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Flavour physics in the LHC era

• “If it looks like a Higgs, swims like a Higgs and quacks like a 
Higgs, then it is probably a Higgs” M. Klute

• Higgs discovery an early triumph for the LHC

• What next? 

• LHC(b) is also a phenomenal machine for flavour 
physics

• Look for deviations from the Standard Model

• Exciting opportunities in bottom baryon sector

Monday, June 10, 13



FCNC decays: Λb → Λ γ , Λb → Λ µ+ µ-

Rare decay: Λb → p µ- ν and |Vub|2 
_

[Detmold, Lin, Meinel, & Wingate Phys. Rev. D 87, 074502 (2013)]

[Detmold, Lin, Meinel, & Wingate arXiv:1306.0446]
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Flavour-changing neutral currents

• Flavour changing neutral currents are absent in the SM at 
tree level

• First occur at loop level and are 
generally GIM suppressed

• Small size allows sensitivity to possible BSM 
contributions which may be of similar size

• Well studied in B → K decays and also more recently in 
studies of B → K*

• No significant evidence for deviations from SM
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Flavour-changing neutral currents

• Baryon decay modes Λb → Λ γ , Λb → Λ l+ l- depend on 
polarisation of Λb and Λ  so 
many angular observables possible

• In principle different sensitivities to 
BSM physics [Mannel & Recksiegel 1997]

• Final state undergoes further weak decay 
Λ → p which is self-analysing 

• At LHC, Λb is produced almost unpolarised [Aaij 1302.5578]

• First observation of baryonic decay at CDF [2012]

• LHCb preliminary results shown recently [FPCP 2013] 

dN

d⌦
[⇤! p⇡] ⇠ (1 + a~s⇤ · ~pp), a = 0.64(1)
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Effective Hamiltonian

• At hadronic scales the relevant interactions are described 
by the effective Hamiltonian

where the relevant b → s operators are

Ci are Wilson coefficients containing short distance physics

O7 =
e

16�2
mb s̄�µ�PRb F (e.m.)

µ� , O�
7 =

e

16�2
mb s̄�µ�PLb F (e.m.)

µ� ,

O9 =
e2

16�2
s̄�µPLb l̄�µl, O�

9 =
e2

16�2
s̄�µPRb l̄�µl,

O10 =
e2

16�2
s̄�µPLb l̄�µ�5l, O�

10 =
e2

16�2
s̄�µPRb l̄�µ�5l,

OS =
e2

16�2
mb s̄PRb l̄l, O�

S =
e2

16�2
mb s̄PLb l̄l,

OP =
e2

16�2
mb s̄PRb l̄�5l, O�

P =
e2

16�2
mb s̄PLb l̄�5l,

He� = �4GF�
2

VtbV
�
ts

�

i=1,...,10,S,P

(CiOi + C �
iO

�
i),
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Λb → Λ µ+ µ-

• Decay amplitude determined by matrix elements of Heff

• Hadronic part determined by Λb → Λ form factors

• In general, 10 form factors contribute

• In static limit (mb → ∞), only two FFs (F1,2) survive

where v=4-velocity of Λb and the FFs are independent 
of the choice of Dirac matrix Γ and we will use the  
basis

• Calculating FFs requires lattice QCD

M = �h⇤(p0, s0) `+(p+, s+) `�(p�, s�)|He↵ |⇤b(p, s)i

h⇤(p0, s0)| s̄�Q |⇤Q(v, 0, s)i = u(p0, s0) [F1(p0 · v) + v F2(p0 · v)]� U(v, s)

F± = F1 ± F2
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Anatomy of the QCD calculation 

• Gluon configurations from RBC/UKQCD collaborations 
[Aoki et al. 2011]

• Two lattice spacings with a single large volume

• Light and strange quarks: domain wall fermions with 
multiple quark masses (some partially quenched)

• b quarks: HQET static action [Eichten-Hill] with HYP-smearing 6

Set N

3
s ⇥Nt ⇥N5 am5 am

(sea)
s am

(sea)
u,d a (fm) am

(val)
s am

(val)
u,d m

(vv)
⇡ (MeV) m

(vv)
⌘s (MeV) Nmeas

C14 243 ⇥ 64⇥ 16 1.8 0.04 0.005 0.1119(17) 0.04 0.001 245(4) 761(12) 2705

C24 243 ⇥ 64⇥ 16 1.8 0.04 0.005 0.1119(17) 0.04 0.002 270(4) 761(12) 2683

C54 243 ⇥ 64⇥ 16 1.8 0.04 0.005 0.1119(17) 0.04 0.005 336(5) 761(12) 2780

C53 243 ⇥ 64⇥ 16 1.8 0.04 0.005 0.1119(17) 0.03 0.005 336(5) 665(10) 1192

F23 323 ⇥ 64⇥ 16 1.8 0.03 0.004 0.0849(12) 0.03 0.002 227(3) 747(10) 1918

F43 323 ⇥ 64⇥ 16 1.8 0.03 0.004 0.0849(12) 0.03 0.004 295(4) 747(10) 1919

F63 323 ⇥ 64⇥ 16 1.8 0.03 0.006 0.0848(17) 0.03 0.006 352(7) 749(14) 2785

TABLE I. Parameters of the gauge field ensembles and quark propagators. Here, N5 is the extent of the 5th dimension of the
lattice, and am5 is the domain-wall height [51]. The sea quark masses am

(sea)
q were used in the generation of the ensembles, and

we use the valence-quark masses am

(val)
q when computing domain-wall propagators. The values for the lattice spacings, a, are

taken from Ref. [60]. We denote the valence pion masses by m

(vv)
⇡ , and m

(vv)
⌘s is defined as the mass of the pseudoscalar meson

with valence strange-antistrange quarks, but without any disconnected contributions (we use m

(vv)
⌘s to tune the strange-quark

mass, using the approach of Ref. [61]). Finally, Nmeas is the number of light/strange domain-wall propagator pairs computed
on each ensemble.

a (fm) U(mb, a
�1) u0 Z c

(msa)
� c

(psa)
�

0.112 1.09964 0.875789 0.9383 �0.1660 G� �0.1374 G�

0.085 1.06213 0.885778 0.9526 �0.1482 G� �0.1294 G�

TABLE II. Renormalization parameters for the matching of LHQET to HQET in the MS scheme, from Ref. [56]. Here, G� is
defined by �

0��

0 = G��, so that G� = +1 if � commutes with �

0, and G� = �1 if � anticommutes with �

0.

B. Lattice parameters

The details of the domain-wall/Iwasaki gauge field ensembles generated by the RBC/UKQCD collaboration can
be found in Ref. [51]. In Table I, we summarize the main properties of the subset of ensembles used here, as well as
some parameters of the domain-wall propagators that we computed on them. There are ensembles with two di↵erent
lattice spacings a ⇡ 0.11 fm and a ⇡ 0.085 fm, with lattice dimensions of 243 ⇥ 64 and 323 ⇥ 64, respectively, so that
the spatial box size is L ⇡ 2.7 fm in both cases. We will refer to these two lattice spacings as “coarse” and “fine”.
At the coarse lattice spacing, we use only one ensemble with the lightest available up/down sea-quark masses. At the
fine lattice spacing, we use two di↵erent ensembles.

In order to construct the correlation functions discussed in Sec. III A, we require domain-wall propagators with
Gaussian-smeared sources at (x0,x), and with masses corresponding to the strange quark as well as the (degenerate)
up/down quarks. As shown in Table I, we have seven di↵erent combinations of parameters, which we denote as C14,
C24, C54, C53, F23, F43, F63 (where C, F stand for “coarse”and “fine”, and the two digits indicate the light and
strange valence quark masses). In four of these combinations, the valence-quark masses are chosen to be lighter than
the sea-quark masses (“partially quenched”), while the other three combinations have valence-quark masses equal to
the sea-quark masses (unitary case). On each gauge configuration, we use O(10) source locations (x0,x) to increase
statistics. The resulting total numbers of “measurements”, Nmeas, are listed in Table I. On each configuration, we
average the correlators over the source locations prior to further analysis.

In the static heavy-quark action, we use gauge links with one level of HYP smearing with the parameters
(↵1,↵2,↵3) = (1.0, 1.0, 0.5) as introduced in Ref. [62]. The numerical values of the matching coe�cients needed for
the current (11) are taken from Ref. [56] and are given in Table II for the choice of HYP smearing parameters used
here.

C. Results for R+ and R�

At the coarse lattice spacing, we computed the three-point functions (18), (19) for the source-sink separations
t/a = 4, 5, ..., 15, and at the fine lattice spacing for t/a = 5, 6, ..., 20. We computed these three-point functions
for lattice momenta p

0 with 0  |p0|2  9 · (2⇡)2/L2. We then constructed the quantities (27) and (28) using
statistical bootstrap with 1000 samples. When performing the momentum direction average for the largest momentum
|p0|2 = 9·(2⇡)2/L2, we used only p

0 = (2, 2, 1)·2⇡/L and lattice symmetries applied to that (for |p0|2 < 9·(2⇡)2/L2, all
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Correlation functions

• Matrix elements extracted from ratios of two and three- 
point correlation functions

• Two-point functions for Λb and Λ are standard

• Forward and backward three-point functions
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Correlation functions

• Matrix elements extracted from ratios of two and three- 
point correlation functions

• Two-point functions for Λb and Λ are standard

• Forward and backward three-point functions
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Correlation functions

• Matrix elements extracted from ratios of two and three- 
point correlation functions

• Two-point functions for Λb and Λ are standard

• Forward and backward three-point functions

4

FIG. 1. Propagator contractions for the forward three-point functions (left) and backward three-point functions (right). The
thick vertical line at the spatial point y indicates the static heavy-quark propagator. The source for all light and strange-quark
propagators is located at the fixed point (x0,x). We sum over all points y, with the appropriate momentum phases as in
Eqs. (18) and (19).

at the scale µ = a�1 (the inverse lattice spacing). The coe�cient Z is independent of �, but c
(msa)
� and c

(psa)
�

change sign depending on whether � commutes or anticommutes with �0. We are interested in the matrix element (3)
renormalized at µ = m

b

, and following Ref. [56] we therefore perform a renormalization-group (RG) evolution from
µ = a�1 to µ = m

b

, using the two-loop anomalous dimension of the heavy-light current in HQET, which was derived
in Refs. [57, 58]. This leads to the multiplicative factor U(m

b

, a�1) in Eq. (11). The RG running is performed with
N

f

= 3 flavors from µ = a�1 down to µ = m
c

, and then with N
f

= 4 flavors from µ = m
c

up to µ = m
b

. This
two-step running is used because the nonperturbative lattice calculations are done with N

f

= 2+1 dynamical flavors,
and with a�1 > m

c

. However, note that doing a simple N
f

= 4 running from µ = a�1 to µ = m
b

gives a result that
di↵ers only by 0.5%. Numerical values for U(m

b

, a�1), Z, c
(msa)
� , c

(psa)
� , and u0 will be given in Table II in the next

section.
Having defined the interpolating fields and the current, we will now discuss the correlation functions. We compute

“forward” and ”backward” two-point functions for the ⇤ and ⇤
Q

as follows:

C
(2,⇤)
�↵

(p0, t) =
X

y

e�ip

0·(y�x)
⌦
⇤

�

(x0 + t,y) ⇤
↵

(x0,x)
↵
, (14)

C
(2,⇤,bw)
�↵

(p0, t) =
X

y

e�ip

0·(x�y)
⌦
⇤

�

(x0,x) ⇤
↵

(x0 � t,y)
↵
, (15)

C
(2,⇤Q)
�↵

(t) =
⌦
⇤

Q�

(x0 + t,x) ⇤
Q↵

(x0,x)
↵
, (16)

C
(2,⇤Q,bw)
�↵

(t) =
⌦
⇤

Q�

(x0,x) ⇤
Q↵

(x0 � t,x)
↵
, (17)

where the superscript “bw” denotes the backward correlator. In Eqs. (16) and (17), the ⇤
Q

interpolating fields at
source and sink are required to be at the same spatial point x because of the static heavy-quark propagator. Finally,
the forward and backward three-point functions for a given gamma matrix � in the current are defined as

C
(3)
�↵

(�, p

0, t, t0) =
X

y

e�ip

0·(x�y)
D
⇤

�

(x0,x) J
(HQET)†
� (x0 � t + t0,y) ⇤

Q↵

(x0 � t,y)
E

, (18)

C
(3,bw)
↵�

(�, p

0, t, t � t0) =
X

y

e�ip

0·(y�x)
D
⇤

Q↵

(x0 + t,y) J
(HQET)
� (x0 + t0,y) ⇤

�

(x0,x)
E

. (19)

All of the above correlation functions (14)-(19) can be computed using light and strange quark propagators with a
Gaussian-smeared source located at (x0,x). For the three-point functions, the quark propagator contractions are
illustrated schematically in Fig. 1. Because no additional domain-wall propagators are required, we can e�ciently
compute the three-point functions for arbitrary values of t and t0, only limited by statistical precision.

In order to discuss the spectral decomposition of the correlation functions, we introduce the following definitions
for the overlap factors:

h0|⇤
Q↵

(0)|⇤
Q

(s)i = Z⇤Q U
↵

(s), (20)

h0|⇤
↵

(0)|⇤(p0, s)i = [(Z(1)
⇤ + Z

(2)
⇤ �0) u(p0, s)]

↵

, (21)
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FIG. 1. Propagator contractions for the forward three-point functions (left) and backward three-point functions (right). The
thick vertical line at the spatial point y indicates the static heavy-quark propagator. The source for all light and strange-quark
propagators is located at the fixed point (x0,x). We sum over all points y, with the appropriate momentum phases as in
Eqs. (18) and (19).

at the scale µ = a�1 (the inverse lattice spacing). The coe�cient Z is independent of �, but c
(msa)
� and c

(psa)
�

change sign depending on whether � commutes or anticommutes with �0. We are interested in the matrix element (3)
renormalized at µ = m

b

, and following Ref. [56] we therefore perform a renormalization-group (RG) evolution from
µ = a�1 to µ = m

b

, using the two-loop anomalous dimension of the heavy-light current in HQET, which was derived
in Refs. [57, 58]. This leads to the multiplicative factor U(m

b

, a�1) in Eq. (11). The RG running is performed with
N

f

= 3 flavors from µ = a�1 down to µ = m
c

, and then with N
f

= 4 flavors from µ = m
c

up to µ = m
b

. This
two-step running is used because the nonperturbative lattice calculations are done with N

f

= 2+1 dynamical flavors,
and with a�1 > m

c

. However, note that doing a simple N
f

= 4 running from µ = a�1 to µ = m
b

gives a result that
di↵ers only by 0.5%. Numerical values for U(m

b

, a�1), Z, c
(msa)
� , c

(psa)
� , and u0 will be given in Table II in the next

section.
Having defined the interpolating fields and the current, we will now discuss the correlation functions. We compute

“forward” and ”backward” two-point functions for the ⇤ and ⇤
Q

as follows:

C
(2,⇤)
�↵

(p0, t) =
X

y

e�ip

0·(y�x)
⌦
⇤

�

(x0 + t,y) ⇤
↵

(x0,x)
↵
, (14)

C
(2,⇤,bw)
�↵

(p0, t) =
X

y

e�ip

0·(x�y)
⌦
⇤

�

(x0,x) ⇤
↵

(x0 � t,y)
↵
, (15)

C
(2,⇤Q)
�↵

(t) =
⌦
⇤

Q�

(x0 + t,x) ⇤
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where the superscript “bw” denotes the backward correlator. In Eqs. (16) and (17), the ⇤
Q

interpolating fields at
source and sink are required to be at the same spatial point x because of the static heavy-quark propagator. Finally,
the forward and backward three-point functions for a given gamma matrix � in the current are defined as

C
(3)
�↵

(�, p

0, t, t0) =
X

y

e�ip

0·(x�y)
D
⇤

�

(x0,x) J
(HQET)†
� (x0 � t + t0,y) ⇤

Q↵

(x0 � t,y)
E
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X
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All of the above correlation functions (14)-(19) can be computed using light and strange quark propagators with a
Gaussian-smeared source located at (x0,x). For the three-point functions, the quark propagator contractions are
illustrated schematically in Fig. 1. Because no additional domain-wall propagators are required, we can e�ciently
compute the three-point functions for arbitrary values of t and t0, only limited by statistical precision.

In order to discuss the spectral decomposition of the correlation functions, we introduce the following definitions
for the overlap factors:

h0|⇤
Q↵

(0)|⇤
Q

(s)i = Z⇤Q U
↵

(s), (20)

h0|⇤
↵

(0)|⇤(p0, s)i = [(Z(1)
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(2)
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↵

, (21)

• NB: some technicalities in matching QCD current to HQET 

• Spectral decomposition (ellipsis ~ excited states):

5

where Z
(1)
⇤ and Z

(2)
⇤ depend on p

0. Here we need two di↵erent overlap factors Z
(1)
⇤ and Z

(2)
⇤ for the ⇤, because the

spatial-only smearing of the quarks in the interpolating field (10) breaks hypercubic symmetry [59]. The spectral
decompositions of the two-point and three-point functions then read

C
(2,⇤)
�↵

(p0, t) = C
(2,⇤,bw)
�↵

(p0, t) =
1

2E⇤
e�E⇤t

h
(Z(1)

⇤ + Z
(2)
⇤ �0)(m⇤ + /p

0)(Z(1)
⇤ + Z

(2)
⇤ �0)

i

�↵

+ . . . , (22)

C
(2,⇤Q)
�↵

(t) = C
(2,⇤Q,bw)
�↵

(t) =
1
2
e�E⇤Q

t Z2
⇤Q

⇥
1 + �0

⇤
�↵

+ . . . , (23)

C
(3)
�↵

(�, p

0, t, t0) = Z⇤Q

1
2E⇤

1
2

e�E⇤(t�t

0) e�E⇤Q
t

0 h
(Z(1)

⇤ + Z
(2)
⇤ �0)(m⇤ + /p

0)
�
F1 + �0F2

�
� (1 + �0)

i

�↵

+ . . . ,

(24)

C
(3,bw)
↵�

(�, p

0, t, t� t0) = Z⇤Q

1
2E⇤

1
2

e�E⇤Q
(t�t

0) e�E⇤t

0
h
(1 + �0) �

�
F1 + �0F2

�
(m⇤ + /p

0)(Z(1)
⇤ + Z

(2)
⇤ �0)

i

↵�

+ . . . ,

(25)

where we have only shown the ground-state contributions, and the ellipsis denote excited-state contributions that
decay exponentially faster with the Euclidean time separations. For the three-point functions, we have used Eq. (3)
to express the current matrix element in terms of the form factors F1 and F2.

Using the three-point and two-point functions, we then define the following ratio,

R(�,p0, t, t0) =
4 Tr

⇥
C(3)(�, p

0, t, t0) C(3,bw)(�, p

0, t, t� t0)
⇤

Tr[C(2,⇤,av)(p0, t)] Tr[C(2,⇤Q,av)(t)]
, (26)

where the traces are over spinor indices, and the two-point functions in the denominator are the averages of the
forward- and backward two-point functions (to increase statistics). For the ground-state contributions, the product of
forward and backward three-point functions in the numerator of Eq. (26) eliminates the t0-dependence, and dividing
by the two-point functions evaluated at the same t also cancels the t-dependence and Z-factors. For gamma matrices
� that commute (anticommute) with �0, the ground-state contribution in the ratio R(�,p0, t, t0) will be proportional
to [F+]2 ([F�]2). Thus, we form the combinations

R+(p0, t, t0) =
1
4

⇥
R(1,p0, t, t0) +R(�2�3,p0, t, t0) +R(�3�1,p0, t, t0) +R(�1�2,p0, t, t0)

⇤
, (27)

R�(p0, t, t0) =
1
4

⇥
R(�1,p0, t, t0) +R(�2,p0, t, t0) +R(�3,p0, t, t0) +R(�5,p

0, t, t0)
⇤
, (28)

which are equal to

R+(p0, t, t0) =
E⇤ + m⇤

E⇤
[F+]2 + . . . , (29)

R�(p0, t, t0) =
E⇤ �m⇤

E⇤
[F�]2 + . . . , (30)

where, as before, the ellipsis denote excited-state contributions. Note that multiplying the gamma matrices in Eqs. (27)
and (28) with �0 would not give any new information, because �0Q = Q. Next, we average (27) and (28) over momenta
p

0 with fixed magnitude |p0|, and replace the label p

0 by |p0|2 to denote the direction-averaged quantities,

R±(|p0|2, t, t0). (31)

Finally, we evaluate R±(|p0|2, t, t0) at t0 = t/2 (or average it over (t � a)/2 and (t + a)/2 for odd values of t/a)
where the excited-state contamination is smallest, rescale using E⇤(|p0|2) and m⇤ obtained from fits to the two-point
functions, and take the square root to obtain

R+(|p0|2, t) =
r

E⇤

E⇤ + m⇤
R+(|p0|2, t, t/2), (32)

R�(|p0|2, t) =
r

E⇤

E⇤ �m⇤
R�(|p0|2, t, t/2). (33)

For t!1, the quantities R±(|p0|2, t) become equal to the form factors F±(E⇤) where E⇤ = E⇤(|p0|2) .
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Correlator ratios

• Form ratios of correlators to cancel energy and time 
dependence for ground-state contribution

• Combine for different Dirac structures

• Determine form factors (up to exponential contamination)
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where we have only shown the ground-state contributions, and the ellipsis denote excited-state contributions that
decay exponentially faster with the Euclidean time separations. For the three-point functions, we have used Eq. (3)
to express the current matrix element in terms of the form factors F1 and F2.

Using the three-point and two-point functions, we then define the following ratio,

R(�,p0, t, t0) =
4 Tr

⇥
C(3)(�, p

0, t, t0) C(3,bw)(�, p

0, t, t� t0)
⇤

Tr[C(2,⇤,av)(p0, t)] Tr[C(2,⇤Q,av)(t)]
, (26)

where the traces are over spinor indices, and the two-point functions in the denominator are the averages of the
forward- and backward two-point functions (to increase statistics). For the ground-state contributions, the product of
forward and backward three-point functions in the numerator of Eq. (26) eliminates the t0-dependence, and dividing
by the two-point functions evaluated at the same t also cancels the t-dependence and Z-factors. For gamma matrices
� that commute (anticommute) with �0, the ground-state contribution in the ratio R(�,p0, t, t0) will be proportional
to [F+]2 ([F�]2). Thus, we form the combinations

R+(p0, t, t0) =
1
4

⇥
R(1,p0, t, t0) +R(�2�3,p0, t, t0) +R(�3�1,p0, t, t0) +R(�1�2,p0, t, t0)

⇤
, (27)

R�(p0, t, t0) =
1
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, (28)

which are equal to

R+(p0, t, t0) =
E⇤ + m⇤

E⇤
[F+]2 + . . . , (29)

R�(p0, t, t0) =
E⇤ �m⇤

E⇤
[F�]2 + . . . , (30)

where, as before, the ellipsis denote excited-state contributions. Note that multiplying the gamma matrices in Eqs. (27)
and (28) with �0 would not give any new information, because �0Q = Q. Next, we average (27) and (28) over momenta
p

0 with fixed magnitude |p0|, and replace the label p

0 by |p0|2 to denote the direction-averaged quantities,

R±(|p0|2, t, t0). (31)

Finally, we evaluate R±(|p0|2, t, t0) at t0 = t/2 (or average it over (t � a)/2 and (t + a)/2 for odd values of t/a)
where the excited-state contamination is smallest, rescale using E⇤(|p0|2) and m⇤ obtained from fits to the two-point
functions, and take the square root to obtain

R+(|p0|2, t) =
r
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R+(|p0|2, t, t/2), (32)

R�(|p0|2, t) =
r
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R�(|p0|2, t, t/2). (33)

For t!1, the quantities R±(|p0|2, t) become equal to the form factors F±(E⇤) where E⇤ = E⇤(|p0|2) .
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where we have only shown the ground-state contributions, and the ellipsis denote excited-state contributions that
decay exponentially faster with the Euclidean time separations. For the three-point functions, we have used Eq. (3)
to express the current matrix element in terms of the form factors F1 and F2.

Using the three-point and two-point functions, we then define the following ratio,

R(�,p0, t, t0) =
4 Tr

⇥
C(3)(�, p

0, t, t0) C(3,bw)(�, p

0, t, t� t0)
⇤

Tr[C(2,⇤,av)(p0, t)] Tr[C(2,⇤Q,av)(t)]
, (26)

where the traces are over spinor indices, and the two-point functions in the denominator are the averages of the
forward- and backward two-point functions (to increase statistics). For the ground-state contributions, the product of
forward and backward three-point functions in the numerator of Eq. (26) eliminates the t0-dependence, and dividing
by the two-point functions evaluated at the same t also cancels the t-dependence and Z-factors. For gamma matrices
� that commute (anticommute) with �0, the ground-state contribution in the ratio R(�,p0, t, t0) will be proportional
to [F+]2 ([F�]2). Thus, we form the combinations

R+(p0, t, t0) =
1
4
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R�(p0, t, t0) =
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where, as before, the ellipsis denote excited-state contributions. Note that multiplying the gamma matrices in Eqs. (27)
and (28) with �0 would not give any new information, because �0Q = Q. Next, we average (27) and (28) over momenta
p

0 with fixed magnitude |p0|, and replace the label p

0 by |p0|2 to denote the direction-averaged quantities,

R±(|p0|2, t, t0). (31)

Finally, we evaluate R±(|p0|2, t, t0) at t0 = t/2 (or average it over (t � a)/2 and (t + a)/2 for odd values of t/a)
where the excited-state contamination is smallest, rescale using E⇤(|p0|2) and m⇤ obtained from fits to the two-point
functions, and take the square root to obtain
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For t!1, the quantities R±(|p0|2, t) become equal to the form factors F±(E⇤) where E⇤ = E⇤(|p0|2) .
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where we have only shown the ground-state contributions, and the ellipsis denote excited-state contributions that
decay exponentially faster with the Euclidean time separations. For the three-point functions, we have used Eq. (3)
to express the current matrix element in terms of the form factors F1 and F2.

Using the three-point and two-point functions, we then define the following ratio,

R(�,p0, t, t0) =
4 Tr

⇥
C(3)(�, p

0, t, t0) C(3,bw)(�, p

0, t, t� t0)
⇤

Tr[C(2,⇤,av)(p0, t)] Tr[C(2,⇤Q,av)(t)]
, (26)

where the traces are over spinor indices, and the two-point functions in the denominator are the averages of the
forward- and backward two-point functions (to increase statistics). For the ground-state contributions, the product of
forward and backward three-point functions in the numerator of Eq. (26) eliminates the t0-dependence, and dividing
by the two-point functions evaluated at the same t also cancels the t-dependence and Z-factors. For gamma matrices
� that commute (anticommute) with �0, the ground-state contribution in the ratio R(�,p0, t, t0) will be proportional
to [F+]2 ([F�]2). Thus, we form the combinations

R+(p0, t, t0) =
1
4
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where, as before, the ellipsis denote excited-state contributions. Note that multiplying the gamma matrices in Eqs. (27)
and (28) with �0 would not give any new information, because �0Q = Q. Next, we average (27) and (28) over momenta
p

0 with fixed magnitude |p0|, and replace the label p

0 by |p0|2 to denote the direction-averaged quantities,

R±(|p0|2, t, t0). (31)

Finally, we evaluate R±(|p0|2, t, t0) at t0 = t/2 (or average it over (t � a)/2 and (t + a)/2 for odd values of t/a)
where the excited-state contamination is smallest, rescale using E⇤(|p0|2) and m⇤ obtained from fits to the two-point
functions, and take the square root to obtain
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For t!1, the quantities R±(|p0|2, t) become equal to the form factors F±(E⇤) where E⇤ = E⇤(|p0|2) .
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where we have only shown the ground-state contributions, and the ellipsis denote excited-state contributions that
decay exponentially faster with the Euclidean time separations. For the three-point functions, we have used Eq. (3)
to express the current matrix element in terms of the form factors F1 and F2.

Using the three-point and two-point functions, we then define the following ratio,

R(�,p0, t, t0) =
4 Tr
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0, t, t� t0)
⇤

Tr[C(2,⇤,av)(p0, t)] Tr[C(2,⇤Q,av)(t)]
, (26)

where the traces are over spinor indices, and the two-point functions in the denominator are the averages of the
forward- and backward two-point functions (to increase statistics). For the ground-state contributions, the product of
forward and backward three-point functions in the numerator of Eq. (26) eliminates the t0-dependence, and dividing
by the two-point functions evaluated at the same t also cancels the t-dependence and Z-factors. For gamma matrices
� that commute (anticommute) with �0, the ground-state contribution in the ratio R(�,p0, t, t0) will be proportional
to [F+]2 ([F�]2). Thus, we form the combinations
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where, as before, the ellipsis denote excited-state contributions. Note that multiplying the gamma matrices in Eqs. (27)
and (28) with �0 would not give any new information, because �0Q = Q. Next, we average (27) and (28) over momenta
p

0 with fixed magnitude |p0|, and replace the label p

0 by |p0|2 to denote the direction-averaged quantities,

R±(|p0|2, t, t0). (31)

Finally, we evaluate R±(|p0|2, t, t0) at t0 = t/2 (or average it over (t � a)/2 and (t + a)/2 for odd values of t/a)
where the excited-state contamination is smallest, rescale using E⇤(|p0|2) and m⇤ obtained from fits to the two-point
functions, and take the square root to obtain
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For t!1, the quantities R±(|p0|2, t) become equal to the form factors F±(E⇤) where E⇤ = E⇤(|p0|2) .
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Form factor extractions

• Ratios are relatively insensitive to operator insertion time 

• Take midpoint to reduce excited state

• Strongly dependent on source-sink separation
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Source sink separation

• Extrapolate to infinite source-sink separation to extract 
ground state matrix elements

• Allow for single exponential contamination 

• Constrain energy gap to be positive and to be similar 
between the fits to the different ensembles

• Systematic fitting uncertainty assessed by adding a second 
exponential contamination and by dropping data at short t 
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leading e↵ects of excited states,

Ri,n

± (t) = F i,n

± + Ai,n

± exp[��i,n

± t], (35)

where F i,n

± , Ai,n

± , and �i,n

± are the fit parameters, which explicitly depend on the data set i and the momentum n.
Because the energy gaps �i,n

± are positive by definition, we write

�i,n

± /(1 GeV) = exp(li,n± ), (36)

and use li,n± instead of �i,n

± as the fit parameters. The fits using Eq. (36) are performed separately for each momentum
n, but simultaneously for the di↵erent data sets i. Note that the size of the momentum unit, (2⇡)/L (in GeV), is the
same at the coarse and fine lattice spacings within uncertainties, because the box sizes (in physical units) are equal
within uncertainties. Performing the fits simultaneously for the di↵erent data sets at the same momentum allows us
to use the prior knowledge that the hadron spectrum does not change dramatically when the lattice spacing or quark
masses are varied by small amounts. To this end, we augment the �2 function used to perform the fits to Eq. (35) as
follows:

�2 ! �2+
(lC14,n± � lC24,n± )2

[�C14,C24
m

]2
+

(lC24,n± � lC54,n± )2

[�C24,C54
m

]2
+
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[�C54,C53
m

]2

+
(lF23,n± � lF43,n± )2

[�F23,F43
m

]2
+

(lF43,n± � lF63,n± )2

[�F43,F63
m

]2
+

(lC54,n± � lF63,n± )2

[�C54,F63
m

]2 + �2
a

, (37)

where

[�i,j

m

]2 = w2
m

[(mi

⇡

)2 � (mj

⇡

)2]2 + w2
m

[(mi

⌘s
)2 � (mj

⌘s
)2]2, (38)

with w
m

= 4 GeV�2, and �
a

= 0.1. With these parameters, Eq. (37) implements the constraint that the energy gaps,
at given ⇤-momentum n, should not change by more than 10% when going from the fine to the coarse lattice spacing,
and not more than 400% times the change in m2

⇡

or m2
⌘s

(in GeV2). Note that absolute variations of li,n± translate to
relative variations of �i,n

± , because d[exp(li,n± )]/ exp(li,n± ) = dli,n± .
Example fits of Ri,n

± (t) using Eq. (35) are shown in Fig. 8. The fits are fully correlated, using covariance matrices
computed from the bootstrap ensembles for Ri,n

± (t). Note that the excited-state contribution in R+, which is negligible
at p

0 = 0 (cf. Fig. 7), gradually increases with the momentum. In contrast, R� shows the strongest excited-state
overlap at the smallest momentum, and this overlap decreases as the momentum increases. The excited-state overlap
is slightly stronger at the fine lattice spacing when compared to the coarse lattice spacing. This is expected because
the quark smearing width in the baryon operators was di↵erent for the two lattice spacings (we used the same width
in lattice units). We only computed the correlators for t/a � 4 at the coarse lattice spacing and t/a � 5 at the fine
lattice spacing. At the fine lattice spacing, it was necessary to exclude the points with t/a < 8 from the fits to R�.
Once these points were excluded, all fits had �2/dof ⇡ 1.0. Given the limited time range and the limited statistical
precision of the available data, it was not possible (and not necessary) to perform fits with more than one exponential.
As a check, we have also performed fits without the constraints (37), which give consistent results but are less stable.

The fitted values of the energy gap parameters, �i,n

± = exp(li,n± )·(1GeV), are shown as a function of the ⇤-momentum
for one ensemble in Fig. 9 (left panel). Within uncertainties, we find that

�i,n

+ = �i,n

� , (39)

for all data sets i and momenta n. The energy spectrum is a property of the QCD Hamiltonian and is independent of
the correlation function considered, so the result (39) is not surprising. However, one possible situation in which �i,n

+

and �i,n

� would be di↵erent is when an excited state has negligible overlap in R+ but significant overlap in R� (or vice
versa). Furthermore, by using only a single exponential, we may be e↵ectively averaging over multiple excited states
which we cannot resolve individually, but which may appear with di↵erent sets of weights in R+ and R�. Having said
that, the values of �i,n

+ and �i,n

� from our fits are in complete agreement and it is evident that the separate parameters
�i,n

+ and �i,n

� may be replaced by a single parameter �i,n. Thus, we performed new, coupled fits of R+ and R� of the
form

Ri,n

± (t) = F i,n

± + Ai,n

± exp[��i,n t], (40)
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Extrapolation of form factors

• Form factors extracted at non-zero lattice spacing, unphysical 
quark masses and for a limited range of momenta

• Coupled extrapolations performed using the form

with

• Simple modified dipole form

• Necessarily phenomenological (momenta of Λ beyond 
range of applicability of χPT)

• Lattice spacing and light and strange quark mass 
dependence through c’s and d’s

15

F. Chiral and continuum extrapolation of the form factors

The last step in our analysis of the lattice data is to fit the dependence of F i,n

± on the quark masses, the lattice
spacing, and on E⇤. The form of the dependence is unknown; low-energy e↵ective field theory combining heavy-baryon
chiral perturbation theory for the ⇤ sector and heavy-hadron chiral perturbation theory for the ⇤

Q

sector may be
useful over some range of E⇤, but not in the region with |p0| >⇠ ⇤

�

, where ⇤
�

⇠ 1 GeV is the chiral symmetry-breaking
scale. We therefore use a simple ansatz that fits our data well at the level of statistical precision that we have. In the
following it is advantageous to express the form factors as functions of the energy di↵erence E⇤ �m⇤ instead of E⇤,
as this depends less on the quark masses. We find that this dependence can be described well using a dipole function
of the form F± = N±/(X± + E⇤ �m⇤)2. We generalize this ansatz to allow for dependence on the light and strange
quark masses, as well as the lattice spacing, in the following way:

F i,n

± =
N±

(Xi

± + Ei,n

⇤ �mi

⇤)2
· [1 + d±(aiEi,n

⇤ )2], (41)

where the functions Xi

± are defined as

Xi

± = X± + c
l,± ·

⇥
(mi

⇡

)2 � (mphys
⇡

)2
⇤
+ c

s,± ·
⇥
(mi

⌘s
)2 � (mphys

⌘s
)2

⇤
. (42)

As before, we use the notation where i = C14, C24, ..., F63 labels the data set (see Table I), and n labels the momentum
of the ⇤. The free fit parameters in Eq. (41) are N±, X±, d±, c

l,±, and c
s,±. The dependence of the form factors on

the light and strange quark masses is described by allowing Xi

± to depend linearly on (mi

⇡

)2 and (mi

⌘s
)2, where mi

⇡

and mi

⌘s
are the valence ⇡ and ⌘

s

masses for each data set i, as given in Table I. We wrote Eq. (42) in terms of the
di↵erences between the lattice and physical masses for convenience, with mphys

⇡

= 138 MeV and mphys
⌘s

= 686 MeV
[61]. The leading dependence of the form factors on the lattice spacing is expected to be quadratic in a, owing to the
chiral symmetry of the domain-wall action and the use of the order-a-improved current (11). Discretization errors are
expected to grow as the momentum of the ⇤ increases. We therefore incorporate the a-dependence using the factor
[1 + d±(aiEi,n

⇤ )2] in Eq. (41).
In our fits, we take into account the correlations between the results for F i,n

± at di↵erent momenta n and di↵erent
data sets i (in the case where the data sets correspond to the same underlying ensemble of gauge fields). The fits
are performed independently for F i,n

+ and F i,n

� . To account for the uncertainties and correlations of the ⇤ baryon
energies Ei,n

⇤ (including the masses mi

⇤ = Ei,0
⇤ ) in Eq. (41), we promote Ei,n

⇤ to additional parameters of the fit, and

add the term
P

i,n,i

0
,n

0 [Cov(E⇤)�1]
i,n,i

0
,n

0(Ei,n

⇤ �E
i,n

⇤ )(Ei

0
,n

0

⇤ �E
i

0
,n

0

⇤ ) to the �2 function, where E
i,n

⇤ are the previous
results from the fits to the two-point functions, and the energy correlation matrix Cov(E⇤) was computed from the
bootstrap ensemble of the two-point fit results. Using a similar term, we investigated the inclusion of the further
correlations between the ⇤ energies and the form factor values F i,n

± , but with the current level of statistics, such fits
did not converge to a stable minimum of �2.

The fits using Eq. (41) are visualized as a function of E⇤ � m⇤ in Fig. 12. There, we show the results for
F i,n

± from Tables IV and V, along with the fitted functions (41) evaluated at the corresponding lattice spacings ai

and pseudoscalar masses, mi

⇡

and mi

⌘s
. The data are described well by the fitted functions (the F63 set fluctuates

downward, but the overall values of �2/dof are smaller than 1). The bottom-right plot in Fig. 12 shows the fit functions
evaluated in the continuum limit (a = 0) and for the physical values of the pseudoscalar masses. By construction, in
this physical limit, Eq. (41) reduces to

F± =
N±

(X± + E⇤ �m⇤)2
, (43)

which only depends on the parameters N± and X±. Our results for N± and X± are given in Table VIII. The results
for the parameters describing the dependence on the quark masses and the lattice-spacing are c

l,+ = 0.094(32) GeV�1,
c
s,+ = �0.019(27) GeV�1, d+ = 0.027(27), c

l,� = 0.04(20) GeV�1, c
s,� = �0.14(11) GeV�1, and d� = �0.036(67),

which are all very small and mostly consistent with zero.
Functions for the form factors F1 and F2 could be obtained from (43) by taking the linear combinations F1 =

(F+ +F�)/2 and F2 = (F+�F�)/2. However, because we use independent pole parameters X+ and X�, these linear
combinations are no longer of the simple dipole form. Alternatively, we can also perform new fits to the lattice data
F i,n

1 = (F i,n

+ + F i,n

� )/2 and F i,n

2 = (F i,n

+ � F i,n

� )/2 using functions of the same form as in Eq. (41), but with new
parameters labeled by the subscripts 1, 2 instead of +,�:

F i,n

1,2 =
N1,2

(Xi

1,2 + Ei,n

⇤ �mi

⇤)2
· [1 + d1,2(aiEi,n

⇤ )2]. (44)
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Parameter Result

N+ 3.188± 0.268 GeV2

X+ 1.852± 0.074 GeV

N� 4.124± 0.750 GeV2

X� 1.634± 0.144 GeV

TABLE VIII. Fit results for N± and X± using Eq. (41). The covariances are Cov(N+, X+) = 0.0198 GeV3, Cov(N�, X�) =
0.106 GeV3. The results are renormalized in the MS scheme at µ = mb.

Parameter Result

N1 3.975± 0.576 GeV2

X1 1.776± 0.123 GeV

N2 �0.385± 0.132 GeV2

X2 1.156± 0.200 GeV

TABLE IX. Fit results for N1,2 and X1,2 as discussed in the main text. The covariances are Cov(N1, X1) = 0.0692 GeV3,
Cov(N2, X2) = �0.0256 GeV3. The results are renormalized in the MS scheme at µ = mb.

These fits are visualized in Fig. 13, and the resulting parameters N1,2, X1,2 are given in Table IX. In this case,
the results for the other fit parameters were c

l,1 = 0.09(17) GeV�1, c
s,1 = �0.067(94) GeV�1, d1 = �0.049(53),

c
l,2 = �0.06(38) GeV�1, c

s,2 = �0.35(22) GeV�1, and d2 = 0.00(15).

G. Estimates of systematic uncertainties

The remaining systematic uncertainties in our form factor results include missing higher-order renormalization
corrections to the heavy-light current, finite-volume e↵ects, chiral-extrapolation errors, and residual discretization
errors. We discuss each of these below. Furthermore, for large E⇤ � m⇤, where we do not have lattice data, our
assumption of a dipole shape in Eqs. (41) and (44) introduces an unknown model-dependence. This is illustrated in
Fig. 14), where we compare the dipole fits to monopole fits. However, we do not have confidence that this di↵erence
is a reliable estimate of a fitting form systematic uncertainty (or indeed that such a systematic uncertainty can be
constructed) and so leave this to the judgment of the reader.

To estimate the systematic uncertainty due to missing higher-order renormalization corrections to the heavy-light
current (11), we vary the scale µ in the matching coe�cients Z(µ), c(msa)(µ), c(psa)(µ), and in the renormalization-
group running U(m

b

, µ). We then recompute the ratios (32) and (33) with the modified current. Changing µ from
a�1 to 2a�1 results in a 7% change of both R+ and R� at the coarse lattice spacing and a 6% change of both R+

an R� at the fine lattice spacing. These relative changes are nearly independent of the source-sink separation, the
momentum, and the quark masses. Thus, we take the renormalization uncertainty in the final form factor results to
be 6%.

Finite-volume e↵ects in the lattice data are unknown (as in the chiral extrapolation, no low-energy e↵ective theory
exists to guide us over the full range of E⇤), but are expected to be of order exp(�m

⇡

L). The lowest pion mass
used in our calculation is m

⇡

⇡ 227 MeV, corresponding to m
⇡

L ⇡ 3.1 and exp(�m
⇡

L) ⇡ 0.04. The average value
of exp(�m

⇡

L) for the di↵erent data sets (see Table I) is about 0.02. Given these values, we estimate the systematic
uncertainty in our final results due to finite-volume e↵ects to be 3%.

The chiral extrapolations of the form factors were performed quadratically in the valence pseudoscalar masses,
i.e. linearly in the valence-quark masses, ignoring that some of the data were partially quenched and ignoring possible
nonanalytic dependence on the quark masses. To study the e↵ect of the quark-mass extrapolations, we perform new
fits with with either c

l,± or c
s,±, or both, set to zero, and consider the changes in the extracted form factors F+ and

F� (analogously also for F1 and F2). This corresponds to replacing the linear fits of the quark-mass dependence by
constant fits. The resulting relative changes in F+, F�, F1, and F2 when setting c

l

= 0 are below 1% throughout the
kinematic range where we have lattice data; the biggest relative change (5%) is seen in F2 at zero recoil when setting
c
s

= 0. However, all of the changes are consistent with zero within statistical uncertainties.

• Fit has χ2/dof <1 and fitted lattice spacing and quark mass 
parameters consistent with zero
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Differential branching fraction

• Taking SM Wilson coefficients from the literature we can 
compute the SM decay rate

21

with
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This gives
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Note that here we use spinors with the standard relativistic normalization for all particles, including the ⇤
b

. In terms
of the HQET spinors (7), we have u(p, s) = p

m⇤b U(v, s), with p = m⇤bv. For a given value of q2, the form factors
F1 and F2 in Eq. (51) are evaluated at

E⇤ = p0 · v =
m2

⇤b
+ m2

⇤ � q2

2m⇤b

, (52)

where the masses take their physical values. The fully di↵erential decay rate with polarized particles is given by

d� =
1

2m⇤b

d3p0

(2⇡)32E⇤

d3p�
(2⇡)32E

`

�

d3p+

(2⇡)32E
`

+
(2⇡)4�4(p� p0 � p� � p+)|M|2. (53)

For the standard model calculation, we set the right-handed couplings to zero (C 0
7,e↵ = C 0

9,e↵ = C 0
10,e↵ = 0) and use

the following Wilson coe�cients (at µ = 4.8 GeV), which are of next-to-next-to-leading-logarithm accuracy [64]:

C7,e↵ = �0.304,

C9,e↵(q2) = 4.211 + Y (q2),
C10,e↵ = �4.103. (54)

The function Y (q2) is defined as in Ref. [64]. Furthermore, we use |V
ts

| = 0.04002 and |V
tb

| = 0.999142 from Ref. [65].
To calculate d�/dq2, we integrate (53) over the lepton momenta and the direction of the ⇤, sum over the spins of

the ⇤, `+, `�, and average over the ⇤
b

spin (because d�/dq2 is rotationally symmetric, it has to be independent of
the ⇤

b

polarization, and therefore we can treat the ⇤
b

as unpolarized here). The result is given by
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Note that here we use spinors with the standard relativistic normalization for all particles, including the ⇤
b

. In terms
of the HQET spinors (7), we have u(p, s) = p

m⇤b U(v, s), with p = m⇤bv. For a given value of q2, the form factors
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where the masses take their physical values. The fully di↵erential decay rate with polarized particles is given by
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For the standard model calculation, we set the right-handed couplings to zero (C 0
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FIG. 17. Left panel: Di↵erential branching fraction for ⇤b ! ⇤µ

+
µ

�. The solid curve is our prediction using the form factors
from lattice QCD. Long-distance e↵ects are not included in the calculation. The inner, dark shaded band around the curve
indicates the uncertainty in dB/dq

2 that results from the statistical plus systematic uncertainty in the form factors F±. The
outer, light shaded band additionally includes an estimate of the systematic uncertainty in dB/dq

2 that results from our use of
the static approximation for the b quark. The vertical dashed line indicates the lowest value of q

2 where we have lattice data;
to the left of that line the form factors are extrapolated. To illustrate the model-dependence resulting from the extrapolation
of the form factors to low q

2, the dashed curve shows dB/dq

2 computed with form factors extrapolated using a di↵erent ansatz
(monopole instead of dipole, see Fig. 14; the uncertainty for the dashed curve is not shown for clarity). The experimental
data are from Ref. [67], which is an update of Ref. [10]. The error bars shown for the experimental data include systematic
uncertainties. The vertical shaded bands indicate the charmonium veto regions, where long-distance e↵ects are large. Right
panel: with binning applied to the theory prediction.

where
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To obtain the di↵erential branching fraction dB/dq2 = ⌧⇤bd�/dq2, we use the experimental value of the ⇤
b

lifetime,
⌧⇤b = 1.425 · 10�12 s [66]. The form factors F+ and F� are given by the functions (43) with parameters N± and X±
as in Table VIII, and with additional systematic uncertainties of 8% included (see Fig. 15). The resulting di↵erential
branching fraction for ⇤

b

! ⇤µ+µ� is shown in Fig. 17, along with recent experimental results from CDF [67].
The agreement of the standard model with the experimental data is clear, with no evidence for physics beyond the
standard model. Further predictions for ⇤

b

! ⇤`+`� with ` = e, ⌧ are shown in Fig. 18.
In Figs. 17 and 18, the inner shaded bands around the curves correspond to the statistical plus systematic uncertainty

in the form factors F±. However, note that we have lattice data only in the region q2 >⇠ 13 GeV2, as indicated by
the vertical dashed lines in Figs. 17 and 18. Below that region, we rely on extrapolations of the form factors, which
are model-dependent. This was shown in Fig. 14, where we compared the form factors from dipole and monopole
fits. Our main results for the di↵erential branching fractions are based on the dipole form factors. To illustrate the
model-dependence, the dashed curves in Figs. 17 and 18 give the di↵erential branching fractions calculated with the
monopole form factors (the uncertainties of the dashed curves are not shown for clarity, but are of similar size as
with the dipole form factors). In the large-q2 region, both curves are consistent with each other. At low q2, model-
dependence can be seen, but as already discussed in Sec. III G, a comparison between any two fit models can only
give a qualitative picture of the model-dependence.

The outer shaded bands in Figs. 17 and 18 include an estimate of the systematic uncertainty in dB/dq2 which
arises from the use of the static approximation (i.e., leading-order HQET) for the b quark. In general, the uncertainty
associated with this approximation is of order ⇤QCD/m

b

. However, the non-zero momentum p

0 of the ⇤ baryon in
the ⇤

b

rest frame is an additional relevant scale, which may lead to errors of order |p0|/m
b

. Thus, we add these two

Monday, June 10, 13



Differential branching fraction

• Evaluate using lattice FFs

• Additional systematic uncertainty from using static limit FFs 
taken as 

• Comparison to CDF measurements (RHS binned) 22
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FIG. 17. Left panel: Di↵erential branching fraction for ⇤b ! ⇤µ

+
µ

�. The solid curve is our prediction using the form factors
from lattice QCD. Long-distance e↵ects are not included in the calculation. The inner, dark shaded band around the curve
indicates the uncertainty in dB/dq

2 that results from the statistical plus systematic uncertainty in the form factors F±. The
outer, light shaded band additionally includes an estimate of the systematic uncertainty in dB/dq

2 that results from our use of
the static approximation for the b quark. The vertical dashed line indicates the lowest value of q

2 where we have lattice data;
to the left of that line the form factors are extrapolated. To illustrate the model-dependence resulting from the extrapolation
of the form factors to low q

2, the dashed curve shows dB/dq

2 computed with form factors extrapolated using a di↵erent ansatz
(monopole instead of dipole, see Fig. 14; the uncertainty for the dashed curve is not shown for clarity). The experimental
data are from Ref. [67], which is an update of Ref. [10]. The error bars shown for the experimental data include systematic
uncertainties. The vertical shaded bands indicate the charmonium veto regions, where long-distance e↵ects are large. Right
panel: with binning applied to the theory prediction.
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To obtain the di↵erential branching fraction dB/dq2 = ⌧⇤bd�/dq2, we use the experimental value of the ⇤
b

lifetime,
⌧⇤b = 1.425 · 10�12 s [66]. The form factors F+ and F� are given by the functions (43) with parameters N± and X±
as in Table VIII, and with additional systematic uncertainties of 8% included (see Fig. 15). The resulting di↵erential
branching fraction for ⇤

b

! ⇤µ+µ� is shown in Fig. 17, along with recent experimental results from CDF [67].
The agreement of the standard model with the experimental data is clear, with no evidence for physics beyond the
standard model. Further predictions for ⇤

b

! ⇤`+`� with ` = e, ⌧ are shown in Fig. 18.
In Figs. 17 and 18, the inner shaded bands around the curves correspond to the statistical plus systematic uncertainty

in the form factors F±. However, note that we have lattice data only in the region q2 >⇠ 13 GeV2, as indicated by
the vertical dashed lines in Figs. 17 and 18. Below that region, we rely on extrapolations of the form factors, which
are model-dependent. This was shown in Fig. 14, where we compared the form factors from dipole and monopole
fits. Our main results for the di↵erential branching fractions are based on the dipole form factors. To illustrate the
model-dependence, the dashed curves in Figs. 17 and 18 give the di↵erential branching fractions calculated with the
monopole form factors (the uncertainties of the dashed curves are not shown for clarity, but are of similar size as
with the dipole form factors). In the large-q2 region, both curves are consistent with each other. At low q2, model-
dependence can be seen, but as already discussed in Sec. III G, a comparison between any two fit models can only
give a qualitative picture of the model-dependence.

The outer shaded bands in Figs. 17 and 18 include an estimate of the systematic uncertainty in dB/dq2 which
arises from the use of the static approximation (i.e., leading-order HQET) for the b quark. In general, the uncertainty
associated with this approximation is of order ⇤QCD/m
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Differential branching fraction

• New LHCb data are more precise (and will become even more 
so)

• LQCD calculation will also improve (relativistic heavy quarks)
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Rare decay: Λb → p µ- ν and |Vub|2 

• Puzzle in current determinations of Vub [PDG]

• Inclusive B → Xu decays: 

• Exclusive B → Π decays:

• Worryingly discrepant: likely not new physics, but an 
independent determination would be useful

•  The baryonic decay Λb → p µ- ν  also depends on  |Vub|2

• At the LHC, this may be easier to measure than 
B → Π µ- ν as the final state is more distinctive [U Egede] 

• Extraction requires calculation of hadronic matrix elements

_

_

_
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We present a lattice QCD calculation of form factors for the decay ⇤b ! p µ�⌫̄µ, which is a
promising channel for determining the CKM matrix element |Vub| at the Large Hadron Collider. In
this initial study we work in the limit of static b quarks, where the number of independent form
factors reduces to two. We use dynamical domain-wall fermions for the light quarks, and perform
the calculation at two di↵erent lattice spacings and at multiple values of the light-quark masses
in a single large volume. Using our form factor results, we calculate the ⇤b ! p µ�⌫̄µ di↵erential

decay rate in the range 14 GeV2  q2  q2

max

, and obtain the integral
R q2

max

14 GeV

2

[d�/dq2]dq2/|Vub|2 =

15.3 ± 4.2 ps�1. Combined with future experimental data, this will give a novel determination of
|Vub| with about 15% theoretical uncertainty. The uncertainty is dominated by the use of the static
approximation for the b quark, and can be reduced further by performing the lattice calculation
with a more sophisticated heavy-quark action.

PACS numbers: 12.15.Ff, 12.38.Gc, 13.30.Ce, 14.20.Mr

I. INTRODUCTION

A long-standing puzzle in flavor physics is the discrepancy between the extractions of the CKM matrix element
|Vub| from inclusive and exclusive B meson semileptonic decays at the B factories [? ? ? ? ]. The current average
values determined by the Particle Data Group are [? ]

|Vub|incl. = (4.41 ± 0.15+0.15
�0.17) · 10�3

, (1)

|Vub|excl. = (3.23 ± 0.31) · 10�3

, (2)

where the exclusive determination is based on measurements of B̄ ! ⇡

+

`

�
⌫̄` decays by the BABAR and BELLE

collaborations, and uses B̄ ! ⇡

+ form factors computed in lattice QCD [? ? ]. To address the discrepancy between
Eqs. (??) and (??), new and independent determinations of |Vub| are desirable. At the Large Hadron Collider,
measurements of B̄ ! ⇡

+

`

�
⌫̄` branching fractions are di�cult because of the large pion background; therefore an

attractive possibility is to use instead the baryonic mode ⇤b ! p `

�
⌫̄`, which has a more distinctive final state [? ].

In order to determine |Vub| from this measurement, the ⇤b ! p form factors need to be calculated in nonperturbative
QCD.

The ⇤b ! p matrix elements of the vector and axial vector b ! u currents are parametrized in terms of six
independent form factors (see, e.g., Ref. [? ]). In leading-order heavy-quark e↵ective theory (HQET), which becomes
exact in the limit mb ! 1 and is a good approximation at the physical value of mb, only two independent form
factors remain, and the matrix element with arbitrary Dirac matrix � in the current can be written as [? ? ? ]

hN+(p0, s0)| ū�Q |⇤Q(v, s)i = uN (p0, s0) [F
1

+
/

v F

2

]� u

⇤Q(v, s). (3)

Above, v is the four-velocity of the ⇤Q baryon, and the form factors F

1

, F

2

are functions of p

0 · v, the energy of the
proton in the ⇤Q rest frame (we denote the heavy quark defined in HQET by Q, and we denote the proton by N

+).
Note that in leading-order soft-collinear e↵ective theory, which applies in the limit of large p

0 · v, the form factor F

2

vanishes [? ? ? ].
Calculations of ⇤b ! p form factors have been performed using QCD sum rules [? ? ] and light-cone sum rules [?

? ? ? ]. Light-cone sum rules are most reliable at low q

2 (corresponding to large proton momentum in the ⇤b rest
frame), and even there the uncertainty of the best available calculations is of order 20% [? ]. As we will see later, the
⇤b ! p `

�
⌫̄` di↵erential decay rate has its largest value in the high-q2 (low hadronic recoil) region. This is also the

region where lattice QCD calculations can be performed with the highest precision.
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1

+
/

v F

2

]� u

⇤Q(v, s). (3)

Above, v is the four-velocity of the ⇤Q baryon, and the form factors F

1

, F

2

are functions of p

0 · v, the energy of the
proton in the ⇤Q rest frame (we denote the heavy quark defined in HQET by Q, and we denote the proton by N

+).
Note that in leading-order soft-collinear e↵ective theory, which applies in the limit of large p

0 · v, the form factor F

2

vanishes [? ? ? ].
Calculations of ⇤b ! p form factors have been performed using QCD sum rules [? ? ] and light-cone sum rules [?

? ? ? ]. Light-cone sum rules are most reliable at low q

2 (corresponding to large proton momentum in the ⇤b rest
frame), and even there the uncertainty of the best available calculations is of order 20% [? ]. As we will see later, the
⇤b ! p `

�
⌫̄` di↵erential decay rate has its largest value in the high-q2 (low hadronic recoil) region. This is also the

region where lattice QCD calculations can be performed with the highest precision.

⇤ smeinel@mit.edu
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Matrix elements & form factors

• Calculational details are very similar to previous case

• Static limit again reduces to two form factors

• Somewhat simpler as only need vector and axial-vector 
currents

• Contractions involve extra term

• Behaviour of correlators and ratios similar
Uncertainties a little larger
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Λb → p form factors
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Λb → p   vs   Λb → Λ

• Form factors larger for proton final state than for Λ

• Significantly different than model estimates
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Λb → p l ν decay rate

• Differential decay rate again computed using extracted 
form factors

• Shown for µ and τ final states (electron is identical to µ) 
and only in regime where momentum dependence is 
controlled by lattice data
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|Vub|2 extraction

• Results are promising for extraction of  Vub from this 
channel

• Construct partially integrated decay rate

• Theory uncertainty on Vub about 15%

• Theoretical uncertainties smaller than difference between 
current inclusive and exclusive extractions

• We need to wait for experimental results from LHCb 
(studies are underway)
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FIG. 5. Our predictions for the di↵erential decay rates of ⇤b ! p µ�⌫̄µ (left) and ⇤b ! p ⌧�⌫̄⌧ (right), divided by |Vub|2.
We only show the kinematic region where we have lattice QCD results for the form factors F

+

and F�. The inner error band
originates from the statistical plus systematic uncertainty in F±. The outer error band additionally includes an estimate of
the uncertainty caused by the use of leading-order HQET for the b quark. The plot for ⇤b ! p e�⌫̄e is indistinguishable from
⇤b ! p µ�⌫̄µ and is therefore not shown.

new relevant scale. We add these two uncertainties in quadrature, and hence estimate the systematic uncertainty in
|Vub|�2d�/dq

2 that is caused by the use of leading-order HQET to be
s

⇤2

QCD

m

2

b

+
|p0|2
m

2

b

, (41)

where we take ⇤
QCD

= 500 MeV.
We also provide the following results for the integrated decay rate in the kinematic range of our lattice calculation,

14 GeV2  q

2  q

2

max

[where q

2

max

= (m
⇤b �mN )2],

1
|Vub|2

Z q2

max

14 GeV

2

d�(⇤b ! p `

�
⌫̄`)

dq

2

dq

2 =

8
><

>:

15.3 ± 2.4 ± 3.4 ps�1 for ` = e,

15.3 ± 2.4 ± 3.4 ps�1 for ` = µ,

12.5 ± 1.9 ± 2.7 ps�1 for ` = ⌧.

(42)

Here, the first uncertainty originates from the form factors, and the second uncertainty originates from the use of the
static approximation for the b-quark. With future experimental data, Eq. (??) can be used to determine |Vub|.

VI. DISCUSSION

We have obtained precise lattice QCD results for the ⇤Q ! p form factors defined in the heavy-quark limit. These
results are valuable in their own right, as they can be compared to model-dependent studies performed in the same
limit, and eventually to future lattice QCD calculations at the physical b quark mass. For the ⇤b ! p `

�
⌫̄` di↵erential

decay rate, the static approximation introduces a systematic uncertainty that is of order ⇤
QCD

/mb ⇠ 10% at zero
recoil and grows as the momentum of the proton in the ⇤b rest frame is increased. The total uncertainty for the
integral of the di↵erential decay rate from q

2 = 14 GeV2 to q

2

max

= (m
⇤b �mN )2, which is the kinematic range where

we have lattice data, is about 30%. Using future experimental data, this will allow a novel determination of the CKM
matrix element |Vub| with about 15% theoretical uncertainty (the experimental uncertainty will also contribute to
the overall extraction). The theoretical uncertainty is already smaller than the di↵erence between the values of |Vub|
extracted from inclusive and exclusive B meson decays [Eqs. (??) and (??)], and can be reduced further by performing
lattice QCD calculations of the full set of ⇤b ! p form factors at the physical value of the b-quark mass. In such
calculations, the b quark can be implemented using for example a Wilson-like action [? ? ? ], lattice nonrelativistic
QCD [? ], or higher-order lattice HQET [? ]. Once the uncertainty from the static approximation is eliminated,
other systematic uncertainties need to be reduced. In the present calculation, the second-largest source of systematic
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Summary

• Flavour physics alive and well in the LHC era

• First calculations of hadronic form factors for Λb → p and 
Λb → Λ transitions allow

• Tests of the Standard Model in Λb → Λ µ+ µ-

• Independent extraction of  Vub from Λb → p l ν decays

• Calculations will be improved in the future using improved 
discretisations of b quarks, lighter light quarks and non-
perturbative renormalisation of currents
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