An enrichment approach for enhancing the expressivity of neural operators with applications to seismology

Ehsan Haghighat (Carbon), Umair bin Waheed (King Fahd University of Petroleum and Minerals (KFUPM))

The Eikonal equation plays a central role in seismic wave propagation and hypocenter localization, a crucial aspect of efficient earthquake early warning systems. Despite recent progress, real-time earthquake localization remains challenging due to the need to learn a generalizable Eikonal operator. We introduce a novel deep learning architecture, Enriched-DeepONet (En-DeepONet), addressing the limitations of current operator learning models in dealing with moving-solution operators. Leveraging addition and subtraction operations and a novel ‘root’ network, En-DeepONet is particularly suitable for learning such operators and achieves up to four orders of magnitude improved accuracy without increased training cost. We demonstrate the effectiveness of En-DeepONet in earthquake localization under variable velocity and arrival time conditions. Our results indicate that En-DeepONet paves the way for real-time hypocenter localization for velocity models of practical interest. The proposed method represents a significant advancement in the field of operator learning and uses it to solve an outstanding challenge in seismological research. The proposed method represents a significant advancement in operator learning that is applicable to a gamut of scientific problems, including those in seismology, fracture mechanics, and phase-field problems.