Transverse-momentum
dependence of gluon
distributions at small-x

Cyrille Marquet

Centre de Physique Theéorique
Ecole Polytechnique & CNRS

CM, E. Petreska and C. Roiesnel, JHEP 10 (2016) 065, arXiv:1608.02577



Contents of the talk

The need for TMDs at colliders

TMDs = transverse-momentum-dependent parton distributions

The context for this talk: forward di-jets at the LHC

their structure of may be modified in p+Pb vs p+p collisions

Gluon TMDs in the small-x limit

their (non-linear) QCD evolution can be obtained from the so-
callled JIMWLK equation

Numerical results

new insight regarding the low-momentum behavior (gluon
saturation regime)




The need for TMDs at
hadron (and other) colliders



Collinear factorization

in standard pQCD calculations, the incoming parton transverse momenta are
set to zero in the matrix element and are integrated over in the parton densities

doaB—sx = Z/dfﬁld@ fira(z, 1) fi8(xa, p'?) déijsx + O (AéCD/MQ)
i — - — l

k. integrated quantities

_ _ some
the incoming partons hard scale

are taken collinear to
the projectile hadrons



Collinear factorization

in standard pQCD calculations, the incoming parton transverse momenta are
set to zero in the matrix element and are integrated over in the parton densities

doaB—sx = Z/dxldch fira(z, 1) fi8(xa, p'?) déijsx + O (AéCD/MQ)
i — - — l

k. integrated quantities

_ _ some
the incoming partons hard scale

are taken collinear to
the projectile hadrons

in general for a hard process, this approximation is accurate
in some cases however, this is not good enough (examples follow)

TMD factorization is a more advanced QCD factorization framework
which can be usesul and sometimes is even necessary



Drell-Yan process

Pp
the transverse momentum of the lepton
pair g; is the sum of the transverse
momenta of the incoming partons k2\
d& 0.6 5(k1t —+ kgt — C]T) g
so in collinear factorization klf
_|_ —
dO_AB—>l [~ X océ(qT)—l—O(ozS) >
A

and TMDs could be useful here




Drell-Yan process

Pp
the transverse momentum of the lepton
pair g; is the sum of the transverse
momenta of the incoming partons ]g2\
d& 0.6 5(k1t —+ kgt — C]T) g
so in collinear factorization klf
_|_ —
dO_AB—>l [~ X o<5(qT)—|—(9(ozs) >
A

and TMDs could be useful here

naively, TMD factorization is

doAB2TTTX Z/dxldx2d2k1Td2k2T fiya(zr, kar) fip (w2, ko) dei17 10X
1,J
(but unfortunately, there are complications)



Multiple parton interactions

keeping track of partonic transverse momenta is also
crucial to describe multiple partonic interactions

consider for instance: 4-jet production
coming from a double hard scattering
of two partons in each incoming hadron




Multiple parton interactions

keeping track of partonic transverse momenta is also
crucial to describe multiple partonic interactions

consider for instance: 4-jet production
coming from a double hard scattering
of two partons in each incoming hadron

there is a kinematical domain in which this
is as important as the leading-twist process
of 4-jet production in one hard scattering

with two partons coming from each hadron,
the transverse momentum A can be non zero



Spin physics

TMDs are crucial to describe hard processes in polarized collisions

(e.g. Drell-Yan and semi-inclusive DIS)

8 leading-twist TMDs

Sivers function

correlation between transverse
spin of the nucleon and transverse
momentum of the quark

Boer-Mulders function

correlation between transverse spin
and transverse momentum of the
quark in unpolarized nucleon

quark polarization

nucleon polarization
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Our context: forward di-jets

« large-x projectile (proton) on small-x target (proton or nucleus)
P

p

-

o:.. .. :.‘w

<k1t> ~ AQCD <k2t> ~ Qs(@)

Qs(x2) > AQCD

. , . so-called “dilute-dense” kinematics
Incoming partons’ energy fractions:

X1 = %(’plt‘eyl+|p2t|ey2) y1,y2>>0 xx1 ~ 1
Xp = %(’plt’e_yl+‘p2t|e_y2) X < 1

Gluon's transverse momentum (p1;, p2r imbalance):
‘kt’2 = ’Plt + Pzt’2 = ‘Plt‘z + ’P2t’2 + 2’p1th2t’ cos Ag |p1t|7 |p2t‘ > |kt‘v Qs

prediction: modification of the k; distribution in p+Pb vs p+p collisions



The gluon TMDs involved
In the di-jet process



TMD gluon distributions

» the naive operator definition is not gauge-invariant

naive +d2 t IX — |— I—
Faalin ) "2 [ Gt e s (AT [P () £ (0] 1)



TMD gluon distributions

» the naive operator definition is not gauge-invariant

2
A", o
(27)3p,

« atheoretically consistent definition requires to include more diagrams

Fonlo, k) ™% 2 Skt (AT [FI (€5, €,) F(0)] A)

+ similar diagrams with 2,3, ... gluon exchanges

They all contribute at leading power and need to be resummed.

this is done by including gauge links in the operator definition



Process-dependent TMDs

» the proper operator definition(s) some gauge link pexp [—ig/ﬁdn“Aa(n)Ta
dEYd®E, et ikt i +\ i
Foa(xo, ki) =2 [ ————Le"Pa “Se (A|Tr [F'™ (€7,€,) Uge o F'™ (0)] |A)

(27)°pa

> Un g renders gluon distribution gauge invariant




Process-dependent TMDs

» the proper operator definition(s) some gauge link pexp [—ig/ﬁdn“Aa(n)Ta
dEYd®E, et ikt i +\ i
Foa(xo, ki) =2 [ ————Le"Pa “Se (A|Tr [F'™ (€7,€,) Uge o F'™ (0)] |A)

(2m)°pa

> Un g renders gluon distribution gauge invariant

p_C o X, P2

however, the precise structure of
the gauge link is process-dependent:

p it is determined by the color

— & structure of the hard process H
[ 2 pl

 in the large k; limit, the process dependence of the gauge links
disappears (like for the integrated gluon distribution), and a single
gluon distribution is sufficient



TMDs for forward di-jets

« several gluon distributions are needed already for a single partonic
sub-process

example for the qg* — g channel

each diagram generates a different gluon distribution



TMDs for forward di-jets

« several gluon distributions are needed already for a single partonic
sub-process

example for the qg* — g channel

each diagram generates a different gluon distribution
2 unintegrated gluon distributions per channel, 6 in total: <I>§2%d(:c2, k7)

* — * S
99" = a9 99" =l 99" — g9 =1
Kotko, Kutak, CM, Petreska, Sapeta and van Hameren (2015)



The six TMD gluon distributions

« correspond to a different gauge-link structure

2
df+d gteixzp;§+—ikt~§t

Fynlxa ke) =2
sl ko) (27)py

(AITr[F77 (€7, &) U™ (0)] 14)

several paths are possible for the gauge links /

°T ™~ - 1 - .
examples : . | [ |

U+ Uu'-!
* when integrated, they all coincide

2

" |
/ d*ky (I)g&g)—md(ZEQa ki) = xaf (22, pn°)



The six TMD gluon distributions

« correspond to a different gauge-link structure

2
d§+d gteixgp;§+—ikt~§t

Fynlxa ke) =2
sl ko) (27)py

(AITr[F77 (€7, &) U™ (0)] 14)

several paths are possible for the gauge links /

B - - . Er | .
examples : | | |

ui+' uf—i
* when integrated, they all coincide

2

" |
/ d*ky (I)S;%cd(@, ki) = xaf (22, pn°)

« they are independent and in general they all should be extracted

from data only one of them has the probabilistic interpretation

of the number density of gluons at small x,



Evaluating the gluon TMDs
at small-x



Gluon TMDs at small-x

* the gluon TMDs involved in the di-jet process are:
(showing here the qg* — Qg channel TMDs only )

déTd?é . v - T i
(1) — ix2p T —ike-& i (=]t i [+]
Fag 2/ (27)3p26 A <Tr {F (UTITE~ (0)U }>

+ 72
P = [ B e <Tr

(27)3p4 e




Gluon TMDs at small-x

* the gluon TMDs involved in the di-jet process are:
(showing here the qg* — g channel TMDs only )

F) =2 / —éi:d%_ eiv2P L —iki g <Tr [Fi_ O U Fi= (O)Z/{H]D

2 (L]
f’(Z) _ 2/ dg d E zx2p25+—ikt-§ Tr Fi— (5) Ir [Z/{ }uH—]TFZ— (O)Z/[H_]
Y (27)°p Ne
- at small x they can be written as: Uy = P exp [ig /OO dot A (x+7x)ta]

2
F () = 5 / : xd g e MY (T [0y (0U))]),,

(2) d%dz —ike-(x—y) L i i i
Fo (o, |ke|) = —— / ~ (T [(BiUx) Uy (0:Uy ) Uy Tr [Uy Uy ] )

these Wilson line correlators also emerge directly in CGC calculations
when [p1¢|, [p2t| > k|, Qs (the regime of validity of TMD factorization)

T2

Dominguez, CM, Xiao and Yuan (2011)



Outline of the derivation

using (plp’) = (2n)% 2p=6(p~ — p'")6@ (p, — p}) and translational
invariance

2 Sed3e! — (et _ ¢+ ; / /
/ f:fpfemm—“ﬁf (A100.0)14) = i [ et a € R (0 )1 4)
T)"Pa



Outline of the derivation

e using (p|p') = (2n)% 2p=6(p~ — p')6P (p, — p}) and translational
invariance

+a2¢e . .. BEA3E ety _¢ /
[ g T 00,00 = (g [ e A DO (ol )
A

(AlO(¢',€)|A)

=(0(£",€)),

we obtain e.g.

dPxddy . .
(1) _ —ike-(x—y) i =1t i [+]
Fil (x2,kt)_4/ 2 € <Tr [F (z) U= (y) U ]>

T2



Outline of the derivation

using (plp’) = (2n)% 2p=6(p~ — p'")6@ (p, — p}) and translational
invariance

d +d2 : —et+_ 2 d3 d3 r — et N ’
/ (fw )3;6”2“5 TEEAO0.O14) = iy [ e A T o 914)
A

A[O(E,§)]A)
(Al4)

setting exp[iprZ(é—g'*)] —1 and denoting < = (0(¢,¢)),,
we obtain e.g.

d3xd? . . ,
(1) _ Y ik (x—y) i [t pi— [+]
FO (g, ky) = 4 / B ¢ <Tr [F () U (y) U ]>

T2

then performing the x* and y* integrations using

0.Uy = ig / dy U =00, 55y~ ()Uly*, +oos y]

— OO

we finally get  FO(m 1)) = -+ [ E2CY ik vy iy 110,00 (90
yget Flan k) = 5 [ 55 e (Tr [(0:0y)(0:U)]),

2



The other TMDs at small-x

. involved in the 99" — 94 and g¢© — ¢g channels

2 2
D (e ki) = f-/ XL vt L (T [(00)OUD] Te [T,

(2m)*

F& (2, ke) = —— / "?;‘:2 ‘kr-<x—y)l\—lrc(’rr (2UX)Uy] Tx [(8:Uy)UL])
Fd @ k) == [ % etk Y) (e QUL OUY)UL]), . |
J?ggl(x-z,kt)=—g% d:;g,y gtk x-y) (n (DU USURUL(8:Uy ) ULU, L)Y,

4 [ d*xd*y

(6) _
'Fg.q (mz’kt) - g2 (21r)3

with a special one singled out: the Weizsacker-Williams TMD

4 [ d*xd’y . e
P (k) = = / e Y (T (DU U 0.0, U))

2

g ik (x-y) \z (Tr [(8,U) U (8;Uy )US] T [U U] T [U,UL]),



X evolution of the gluon TMDs

the evolution of Wilson line correlators with decreasing x can
be computed from the so-called JIMWLK equation

d Jalilian-Marian, lancu
O — H O McLerran, Wéigert, ,
d ln(l/:EZ) < >$2 < JIMWLE >$2 Leonidov, Kovner

a functional RG equation that resums the
leading logarithms in ¢y = In(1/x2)



X evolution of the gluon TMDs

the evolution of Wilson line correlators with decreasing x can
be computed from the so-called JIMWLK equation

d Jalilian-Marian, lancu
O — H O McLerran, Wéigert, ’
d ln(]-/ZEZ) < >$2 < JIMWLE >$2 Leonidov, Kovner

a functional RG equation that resums the
leading logarithms in ¢y = In(1/x2)

o

In(1/x) !

« qualitative solutions for the gluon TMDs:

k F(x, k%)) " most partons
?\” are here ] Diuto systom
~kInQsk &
\ N The curve translates I iy
\\ : @ mm @
—ip

Sk to the right with

" decreasing X

\ | > .
w | \ In(k%/Nocp)
| ag <<1

> k the distribution of partons

= .
799 . AQCD Qs know how to do physics here as a function of x and kT




a7 (yp,) (27" g* L*)

initial condition at y=0 : MV model

JIMWLK numerical results

using a code written by Claude Roiesnel

CM, Petreska, Roiesnel (2016)

evolution: JIMWLK at leading log
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saturation effects impact the various gluon TMDs in very different ways



Conclusions

different processes involve different gluon TMDs, with different
operator definitions

given an initial condition, they can all be obtained at smaller values
of x, from the JIMWLK equation

as expected, the various gluon TMDs coincide at large transverse
momentum, in the linear regime

however, they differ significantly from one another at low transverse
momentum in the non-linear saturation regime

we have quantified these differences and they are not negligible




