
LECTURE 8: CONVOLUTION

1. Dirichlet Kernel

One quantity of importance in the study of Fourier series is the Dirich-
let kernel, defined as follows:

Definition: [Dirichlet Kernel]

DN(x) =
N∑

n=−N

einx

(Think of it as a function with Fourier coefficients 1 and then 0)

The cool thing is that there is actually a closed formula for DN

Fact:

DN(x) =
sin
((
N + 1

2

)
x
)

sin
(
x
2

)
Why? Can do it directly, using geometric sums1, or consider the
following:

(
eix − 1

)
DN(x) = eixDN−DN =

N∑
n=−N

ei(n+1)x−
N∑

n=−N

einx = ei(N+1)x−e−iNx

Date: Thursday, July 14, 2022.
1See Example 4 in Chapter 2 of Stein and Shakarchi
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The last step is because we have a telescoping sum, so the only thing
that remains is the last (N + 1) term and the first (−N) term.

Multiplying both sides by e
−ix
2 and dividing by 2i we get

e
ix
2 − e− ix

2

2i
DN(x) =

ei(N+ 1
2)x − e−i(N+ 1

2)x

2i

And since sin(x) = eix−e−ix

2i we get

sin
(x

2

)
DN(x) = sin

((
N +

1

2

)
x

)
�

2. Relation to Fourier Series

Recall:

f̂(n) =
1

2π

∫ π

−π
f(x)e−inxdx Fourier coefficient

SN(f)(x) =
N∑

n=−N

f̂(n)einx Partial Sums

It turns out that we can conveniently write SN(f) in terms of DN

Important Observation:
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SN(f)(x) =
N∑

n=−N

f̂(n)einx

=
N∑

n=−N

(
1

2π

∫ π

−π
f(y)e−inydy

)
einx

=
1

2π

∫ π

−π
f(y)

(
N∑

n=−N

ein(x−y)

)
dy

=
1

2π

∫ π

−π
f(y)DN(x− y)dy

We have therefore shown that:

Fact:

SN(f)(x) = (f ? DN)(x)

Where ? is an operation called convolution that we’ll talk about be-
low.

In other words, the problem of understanding SN(f) reduces to the
understanding of the convolution f ? DN . Here is a great illustration
of this fact:

3. Pointwise Convergence

Let’s show that if f is (sort of) Lipschitz, then the Fourier series of f
converges to f pointwise.

Definition: f is Lipschitz at x there is L > 0 such that for all y,

|f(y)− f(x)| ≤ L |y − x|
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Here L can depend on x.

Theorem [Pointwise Convergence]

Suppose f is Lipschitz at x, then

lim
N→∞

SN(f)(x) = f(x)

Note: A similar proof works if f is differentiable at x, see Stein and
Shakarchi Theorem 2.1.

Corollary: If f is Lipschitz or f is differentiable, then the Fourier
series converges pointwise everywhere.

Proof:2

STEP 1: Notice from the def of DN =
∑

n e
inx that

∫ π
−πDN(y) = 2π

and therefore:

SN(f)(x)− f(x) =
1

2π

∫ π

−π
f(x− y)DN(y)dy − f(x)

1

2π

∫ π

−π
DN(y)dy︸ ︷︷ ︸
2π

=
1

2π

∫ π

−π
(f(x− y)− f(x))DN(y)dy

=
1

2π

∫ π

−π
(f(x− y)− f(x))

(
sin
((
N + 1

2

)
y
)

sin
(
y
2

) )
dy

In the last step we used the explicit formula for DN above.

2The proof is adapted from Theorem 8.14 in Rudin
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STEP 2: Using that

sin

((
N +

1

2

)
y

)
= sin (Ny) cos

(y
2

)
+ cos (Ny) sin

(y
2

)
The above becomes

SN(f)(x)− f(x) =
1

2π

∫ π

−π
(f(x− y)− f(x))

(
cos
(
y
2

)
sin
(
y
2

)) sin(Ny)dy

+
1

2π

∫ π

−π
(f(x− y)− f(x)) cos(Ny)dy

Upshot: Notice that those two integrals kind of look like Fourier co-
efficients!

STEP 3: To conclude the proof, we will need a result that we’ll prove
next time:

Fact: If g is bounded and integrable on [−π, π], then

lim
N→∞

∫ π

−π
g(y) cos(Ny)dy = 0 and lim

N→∞

∫ π

−π
g(y) sin(Ny) = 0

Our proof then follows, once we show that the functions are bounded
and integrable.

For the second term, boundedness follows from the Lipschitz condition:

|f(x− y)− f(x)| ≤ L |y| → bounded on [−π, π]

And by continuity of f , the function above is integrable on [−π, π].∣∣∣(f(x− y)− f(x)) cot
(y

2

)∣∣∣ ≤ L |y|
∣∣∣cot

(y
2

)∣∣∣→ bounded on [−π, π]
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For boundedness, the only point of concern is near y = 0. But it is not
a problem since limy→0 y cot

(
y
2

)
= 2 (by L’Hôpital), and integrability

follows from this and continuity of the functions.

Putting everything together, we get

lim
N→∞

SNf(x)− f(x) = 0 �

4. Convolution

As mentioned above, SN(f) is the convolution of f and DN . Let’s
study this notion of convolution in more detail:

Definition: If f and g are two integrable 2π periodic functions, then

(f ? g)(x) =
1

2π

∫ π

−π
f(y)g(x− y)dy =

1

2π

∫ π

−π
f(x− y)g(y)dy

Mnemonic: The sum is always x, namely y+ (x− y) = x− y+ y = x

Note: The two definitions are equivalent because if you let u = x−y in
the first integral, then du = −dy and y = x−u and therefore (ignoring
the 2π for clarity)

∫ π

−π
f(y)g(x− y)dy =

∫ x−π

x+π

f(x− u)g(u)(−du) =

∫ x+π

x−π
f(x− u)g(u)du

=

∫ π

−π
f(x− u)g(u)du

The last step follows from periodicity.

Immediate Properties:
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(1) f ? (g + h) = f ? g + f ? h

(2) (cf) ? g = c(f ? g) = f ? (cg)

(3) f ? g = g ? f

(4) (f ? g) ? h = f ? (g ? h)

Fact: If f and g are continuous, then f ? g is continuous

Proof:3 Since g is continuous on [−π, π], it is uniformly continuous on
[−π, π].

Let M = supx |f(x)|

Let ε > 0 be given. Then there is δ > 0 such that if |x− y| < δ then
|g(x)− g(y)| < ε.

With the same δ, if |x1 − x2| < δ, then (again ignoring the 2π)

|(f ? g)(x1)− (f ? g)(x2)| =
∣∣∣∣∫ π

−π
f(y)g(x1 − y)dy −

∫ π

−π
f(y)g(x2 − y)dy

∣∣∣∣
≤
∣∣∣∣∫ π

−π
f(y) (g(x1 − y)− g(x2 − y)) dy

∣∣∣∣
≤
∫ π

−π
|f(y)|︸ ︷︷ ︸
M

|g(x1 − y)− g(x2 − y)|︸ ︷︷ ︸
ε

dy

≤2πεMX

Notice: In the proof above, we never used continuity of f , just that
f is bounded. In fact this is always true, f ? g is always at least reg-
ular (continuour or smooth) as the more regular one of f and g. For

3The proof is taken from Prop 3.1 in Chapter 2 of Stein and Shakarchi
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example:

Fact: If f is continuous and g is differentiable, then f ? g is differen-
tiable and

(f ? g)′ = f ? (g′)

Informally, this follows because

(f ? g)′ (x) =

(∫ π

−π
f(y)g(x− y)dy

)′
=

∫ π

−π
f(y)g′(x− y)dy = f ? (g′)

The differentiation is justified by taking difference quotients and using
the Dominated Convergence Theorem (see Chapter 11)

How are convolutions related to Fourier series? Because of the follow-
ing fact:

Fact: If f and g are continuous, then

f̂ ? g(n) = f̂(n)ĝ(n)

So the Fourier coefficient of f ? g is the product of the Fourier coeffi-
cients of f and g, this is what makes convolution so nice!

Proof: Again, ignore the factor of 2π in the fourier coefficients and in
the convolution
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f̂ ? g(n) =

∫ π

−π
(f ? g)(x)e−inxdx

=

∫ π

−π

(∫ π

−π
f(y)g(x− y)dy

)
e−inxdx

FUBINI
=

∫ π

−π

∫ π

−π
f(y)g(x− y)e−inxdxdy

=

∫ π

−π
f(y)

∫ π

−π
g(x− y)e−in(x−y)e−inydxdy

=

∫ π

−π
f(y)e−iny

(∫ π

−π
g(x− y)e−in(x−y)dx

)
dy

=

∫ π

−π
f(y)e−iny

(∫ π

−π
g(u)e−inudu

)
dy (Use u = x− y)

=

(∫ π

−π
f(y)e−inydy

)(∫ π

−π
g(u)e−inudu

)
=f̂(n)ĝ(n)

(The same result is true if f and g are just integrable, but we would
need an approximation theorem for that)

5. Optional: Convolution Intuition

Video: Convolution Intuition

Intuitively, f ? g is the “multiplication” of f and g. This makes sense
at least in terms of Fourier coefficients (see above).

Here is another way to think of it in terms of multiplication.

https://www.youtube.com/watch?v=_8LwWEGNyyM


10 LECTURE 8: CONVOLUTION

Question: What is the coefficient h(2) of x2 in(
a0 + a1x+ a2x

2
) (
b0 + b1x+ b2x

2
)
?

Multiplying out, the coefficient of x2 becomes

h(2) = a0b2 + a1b1 + a2b0 =
2∑

k=0

akb2−k

Compare this with

(f ? g)(x) =

∫ π

−π
f(y)g(x− y)dy “ = ”

∑
f(y)g(x− y)

Which is also a sum of terms of the form ak bx−k

So in some sense (f ? g)(x) is the x−th coefficient of f times g, if you
think of f and g as polynomials.

In this sense, convolution becomes sort of like multiplication of f and g.
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