

Definition:

C l“ ’̂ )(x) =  2 F 1 (^ -n ,n  + a  +  /3 +  l ; a  +  l; . (A. 15)

Orthogonality:

J  p}n’̂ '>{x)pj^°‘’̂ \x )w {x )d x  = hlSmn, a, (3 > - 1 ,  (A.16)
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where

2 _  (a  +  l)n(/3 +  l)r

Recurrence relation:

Normalized recurrence relation:

+  ,2„ +  „  +  « ( 2 „  +  a  + p  +

where

Rodriguez formula:

Definition:

C „ ( a : ; o )  =  2-^0 ~ x \  •
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n!(2n +  ct +  /3 +  l ) ( a  j3 2)^—1 ’

p(a,/3)/ N ^  2(n +  l)(n  +  Oi +  ^  +  l)
"  ̂ ’ (2n +  Q +  /? +  1) (2n +  a  +  /? +  2)

I __________ (3 — a___________
(2n +  a  +  /3)(2n +  a  +  /3 +  2) "

+  2(n +  o )(n  +  /3) ra I 8I
^  (2n +  a  +  ^)(2n +  a  +  /3 +  l)  ̂ ^

4.  4n(n +  a)(w +  /3)(n +  g +  /?) ,  .  .  .

(2n +  a  + /3 — l)(2n +  a  + /3)^(2n +  a  + /?  +  1) "

/ i\Ti p
(1 -  x )« (l +  [(1 -  ■ (A.20)

A.2 Discrete Polynomials

A .2 .1  C harlier P o ly n o m ia l C7„(a;; a) an d  P o isso n  D is tr ib u tio n

(A.21)
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Orthogonality:
OO a

X
^  ~ C m {x; a)Cn{x; a) =  a a > 0. (A.22)

Recurrence relation:

—xCn{x] a) = aCn+i{x] a) — {n + a)Cn{x; a) +  nC'„_i(a;; a). (A.23)

Rodriguez formula:

^ C „ ( x ; o ) = V ” ( ^ ) ,  (A.24)

where V is the backward difference operator defined as V f{ x )  = f{ x )  — f{ x  — 1).

The probability function of Poisson distribution is

/(a:;a) =  e - “^ ,  fc -  0 ,1 ,2 , . . . .  (A.25)

Despite of a constant factor e~“, it is the same as the weighting function of Charlier

polynomials.

A .2.2  K ra w tch o u k  P o ly n o m ia l K n { x ; p , N )  an d  B in o m ia l D is tr ib u tio n

Definition:

Kn{x; p, N )  =  2^1 (^-n , - x ;  - N ;  ^  , n = 0 , l , . . . , N .

Orthogonality:

(A.26)

^  ( - l ) " n !  f l - p \  ,
^m ni 0 <  p <  1.^  - p ) ^  ""Kmix;p, N ) K n { x \ p ,  N )

x=0 { - N ) n  \  P  

Recurrence relation:

(A.27)

-xK {x-p , N )  =  p { N - n ) K n + i{ x ; p ,N ) - \p { N - n )  + n { l-p )]K n {x -,p ,N )

+ n { l - p ) K n - i { x - , p , N ) .  (A.28)
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Rodriguez formula:

(  p
K n ( x - , p , N )  =  V^'

N  — n \  I p 
X J  \ l - p

(A.29)

Clearly, the weighting function from (A.27) is the probability function of the binomial 

distribution.

A .2.3  M eix n er  P o ly n o m ia l Mn{x] (3, c) an d  N e g a tiv e  B in o m ia l D is tr ib u ­

tio n

Definition:

Orthogonality:

Mn(x-, p, c) =  2^1 ( - n ,  - X]  / ? ; ! - - (A.30)

E  P, c)Mn{x-, P, c) = 5mn, P > 0 ,  0 < C < 1. (A.31)
x—0

Recurrence relation:

(c -  l ) x M n { x - , P , c )  =  c(n +  /3)M„+i(x;/3,c) -  [ n + (n  +  /3)c]M„(a;;/3,c)

+  nM n~i{x]P,c). (A.32)

Rodriguez formula:
{P)xC^

x\
Mn{x-,P,c) = V̂ ' {P +  n)xC^

x\
(A.33)

The weighting function is

/(x )  =  ^ ( l - c ) V ,  0 < c <  1, P > 0 ,  x =  0 , l ,2 , . . (A.34)

It can verified tha t it is the probability function of negative binomial distribution. In the 

case of P being integer, it is often called the Pascal distribution.
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A .2 .4  H ah n  P o ly n o m ia l Q n { x ; a ,  (3, N )  an d  H y p er g eo m etr ic  D is tr ib u tio n

Definition:

Q n { x - , a , P , N )  =  sF2 ( - n ,n  + a  + + n = 0 , l , . . . , N .  (A.35)

Orthogonality: For a  > —1 and /3 > —1 or for a  < —N  and j3 < —N ,

N

E
x=0

a  +  x \ / ' ( 3  +  N  — X 

X j  V N  — X
Qm{x-, a,  13, N ) Q n { x ]  a,  (3, N )  =  h l S m n ,

where

h i
(—l ) ”'(n + a  + f3 + 1)n +i {(3 +  l)n^! 
(2n +  a  +  /3 +  l ) ( a  +  l)„(-A )„iV ! '

Recurrence relation:

(A.36)

~~xQn{x)  — AnQn-^-1 (^) (d-n Cn')Qn{x') +  C n Q n —li.x), (A.37)

where

Q n ( x )  := Q n { x - , a , ( 3 , N )

and
4  __ (r a + Q + i8 + l) (r t+ Q !+ l) ( iV —w)

”  (2 n + Q + /3 + - l ) ( 2 r j + a + /3 + 2 )

/ “> _  n{n+ a+ ff+ N + l){n+ l3)
. ”  ~  ( 2 n + Q + /3 ) ( 2 n + o : 4 - /3 + l ) '

Rodriguez formula:

w{x] a ,  (3, N ) Q n { x \  a,  (3, N )  = a  +  n, /? +  n, A  -  n)],
V • ' ' ' i n

(A.38)

where

w{x', a , /3, N )  =
a  +  x \ / / 3  +  A  — a; 

a; /  V N  — x
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If we set a  — —a — 1 and (3 = — 1, we obtain

1 (x )C v -Jw (x)

N J

Apart from the constant factor l / { ^  ^), this is the definition of hyper geometric

distribution.
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A ppendix B

Estim ation of the Largest Zero of 

Herm ite Polynom ials

Since our definition of Hermite polynomials is diflferent from the traditional definition, the 

corresponding estimates of the largest zero are slightly different. They are presented here 

for the completeness of the paper.

The classical Hermite polynomials hn(x) are defined as

=  (2x)" M  , (B .l)

and satisfy the three-term recurrence relation

h n + i (x )  -  2 x h n { x )  +  2 n h n - i { x )  =  0. (B.2)

Prom the classical analysis on hn{x ) ,  there are two estimates on the largest zeros xq of

Hermite polynomials h„(x): lower bound xq > \ / ( n  — l) /2 ; lower bound xq < \/2{n  —

l ) / V n - 2  (see [117]).

The relation between the Hermite polynomials used in this paper {J7„(x)} (A.3) and 

the traditional ones { h n { x ) }  is

hn{x )  =  2 ^ ^ ^ H n { V 2 x ) .

149
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Hence, the largest zero of Hermite polynomials Hn{x) are

lower bound; x q  > \ /n  — 1; (B.3)

upper bound; xq < (B.4)
y n  — 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A ppendix C

The Truncated Gaussian M odel

G { a ,  p )

The truncated Gaussian model was developed in [133] in order to circumvent the mathe­

matical difficulty resulted from the tails of Gausssian distribution. It is an approximation 

of Gaussian distributions by Jacobi-chaos expansion. The approximation can be improved 

either by increasing the order of expansion, or by adjusting the parameters in the Jacobi- 

chaos definition. The im portant property of the model is tha t it has bounded support, i.e. 

no tails. This can be used as an alternative in practical applications, where the random 

inputs resemble Gaussian distributions and the boundedness of the supports is critical to 

the solution procedure. Here we briefly review its construction from [133].

Suppose y{u}) ~  N {0 ,1) is a Gaussian random variable, and we use the Jacobi-chaos 

to represent it. Here ^ ~  1,1) is a beta random variable defined in (—1,1)

with parameters a, (3 > —1 and probability density function (A.17).

M
=  »  =  (C .i)

Evaluation of the expansion coefficients is carried out in the way described in section 2.3.2. 

The resulting y{uj) is an approximation to the target Gaussian y{Lo), and will be denoted 

as G{a, P) with a ,(3>  —1. Due to the symmetry of Gaussian distribution, we set a  = P 

in the Jacobi-chaos.

151
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In Figures C .l to  C.3, the PDFs of the Jacobi-chaos approximations are plotted, for 

values of a  =  /3 =  0 to 10. For a  = /3 = 0, Jacobi-chaos becomes Legendre-chaos, 

and the first-order expansion is simply a uniform random variable. In this case, Gibb’s 

oscillations are observed. As the values of (a, p) increase, the approximations improve. 

The expansion coefficients at different orders are tabulated in Table C .l, together with 

the errors in variance and kurtosis compared with the ‘exact’ Gaussian distribution. It 

is seen that with a  — P = 10, even the first-order approximation, which is simply a beta 

random variable, has error in variance as little as 0.1%. The errors in kurtosis are larger 

because the Jacobi-chaos approximations do not possess tails. This, however, is exactly 

our objective.

Figure C.l: Approximated Gaussian random variables by Jacobi-chaos; Left: a = P — 0, 
Right: a  =  /? =  2.

Figure C.2: Approximated Gaussian random variables by Jacobi-chaos; Left: a  =  /3 =  4, 
Right: a = P = 6.
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Figure C.3; Approximated Gaussian random variables by Jacobi-chaos; Left: a = (3 
Right: a  =  /3 =  10.

Table C.l: Approximating Gaussian via Jacobi-chaos: expansion coefficients and errors, 
(ea is the error in variance; 64 is the error in kurtosis. There is no error in mean.) =  0 
when k is even.

a = (3 = 0 a  ~  /3 — 2 a  =  =  4 a  = P = 6 a  =  /? =  8 a = P = 10
yi 1.69248 8.7827(-l) 6.6218(-1) 5.5273(-l) 4.8399(-l) 4.3575(-l)
£2 4.51704(-2) 8.25346(-3) 3.46301 (-3) 2.00729(-3) 1.38842(-3) 1.07231(-3)
£4 1.35894 7.05024(-1) 4.79089(-l) 3.63557(-l) 2.93246(-l) 2.45916(-1)
2/3 4.8399(-l) 7.5493(-2) 2.6011(-2) 1.2216(-2) 6.77970(-3) 4.17792(-3)
£2 1.17071(-2) 8.51816(-4) 4.49245(-4) 4.23983(-4) 4.33894(-4) 4.45282(-4)
£4 5.02097(-l) 7.97474(-2) 3.33201 (-2) 2.40064(-2) 2.21484(-2) 2.22539(-2)
2/5 2.7064(-l) 1.9959(-2) 2.9936(-3) 2.3531(-4) -3.30888(-4) -4.19539(-4)
£2 5.04838(-3) 3.97059(-4) 3.96880(-4) 4.22903(-4) 4.28283(-4) 4.25043(-4)
£4 2.55526(-l) 2.29373(-2) 1.92101 (-2) 2.15095(-2) 2,06846(-2) 2.08317(-2)
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A ppendix D

Numerical R esults for 

Supersensitivity o f Burgers’ 

Equation

D .l  Numerical Results for Determ inistic Supersensitivity

Here we summarize the deterministic results of the direct numerical simulations of problem 

(5.9). In Table D .l and D.2 we tabulate the solutions at v = 0.05 and u =  0.1, respectively. 

Different values of S are considered, and the orders of spectral elements are increased 

in order to obtain resolution independent solutions. It can be seen tha t with 20̂ *’-order 

spectral elements {N  =  20), the locations of transition layer converge with eight significant 

digits, and they agree with exact solutions to seven digits.

D.2 Numerical Results for Stochastic Supersensitivity

In Table D.3, the numerical results of Burgers’ equation (5.9) are shown for u = 0.05 and 

5 ~  17(0,0.1). The mean locations of the transition layer and their standard deviations 

are tabulated, with different Legendre-chaos orders M  and spectral element orders N . It 

can be seen tha t as the expansion orders, both N  in physical space and M  in random 

space, increase, the results converge to resolution-independent values. In this case, they
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Table D .l: The locations of the transition layer at i/ = 0.05 with different values of 
perturbation S. N  is the order of spectral elements, and the dash “—” indicates the 
number there is the same as the one above it. Also shown are the results from exact 
formula.

S =  10-^ s - T o - - - ^ S = 10-^ S =  10-^ J  =  10-^
Tmax 60 400 3,480 13,500 88,000

10 0.86162068 0.73745817 0.62032373 0.50485891 0.38969812
AT= 12 0.86161448 0.73746021 0.62031203 0.50487016 0.39970204
A  =  14 0.86161302 0.73746023 0.62030992 0.50487220 0.38970225
N  = 16 0.86161270 0.73746017 0.62030961 0.50487256 0.38970223
N  = 18 0.86161263 0.73746015 0.62030958 0.50487262 —

Af =  20 0.86161262 — 0.62030957 0.50487263 —

IV =  21 — — — — —

Exact 0.86161262 0.73746015 0.62030957 0.50487264 0.38970229

Table D.2: The locations of the transition layer at =  0.1 with different values of per­
turbation 5. N  is the order of spectral elements, and the dash “—” indicates the number 
there is the same as the one above it. Also shown are the results from exact formula.

5 =  10-^ 5 =  10-^ 6 = 10“ ^ 5 =  10-^ 5 =  IQ-^
N  = 10 0.72322540 0.47992739 0.24142359 0.052673383 0.0055171392
N  = 12 0.72322524 0.47492741 0.24142361 0.052669622 0.0055085668
A  = 14 0.72322525 0.47492741 — 0.052669616 0.0055085545
iV = 16 — — — — —
Exact 0.72322525 0.47492741 0.24142361 0.052669612 0.0055085559
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are z =  0.81390488 and =  0.41403291, which are the same as the reference values 

obtained with a higher resolution of M  =  10 and N  = 22.

Table D.3: The stochastic solution of the locations of the transition layer at =  0.05 listed 
in form of (z, a^), where z is the mean location and its standard deviation. M  is the 
order of Legendre-chaos; N  is the order of spectral elements. The dash “—” indicates the 
number there is the same as the one above it. The reference values obtained by M  =  10 
and N  = 22 are (0.81390488,0.41403291).

N  == 14 N  == 18 iV =  20
M  = 1 0.81459325, 0.37660585 0.81459294, 0.37660750 0.81459294, 0.37660751
M  = 2 0.81394065, 0.41100263 0.81394090, 0.41099364 0.81394090, 0.41099350
M  = 3 0.81390669, 0.41382150 0.81390671, 0.41382035 0.81390671, 0.41382035
M  = 4 0.81390493, 0.41401936 0.81390498, 0.41401904 0.81390498, 0.41401897
M  = 5 0.81390481, 0.41403293 0.81390489, 0.41403210 0.81390489, 0.41403202
M  = 6 — , 0.41403393 0.81390488, 0.41403291 0.81390488, 0.41403286
M  = 7 —  , — — , 0.41403296 — , 0.41403291
M  = 8 — , — —  , — —  ,  —

Similar resolution-independence tests were conducted for all the cases reported in this 

paper, and they are not further tabulated here.
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