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Contents of the talk 
 

•  The need for TMDs at colliders  
 
TMDs = transverse-momentum-dependent parton distributions 
 

•  The context for this talk: forward di-jets at the LHC 
 
their structure of may be modified in p+Pb vs p+p collisions 
 

•  Gluon TMDs in the small-x limit 
 
their (non-linear) QCD evolution can be obtained from the so-
callled JIMWLK equation 

•  Numerical results 
 
new insight regarding the low-momentum behavior (gluon 
saturation regime) 



The need for TMDs at 
hadron (and other) colliders 



Collinear factorization 
in standard pQCD calculations, the incoming parton transverse momenta are 

set to zero in the matrix element and are integrated over in the parton densities 

kT integrated quantities 

the incoming partons 
are taken collinear to 
the projectile hadrons 

d�AB!X =
X

ij

Z
dx1dx2 fi/A(x1, µ

2)fj/B(x2, µ
02) d�̂ij!X +O �
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2
�

some 
hard scale 
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in general for a hard process, this approximation is accurate 
in some cases however, this is not good enough (examples follow) 

TMD factorization is a more advanced QCD factorization framework 
which can be usesul and sometimes is even necessary 
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Fig. 1. The parton model for the Drell-Yan process

Because the transverse momentum qT of the lepton pair is the sum of the trans-
verse momenta of the partons, the cross section (1) is directly sensitive to partonic
transverse momenta. If the partons had no transverse momentum, the cross section
would be a delta-function at qT = 0. This contrasts with deep-inelastic scattering
where only one parton participates in the hard scattering, so that its transverse
momentum can be neglected with respect to the large momentum transfer Q in the
hard scattering.

The need for TMD parton densities in Eq. (1) establishes that TMD parton
densities are important quantities for a quantitative description of many hard pro-
cesses.

To derive the parton model, one needs to use a cancellation of spectator-
spectator interactions.3 In addition one needs to assume other topologies of graph
are unimportant, that partonic kT and virtuality are limited, and that no higher-
order corrections are needed to the hard scattering. All of the last three assumptions
are violated in QCD and are associated with a need to modify the definitions of the
parton densities and the factorization formula in QCD.

2.1. Explicit definition of TMD parton density: complications in
QCD

In constructing an operator definition of a TMD parton density in a hadron, I
assume that the hadron is moving in the +z direction, and I will use light-front
coordinates defined by vµ = (v+, v−,vT), with v± = (v0 ± vz)/

√
2, vT = (vx, vy).

The parton model leads to a definition of a parton density as a hadron expecta-
tion value of the number density of a parton, as specified in light-front quantization.
A first attempt at applying this in QCD uses the A+ = 0 gauge. This is equiva-
lent to the following gauge-invariant definition with a Wilson line in the directiona

−n = −(0, 1,0T):

aNote that the derivation of factorization requires that parton densities for the Drell-Yan process

use past-pointing Wilson lines.4

Drell-Yan process 

so in collinear factorization 

the transverse momentum of the lepton 
pair qT is the sum of the transverse 
momenta of the incoming partons 

d�̂ / �(k1t + k2t � qT )
k2

k1

and TMDs could be useful here 

d�AB!l+l�X / �(qT ) +O(↵s)
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Drell-Yan process 

so in collinear factorization 

the transverse momentum of the lepton 
pair qT is the sum of the transverse 
momenta of the incoming partons 

d�̂ / �(k1t + k2t � qT )
k2

k1

and TMDs could be useful here 

naively, TMD factorization is  

(but unfortunately, there are complications) 

d�

AB!l+l�X =
X

i,j

Z
dx1dx2d

2
k1T d

2
k2T fi/A(x1,k1T )fj/B(x2,k2T ) d�̂

ij!l+l�X

d�AB!l+l�X / �(qT ) +O(↵s)



In order to be able to trace the relative distance between the partons, one has to use the 

mixed longitudinal momentum – impact parameter representation which, in the momentum 

language, reduces to introduction of a mismatch between the transverse momentum of the 

parton in the amplitude and that of the same parton in the amplitude conjugated.

4-parton collision

Multiple parton interactions 
keeping track of partonic transverse momenta is also 

crucial to describe multiple partonic interactions 

consider for instance: 4-jet production 
coming from a double hard scattering 

of two partons in each incoming hadron 
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4-parton collision

Multiple parton interactions 
keeping track of partonic transverse momenta is also 

crucial to describe multiple partonic interactions 

consider for instance: 4-jet production 
coming from a double hard scattering 

of two partons in each incoming hadron 

there is a kinematical domain in which this 
is as important as the leading-twist process 

of 4-jet production in one hard scattering 

with two partons coming from each hadron, 
the transverse momentum ∆ can be non zero 



TMDs are crucial to describe hard processes in polarized collisions 

 

8 leading-twist TMDs 

Spin physics 

Transverse Imaging in Momentum Space 13
TMDs

Transverse Momentum Dependent Parton
Distributions

8 structures possible at leading twist (only 3
for PDFs)

f�
1T and h�

1 require both orbital angular
momentum and final state interaction

can be measured in SIDIS and DY

facilities

JLab@6GeV & 12GeV,
Hermes, Compass I & II,
RHIC, FAIR/Panda, EIC

nucleon polarization 
(e.g. Drell-Yan and semi-inclusive DIS) 

Sivers function 

Boer-Mulders function 

correlation between transverse 
spin of the nucleon and transverse 

momentum of the quark 

correlation between transverse spin 
and transverse momentum of the 

quark in unpolarized nucleon 



Our context: forward di-jets 
Forward dijets in dilute-dense hadronic collisions

ŝ = (p + k)2

t̂ = (p2 � p)2

û = (p1 � p)2

Incoming partons’ energy fractions:

x1 = 1p
s
(|p1t |ey1 + |p2t |ey2)

x2 = 1p
s
(|p1t |e�y1 + |p2t |e�y2)

y1,y2�0�! x1 ⇠ 1

x2 ⌧ 1

Gluon’s transverse momentum (p1t , p2t imbalance):

|kt |2 = |p1t + p2t |2 = |p1t |2 + |p2t |2 + 2|p1t ||p2t | cos ��

Sebastian Sapeta (CERN) Forward dijet production and improved TMD factorization in dilute-dense hadronic collisions 2

•  large-x projectile (proton) on small-x target (proton or nucleus) 

so-called “dilute-dense” kinematics 

hk1ti ⇠ ⇤QCD hk2ti ⇠ Qs(x2)

Qs(x2) � ⇤QCD

prediction: modification of the kt distribution in p+Pb vs p+p collisions 

|p1t|, |p2t| � |kt|, Qs



The gluon TMDs involved 
in the di-jet process 



TMD gluon distributions 

TMD gluon distribution (first try)

Fg/A(x2, kt)
naive
= 2

Z
d⇠+d2⇠t

(2⇡)3p�A
e ix2p

�
A ⇠+�ikt ·⇠t

⌦
A|Tr

⇥
F i� �

⇠+, ⇠t

�
F i� (0)

⇤
|A

↵

This definition is gauge dependent!

Sebastian Sapeta (CERN) Forward dijet production and improved TMD factorization in dilute-dense hadronic collisions 6

•  the naive operator definition is not gauge-invariant 
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•  the naive operator definition is not gauge-invariant 

TMD gluon distributions (proper definition)

+ +

+ similar diagrams with 2, 3, . . . gluon exchanges

They all contribute at leading power and need to be resummed.

That is done by gauge links U[↵,�]

Fg/A(x2, kt) = 2

Z
d⇠+d2⇠t

(2⇡)3p�A
e ix2p

�
A ⇠+�ikt ·⇠t

⌦
A|Tr

⇥
F i� �

⇠+, ⇠t

�
U[⇠,0]F

i� (0)
⇤
|A

↵

I U[↵,�] renders gluon distribution gauge invariant
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this is done by including gauge links in the operator definition 

•  a theoretically consistent definition requires to include more diagrams  
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TMD gluon distributions (proper definition)

+ +

+ similar diagrams with 2, 3, . . . gluon exchanges

They all contribute at leading power and need to be resummed.

That is done by gauge links U[↵,�]

Fg/A(x2, kt) = 2

Z
d⇠+d2⇠t

(2⇡)3p�A
e ix2p

�
A ⇠+�ikt ·⇠t

⌦
A|Tr

⇥
F i� �

⇠+, ⇠t

�
U[⇠,0]F

i� (0)
⇤
|A

↵

I U[↵,�] renders gluon distribution gauge invariant

Sebastian Sapeta (CERN) Forward dijet production and improved TMD factorization in dilute-dense hadronic collisions 7

•  the proper operator definition(s) some gauge link 

Gauge links

Wilson lines along the path from ↵ to �

W[↵,�] = P exp

"
�ig

Z �

↵
d⌘µAa(⌘)T a

#

The path [↵,�] depends on the hard process.

I Gluon TMD, F , is in general process-dependent.

Cross section for dijet production in hadron-hadron collisions cannot be
written down with just a single gluon! [Bomhof, Mulders, Pijlman 2006]

F (1)
qg ,F (2)

qg

F (1)
gg ,F (2)

gg ,F (3)
gg ,F (4)

gg ,F (5)
gg ,F (6)

gg

Sebastian Sapeta (CERN) Forward dijet production and improved TMD factorization in dilute-dense hadronic collisions 8
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Forward dijets in dilute-dense hadronic collisions

ŝ = (p + k)2
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Incoming partons’ energy fractions:

x1 = 1p
s
(|p1t |ey1 + |p2t |ey2)

x2 = 1p
s
(|p1t |e�y1 + |p2t |e�y2)

y1,y2�0�! x1 ⇠ 1

x2 ⌧ 1

Gluon’s transverse momentum (p1t , p2t imbalance):

|kt |2 = |p1t + p2t |2 = |p1t |2 + |p2t |2 + 2|p1t ||p2t | cos ��

Sebastian Sapeta (CERN) Forward dijet production and improved TMD factorization in dilute-dense hadronic collisions 2

however, the precise structure of 
the gauge link is process-dependent: 

 
it is determined by the color 

structure of the hard process H 

•  in the large kt limit, the process dependence of the gauge links 
disappears (like for the integrated gluon distribution), and a single 
gluon distribution is sufficient 



TMDs for forward di-jets 

example for the       channel 

•  several gluon distributions are needed already for a single partonic 
sub-process 

each diagram generates a different gluon distribution 

qg⇤ ! qg



TMDs for forward di-jets 

example for the       channel 

•  several gluon distributions are needed already for a single partonic 
sub-process 

each diagram generates a different gluon distribution 

qg⇤ ! qg

2 unintegrated gluon distributions per channel, 6 in total: 

Kotko, Kutak, CM, Petreska, Sapeta and van Hameren (2015) 

�(i)
ag!cd(x2, k

2
t )

qg⇤ ! qg gg⇤ ! qq̄ gg⇤ ! gg i = 1, 2
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The six TMD gluon distributions 
•  correspond to a different gauge-link structure 

Z µ2

d

2
kt �

(i)
ag!cd(x2, k

2
t ) = x2f(x2, µ

2)

several paths are possible for the gauge links 

•  when integrated, they all coincide 

examples : 
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The six TMD gluon distributions 
•  correspond to a different gauge-link structure 

Z µ2

d

2
kt �

(i)
ag!cd(x2, k

2
t ) = x2f(x2, µ

2)

several paths are possible for the gauge links 

•  when integrated, they all coincide 

•  they are independent and in general they all should be extracted 
from data only one of them has the probabilistic interpretation 

of the number density of gluons at small x2 

examples : 



Evaluating the gluon TMDs 
at small-x 



Gluon TMDs at small-x 
•  the gluon TMDs involved in the di-jet process are: 

(showing here the          channel TMDs only ) 

F (2)
qg

= 2

Z
d⇠+d2⇠

(2⇡)3p�
A

eix2p
�
A⇠

+�ikt·⇠

*
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"
F i� (⇠)
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⇥
U [⇤]

⇤

N
c

U [+]†F i� (0)U [+]

#+
F (1)

qg

= 2

Z
d⇠+d2⇠

(2⇡)3p�
A

eix2p
�
A⇠

+�ikt·⇠
D
Tr

h
F i� (⇠)U [�]†F i� (0)U [+]

iE
qg⇤ ! qg



Gluon TMDs at small-x 
•  the gluon TMDs involved in the di-jet process are: 

(showing here the          channel TMDs only ) 
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•  at small x they can be written as: 

F (1)
qg

(x2, |kt|) =
4

g

2

Z
d

2
xd

2
y

(2⇡)3
e

�ikt·(x�y)
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
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+
A
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a (x

+
,x)t

a

�

Dominguez, CM, Xiao and Yuan (2011) 

these Wilson line correlators also emerge directly in CGC calculations 
when     (the regime of validity of TMD factorization) |p1t|, |p2t| � |kt|, Qs



Outline of the derivation 
•  using                and translational 

invariance 
hp|p0i = (2⇡)3 2p��(p� � p0�)�(2)(pt � p0t)

Z
d⇠+d2⇠

(2⇡)3p�
A

eix2p
�
A⇠

+�ikt·⇠ hA|O(0, ⇠)|Ai = 2

hA|Ai

Z
d3⇠d3⇠0

(2⇡)3
eix2p

�
A(⇠+�⇠

0+)�ikt·(⇠�⇠0) hA|O(⇠0, ⇠)|Ai .
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�ikt·(x�y)
D
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h
F
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F

i�(y) U [+]
iE

x2

•  setting            and denoting 
exp[ix2p

�
A(⇠

+�⇠

0+
)]=1

hA|O(⇠0, ⇠)|Ai
hA|Ai = hO(⇠0, ⇠)i

x2

we obtain e.g. 
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•  then performing the x+ and y+ integrations using 
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The other TMDs at small-x 
•  involved in the          and          channels 

with a special one singled out: the Weizsäcker-Williams TMD 

gg⇤ ! qq̄ gg⇤ ! gg

F (3)
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Jalilian-Marian, Iancu, 
McLerran, Weigert, 
Leonidov, Kovner 

x evolution of the gluon TMDs 
the evolution of Wilson line correlators with decreasing x can 

be computed from the so-called JIMWLK equation 

a functional RG equation that resums the 
leading logarithms in 

d

d ln(1/x2)
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the distribution of partons 
as a function of x and kT 

•  qualitative solutions for the gluon TMDs: 

The curve translates 
to the right with 

decreasing x  



JIMWLK numerical results 

saturation effects impact the various gluon TMDs in very different ways 

using a code written by Claude Roiesnel 

CM, Petreska, Roiesnel (2016) initial condition at y=0 : MV model 
evolution: JIMWLK at leading log 



Conclusions 

•  different processes involve different gluon TMDs, with different 
operator definitions 

•  given an initial condition, they can all be obtained at smaller values 
of x, from the JIMWLK equation 

•  as expected, the various gluon TMDs coincide at large transverse 
momentum, in the linear regime 

•  however, they differ significantly from one another at low transverse 
momentum, in the non-linear saturation regime 

•  we have quantified these differences and they are not negligible 


