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@ Introduction: Quantum Simulation and Quantum Links



From optical lattices/trapped ions - - -

Adjust parameters such that atoms in lons confined in ion-trap with interactions
optical traps act as d.o.f between individual ions can be controlled.

physical operations on quantum hardware
— (e.g. laser pulses)
{

( time

-

array of qublts

desired time evolution

single qubit gate 2-qub|t gate on a coarse-grained
cold atoms in optical lattices realize mult-qubt gate nsscaie
Bosonic and Fermionic Hubbard type Advantage: Much more control over
models. interactions; Challenge: Scalability.

Prepare the "quantum” system and let it evolve. Make measurements at times ; on
identically prepared systems. Achievement: observation of Mott-insulator (disordered)

to superfluid (ordered) phase. Greiner et. al. (2002)



-- - to real time/finite density QCD

Lattice calculations of static and finite temperature
properties of QCD well controlled

At finite upg, lattice methods fail due to the sign problem
Questions about real-time dynamics also inaccessible:

(Po|O(1)O(0)|Pg) = %Z\<¢o|©|m>\2e*"(5m*50)f

What if the fermions themselves can be used as degrees
of freedom in themselves in simulations? reynman, 1982

Exploit the advances made in optical lattices to set up
systems which mimic Hamiltonians of interest to particle
physics

Need finite Hilbert spaces! — Quantum Links



Outline

9 Pure gauge: The U(1) Quantum Link Model in (2+1)-d
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The U(1) pure gauge theory

—J > (U + uf]

X, u>v

Ux UX+H:VU)1—(+V,MU)1;-,V
exp(iox )i Vx = exp(iay)
VXUX,;L VX+;4

Hamiltonian formulation:

Uy, OF, € U(1) operators in
an infinite dimensional Hilbert
space. Dynamics of u: & = —id,

A

[&,0] = U; [&,0"] = 0 [0,0'] =0

U(1) gauge transformations
generated by Gauss Law:

Gx = Z(éx.,i —&x—ii); [Gx,H]=0
i
U(1) gauge invariant Hamiltonian:

:QZXI QQZZ

X,i#]



The U(1) Quantum Link Model

U=S8"+i8? Uf =8"-iS?and E = S® = finite Hilbert space of quantum
spin S at each link
® continuous U(1) gauge invariance is exact, due to the commutation relations:

[E,U] = U; [E,U'] = —U'; [U,UT] = 2E

Gauge theory with a 2-d Hilbert space at each link

H=-J> (UD + u;) A3 (UD + U;)2
[m] O

® The Gauss Law as before generates gauge transformations:
Gx = Z (Ex,i - Ex—i,i) ’ [G)m H] =0
i

® Second term introduces non-trivial physics and interesting phase structure

HJ —_— -J H)\ —_— A




Phase diagram

Explored with exact diagonalization and a newly-developed efficient cluster alogrithm
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A global SO(2) symmetry is “almost” emergent at Ac. However, description in terms of

a low-energy effective theory suggests weak 1st order transition.



Order parameters

2-component order parameter constructed out of dual variables residing at the centre of
plaquettes. The phase is related to which of the two sublattices can order at a given .
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Crystalline confinement

0 20 40 60 O 20 40 60

Energy density (H,) of two charges Q = + 2 placed in along the axis in L = 72 lattice
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@ Abelian theory with Quantum Links



Schwinger model with quantum links and staggered fermions

H= =t [tdUnesrtnrs +he] +md (=1 wiox +Z Z E

* Use the bosonic rishon representation '
U x+1 = ST =bxbl i Exxp1 =8 = (bX 1bxi1 — biby)

g —>
Phies Rishon for spin S = 1; /' =2
~ Buger = (03— n3,)/2
St ny+ny,1 =28 =2

2z 2r+1

* Gauss Law: Gy = V- E — p=nf + n} + n§ —2S + J[(—1)* — 1]

* In optical lattices, realized using a microscopic Hubbard-type Hamiltonian
A= SR e m - U 6
X X X

= —tg > bibl . —ts > BETbE —tr > it +hec.
X

x€odd Xx€odd

+ Zn Ua,;nx—i-z (=) Wil

X,o, 3

DB, Dalmonte, Miiller,Rico Ortega, Stebler, Wiese, Zoller (2012)



Optical lattice setup
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Static and Real-time physics
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Static and Real-time physics

. — quenched dynamics, S = £
’ vacuum value, S =1

15 5 --- string breaking, S =1
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@O Non-Abelian gauge theories with Quantum Links



Non-Abelian quantum link models

For QCD with quantum links and domain-wall fermions Brower, Chandrasekharan, Wiese (1999)
The Hamiltonian with staggered fermions are given by:

H=—t>" (syuil U] +he) +m> scolfvl + VI @l vi)?
(xy) % %

where sy = (—1)%1+ X0 and sy = (—1)¥ T %=1, with y = x + k.
DB, Bogli, Dalmonte, Rico Ortega, Stebler, Wiese, Zoller (2012)
The non-Abelian Gauss law:

Gl =ui Nk + D0 (L, e T R2s,) - Go= il =3 (Eprk — Eecir) -
k k
A% Gell-Mann matrices; L5, 5, : SU(N) electric fluxes, £, : Abelian U(1) flux.
Other possible terms in the Hamiltonian: % >y (L LRy + A A%, i D Efy,
# > (U + hee.). Not included in our study.
U(N) gauge invariance requires:

[L?, L°] = 2ifaeL®, [R?, RP] = 2ifpcRE, [L%, R] = [E, L%] = [E,R%] =0,
[Lav U] = 7)‘aU» [Raa U] = U>‘ar [Ea U] =U

To study SU(N) theories, we must include the term ~ >~ (detly, +h.c.)



Rishons: the magic of the QLMs

Non-Abelian link fields can be represented by a finite-dimensional fermionic
representation:

i, —c’XT+>\jc’ Rfy:c’T >\ac’ By = (c’T c c’T +Cht), ny civ#cf,t

cl e cfik with color index i € {1,2, ..., N} are rishon operators. They anti-commute:

X)

{ ko Gy, il} = Oxy0tk,+/6j, { k> Gy, i/} = {CX +k Gy, il} =0.

By fixing the no of rishons on a link, the Hilbert space can be truncated in a completely
gauge-invariant manner: Ny, = c}’,T_c}’, _+clf Gk i Ny, Hl =0
Action of the plaquette

and the determinant on a
O .) L 2% }

SU(3) theory with
Q 4)
;8.[% l.Q,_% Nxy = 3 rishons per link.

“+Ooee——+ 5 +——Oee+

det Uy



Implementation of the non-Abelian models

Lattice with quark and rishon sites as a physical optical lattice for fermionic atoms.

"oomee " oomee
* Yheot chyt —tota * det Uzy
ocee O0OOMee

| 1)) - D1

® Force the rishon number constraint per link by the term: U=, (Nxy — n).
® Hopping is induced perturbatively with a Hubbard-type Hamiltonian.

® Color d.o.f are encoded in the internal states ( the 2/ + 1 Zeeman levels of
the electronic ground state ' Sy) of fermionic alkaline-earth atoms.

® Remarkable property: scattering is almost exactly 2/ + 1 symmetric.
® Since the hopping process between quarks and rishon sites is gauge

invariant, the induced effective theory is also gauge invariant.

[ Quantum simulator constructions also by Reznick, Zohar, Cirac (Tel-Aviv, Minich) and Tagliacozzo, Celi, Zamora,

Lewenstein (Barcelona) ]



Chiral Dynamics

[ dimension [ group [ M | C [ flavor [ baryon [ phenomena
(1+1)D U(2) 1 no no no xSB, Tc =0
@+0D | U®2) | 2 | yes | Z(2) no xSB, T, > 0

U xSB, Tc > 0
@+1)D | SU@) | 2 | yes | z(2) s SR 20
76) xSB, 7. >0
2
(== SU@B) | 3 | yes | Z(2) fermion xSR,ng >0

log(AE)

(Y1)

Table: Symmetries and phenomena in some QLMs.

Top: Chiral symmetry breaking in a U(2) QLM

withm = 0and V = —6t.

Bottom: Real-time evolution of the order

parameter profile

@P)x(r) = sx{wi wh — Ny forL =12,

mimicking the expansion of a hot quark-gluon

plasma.
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Chiral symmetry restoration at finite density
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Abelian theory with Quantum Links




Conclusions

Although quantum simulating QCD is still far away, many of the
simpler models have similar physical phenomena. Very useful
for insight into the physics of QCD.

Realization of a quantum simulator for the Schwinger model
would be quite remarkable achievement. Most of the tools
needed in setting it up is available separately.

Quantum simulators need to be validated by efficient classical
simulations. Development of new efficient algorithms.

In toy systems, this would allow quantum simulation of real-time
evolution of string breaking and the study of "nuclear” physics
and dense “quark® matter

More interesting models may allow investigation of chiral
symmetry restoration, baryon superfluidity, color
superconductivity at high densities and "nuclear” collisions

Every development brings the promise of interesting physics
along with it!



Backup: An example of real-time evolution

Use the Trotter-Suzuki
decomposition

—iHt —iHat g[H1, Hal /2

e ~ e*'Hﬂ

e
to study the real time evolution of

2-quantum spins

Time-dependent variation of
parameters possible

Trotter errors known and bounded;
gate errors under control;
Implementation with upto 6

ions/spins Lanyon et. al. 2011
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Backup: Classical vs Quantum Simulation

Example of a quantum quench in a strongly correlated Bose gas.
S. Trotzky et. al., Nature Physics (2012).

U K .
H=>" [—J(a}ajﬂ +he)+ E”j(nj —1)+ Enjﬁ
J

Start the system in the state |(t =0)) =|---,1,0,1,0,1,---) and then study the

evolution by the Hamiltonian
Measured: no of bosons

on odd lattices. Solid

(4
o6 curves are from DMRG
r Ceggeslee®egiacetes results.
L 04—
[ U/J=5.16(7)
02 K/J=17x1072
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