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Hamiltonian GR

The Universe as a closed quantum system: Quantum cosmology
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Fig. 1: The 3 + 1 decomposition of the manifold, with lapse function, N , and shift

vector, N i.

One can construct an intrinsic curvature tensor 3Ri
jkl(h) from the intrinsic

metric alone – this of course describes the curvature intrinsic to the hypersurfaces

Σt. One can also define an extrinsic curvature, (or second fundamental form), which

describes how the spatial hypersurfaces Σt curve with respect to the 4-dimensional

spacetime manifold within which they are embedded. This is given by

Kij ≡− ni;j = −Γ0
ijn0

=
1

2N

�
Ni|j +Nj|i −

∂hij

∂t

�
,

(2.5)

where a semicolon denotes covariant differentiation with respect to the 4-metric, gµν ,

and a vertical bar denotes covariant differentiation with respect to the 3-metric, hij:

Ni|j ≡ Ni,j −Γk
ijNk etc.

For a given foliation ofM by spatial hypersurfaces, Σt, it is always possible to

choose Gaussian normal coordinates, in which

ds2
= −dt2 + hijdxi

dxj. (2.6)

These are comoving coordinates (N i = 0) with the additional property that t is

the proper time parameter (N = 1). This is the standard “gauge choice” that is

made in classical cosmology, and in such coordinates Kij = −ḣij, where dot denotes
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Intrinsic curvature tensor 3
Ri

jkl (h)

S ≡
�

dtL =
1

4πGN

�
dtd3xN

√
h

�
KijK

ij −K2 +
3
R− 2Λ

�

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)
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9

Lapse function

Shift vector

Intrinsic metric
= first fundamental form

Σt

ds2 = gµνdxµdxν = −N 2dt2 + hij

�
dxi +N idt

� �
dxj +N jdt

�

3

Normal tonµ

Σt

ds2 = gµνdxµdxν = −N2dt2 + hij

�
dxi + N idt

� �
dxj + N jdt

�

1

nµ

Σt

ds2 = gµνdxµdxν = −N2dt2 + hij

�
dxi + N idt

� �
dxj + N jdt

�

1

Extrinsic curvature
= second fundamental form

Λ or w � −1 perfect fluid ?

Kij ≡ −∇jni = −Γ0
ijn0

=
1

2N

�
∇jNi +∇iNj −

∂hij

∂t

�
(1)

(3)
R

i
jkl(h)

Rµν −
1

2
gµνR = 8πGNTµν + Λgµν

ϕ̇2 � V

ϕ̈� 3Hϕ̇

ϕ̈ + 3Hϕ̇ +
dV

dϕ
= 0

1

Intrinsic curvature tensor 3
Ri

jkl (h)

S ≡
�

dtL =
1

4πGN

�
dtd3xN

√
h

�
KijK

ij −K2 +
3
R− 2Λ

�

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

The Universe as a closed quantum system: Quantum cosmology



Twelfth Workshop on Non-Perturbative QCD, Paris - June 13th, 2013 2

Hamiltonian GR

N idt

nµ

dxi

x +i dxi
x i

d! = Ndt

"t+dt

"t

Fig. 1: The 3 + 1 decomposition of the manifold, with lapse function, N , and shift

vector, N i.

One can construct an intrinsic curvature tensor 3Ri
jkl(h) from the intrinsic

metric alone – this of course describes the curvature intrinsic to the hypersurfaces

Σt. One can also define an extrinsic curvature, (or second fundamental form), which

describes how the spatial hypersurfaces Σt curve with respect to the 4-dimensional

spacetime manifold within which they are embedded. This is given by

Kij ≡− ni;j = −Γ0
ijn0

=
1

2N

�
Ni|j +Nj|i −

∂hij

∂t

�
,

(2.5)

where a semicolon denotes covariant differentiation with respect to the 4-metric, gµν ,

and a vertical bar denotes covariant differentiation with respect to the 3-metric, hij:

Ni|j ≡ Ni,j −Γk
ijNk etc.

For a given foliation ofM by spatial hypersurfaces, Σt, it is always possible to

choose Gaussian normal coordinates, in which

ds2
= −dt2 + hijdxi

dxj. (2.6)

These are comoving coordinates (N i = 0) with the additional property that t is

the proper time parameter (N = 1). This is the standard “gauge choice” that is

made in classical cosmology, and in such coordinates Kij = −ḣij, where dot denotes
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Action:

Λ or w � −1 perfect fluid ?
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�
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Canonical momenta

Primary constraints}

πij ≡ δL

δḣij

= −
√

h

16πGN

�
Kij − hijK

�

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

πΦ ≡
δL

δΦ̇
=

√
h

N

�
Φ̇−N i ∂Φ

∂xi

�

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

π0 ≡ δL

δṄ
= 0

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

πi ≡ δL

δṄi

= 0

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1
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A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)
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Hamiltonian H ≡
�

d3
x

�
π0
Ṅ + πi

Ṅi + πij
ḣij + πΦΦ̇

�
− L =

�
d3

x

�
π0
Ṅ + πi

Ṅi +NH +NiH
i
�

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)
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Variation wrt lapse Hamiltonian constraint

Variation wrt shift momentum constraint
Secondary constraints}

=⇒

nµ

Σt

ds2 = gµνdxµdxν = −N2dt2 + hij

�
dxi + N idt

� �
dxj + N jdt

�

1

Classical description

H = 0

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

H
i = 0

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)
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Relevant configuration space?

parameters

GR          invariance / diffeomorphisms

Conf =
Riem(Σ)

Diff0(Σ

=⇒

nµ

Σt

ds2 = gµνdxµdxν = −N2dt2 + hij

�
dxi + N idt

� �
dxj + N jdt

�

1

Conf =
Riem(Σ)

Diff0(Σ
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nµ

Σt

ds2 = gµνdxµdxν = −N2dt2 + hij

�
dxi + N idt

� �
dxj + N jdt

�

1

Conf =
Riem(Σ)

Diff0(Σ)

=⇒

nµ

Σt

ds2 = gµνdxµdxν = −N2dt2 + hij

�
dxi + N idt

� �
dxj + N jdt

�

1

superspace

Superspace & canonical quantisation

Wave functional Ψ [hij(x), Φ(x)]

Conf =
Riem(Σ)

Diff0(Σ)

=⇒

nµ

Σt

ds2 = gµνdxµdxν = −N2dt2 + hij

�
dxi + N idt

� �
dxj + N jdt

�

1

Dirac canonical quantisation

matter fields

Riem(Σ) ≡
�

hij (xµ), Φ (xµ) | x ∈ Σ
�

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

πij → −i
δ

δhij

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

πΦ → −i
δ

δΦ

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

π0 → −i
δ

δN
A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

πi → −i
δ

δNi

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1
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Primary constraints
π̂Ψ = −i

δΨ

δN = 0

π̂iΨ = −i
δΨ

δNi
= 0

Ψ [hij(x), Φ(x)]

Conf =
Riem(Σ)

Diff0(Σ)

=⇒

nµ

Σt

1

Momentum constraint N̂ iΨ = 0 =⇒ i∇(h)
j

�
δΨ

δhij

�
= 8πGNT̂ 0iΨ

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1
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�
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A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

Hamiltonian constraint

Wheeler - De Witt equation

ĤΨ =

�
−16πGNGijkl

δ2

δhijδhkl
+

√
h

16πGN

�
−3

R + 2Λ + 16πGNT̂ 00
��

Ψ = 0

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

Gijkl =
1

2
h−1/2 (hikhjl + hilhjk − hijhkl)

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

1

DeWitt metric...
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Minisuperspace
Restrict attention from an infinite dimensional configuration space to 2 dimensional space
= mini - superspace 

hijdxidxj = a2(t)

�
dr2

1− kr2
+ r2

�
dθ2 + sin2 θdϕ2

��
Φ(x) = φ(t)

π̂Ψ = −i
δΨ

δN = 0

π̂iΨ = −i
δΨ

δNi
= 0

{hij(x), Φ(x)}

Ψ [hij(x), Φ(x)]

Conf =
Riem(Σ)

Diff0(Σ)

=⇒

1

WDW equation becomes Schrödinger-like forΨ [a(t), φ(t)]

hijdxidxj = a2(t)

�
dr2

1− kr2
+ r2

�
dθ2 + sin2 θdϕ2

��
Φ(x) = φ(t)

π̂Ψ = −i
δΨ

δN = 0

π̂iΨ = −i
δΨ

δNi
= 0

{hij(x), Φ(x)}

Ψ [hij(x), Φ(x)]

Conf =
Riem(Σ)

Diff0(Σ)

1

Conceptual and technical problems:

Infinite number of dof       a few: mathematical consistency?
Freeze momenta? Heisenberg uncertainties?
QM = minisuperspace of QFT

ρ → T [ρ]

|ψ��ψ| →
�

d3
xP (x)

|ψx��ψx|
|| |ψx�||2

= T [|ψ��ψ|]

L
i
x =

�α

π

�3/4
e−α(qi−x)2/2

Prob[an; t] = |�an|ψ(t)�|2

i� d

dt
|ψ(t)� = Ĥ|ψ(t)�

A|an� = an|an�

Ψ [a(t), φ(t)]

1
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1

However, one can actually make calculations!
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Quantum cosmology of a perfect fluid



Twelfth Workshop on Non-Perturbative QCD, Paris - June 13th, 2013 7

Perfect fluid: Schutz formalism (’70)

Velocity potentials

Quantum cosmology of a perfect fluid
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Perfect fluid: Schutz formalism (’70)

Velocity potentials

canonical transformation: …

+ rescaling (volume…) + units… : simple Hamiltonian:

Quantum cosmology of a perfect fluid
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Wheeler-De Witt

∃ x(t)

m
d2

x(t)
dt2

= −∇ (V + Q)

∃t0; ρ (x, t0) = |Ψ (x, t0)|2

Q −→ 0

ds
2 = N

2(τ)dτ − a
2(τ)γijdx

idx
j

p = p0

�
ϕ̇ + θṡ

N(1 + ω)

� 1+ω
ω

(ϕ, θ, s) =

T = −pse−s/s0p
−(1+ω)
ϕ s0ρ

−ω
0

H =
�
−p

2
a

4a
−Ka +

pT

a3ω

�
N

a
3ω

HΨ = 0

2

8
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a
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a3ω

)

N

a3ω

HΨ = 0
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∂Ψ

∂T
=

1

4
a3(ω−1)/2 ∂

∂a

[

a(3ω−1)/2 ∂

∂a

]

Ψ + KaΨ

K = 0 =⇒ χ ≡
2a3(1−ω)/2

3(1 − ω)
=⇒ i

∂Ψ

∂T
=

1

4

∂2Ψ

∂χ2

χ > 0

Ψ̄
∂Ψ

∂χ
= Ψ

∂Ψ̄

∂χ

Ψ =

∫

eiET ρ(E)ψE(T )dE

∝ e−(ET0)
2

Ψ =

[

8T0

π (T 2
0 + T 2)

2

]
1
4

exp

(

−
T0χ

2

T 2
0 + T 2

)

e−iS(χ,T )

S =
Tχ2

T 2
0 + T 2

+
1

2
arctan

T0

T
−

π

4

4

8

constraint

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

3

space defined by 

i
∂Ψ
∂T

=
1
4
a3(ω−1)/2 ∂

∂a

�
a(3ω−1)/2 ∂

∂a

�
Ψ +KaΨ

K = 0 =⇒ χ ≡ 2a2(1−ω/2
3(1− ω)

=⇒ i
∂Ψ
∂T

=
1
4

∂2Ψ
∂χ2

χ > 0

Ψ̄
∂Ψ
∂χ

= Ψ
∂Ψ̄
∂χ

3
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What do we do with the wave function of the Universe???
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What do we do with the wave function of the Universe???

Measurement problem...
worst in a cosmological setup!
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Quantum mechanics of closed systems

Physical system = Hilbert space of configurations
                              State vectors
                              Observables = self-adjoint operators
                              Measurement = eigenvalue A|an� = an|an�

Ψ [a(t), φ(t)]

hijdxidxj = a2(t)

�
dr2

1− kr2
+ r2

�
dθ2 + sin2 θdϕ2

��
Φ(x) = φ(t)

π̂Ψ = −i
δΨ

δN = 0

π̂iΨ = −i
δΨ

δNi
= 0

{hij(x), Φ(x)}

Ψ [hij(x), Φ(x)]

1

Evolution = Schrödinger equation (time translation invariance) i� d

dt
|ψ(t)� = Ĥ|ψ(t)�

A|an� = an|an�

Ψ [a(t), φ(t)]

hijdx
idx

j = a
2(t)

�
dr

2

1− kr2
+ r

2
�
dθ2 + sin2 θdϕ2

��
Φ(x) = φ(t)

π̂Ψ = −i
δΨ

δN = 0

π̂iΨ = −i
δΨ

δNi
= 0

{hij(x), Φ(x)}

1

Hamiltonian
Born rule Prob[an; t] = |�an|ψ(t)�|2

i� d

dt
|ψ(t)� = Ĥ|ψ(t)�

A|an� = an|an�

Ψ [a(t), φ(t)]

hijdx
idx

j = a
2(t)

�
dr

2

1 − kr2
+ r

2
�
dθ2 + sin2 θdϕ2

��
Φ(x) = φ(t)

π̂Ψ = −i
δΨ

δN = 0

π̂iΨ = −i
δΨ

δNi
= 0

1

Collapse of the wavefunction:

Prob[an; t] = |�an|ψ(t)�|2

i� d

dt
|ψ(t)� = Ĥ|ψ(t)�

A|an� = an|an�

Ψ [a(t), φ(t)]

hijdx
idx

j = a
2(t)

�
dr

2

1 − kr2
+ r

2
�
dθ2 + sin2 θdϕ2

��
Φ(x) = φ(t)

π̂Ψ = −i
δΨ

δN = 0

π̂iΨ = −i
δΨ

δNi
= 0

1

before measurement,

Prob[an; t] = |�an|ψ(t)�|2

i� d

dt
|ψ(t)� = Ĥ|ψ(t)�

A|an� = an|an�

Ψ [a(t), φ(t)]

hijdx
idx

j = a
2(t)

�
dr

2

1 − kr2
+ r

2
�
dθ2 + sin2 θdϕ2

��
Φ(x) = φ(t)

π̂Ψ = −i
δΨ

δN = 0

π̂iΨ = −i
δΨ

δNi
= 0

1

after

Schrödinger equation = linear (superposition principle) / unitary evolution

Wavepacket reduction = non linear / stochastic
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after

Schrödinger equation = linear (superposition principle) / unitary evolution

Wavepacket reduction = non linear / stochastic
 + External observer
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A|an� = an|an�

Ψ [a(t), φ(t)]

hijdx
idx

j = a
2(t)

�
dr

2

1− kr2
+ r

2
�
dθ2 + sin2 θdϕ2

��
Φ(x) = φ(t)

π̂Ψ = −i
δΨ

δN = 0

π̂iΨ = −i
δΨ

δNi
= 0

{hij(x), Φ(x)}

1

Hamiltonian
Born rule Prob[an; t] = |�an|ψ(t)�|2

i� d

dt
|ψ(t)� = Ĥ|ψ(t)�
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Schrödinger equation = linear (superposition principle) / unitary evolution

Wavepacket reduction = non linear / stochastic }Mutually
incompatible

 + External observer
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The measurement problem in quantum mechanics

Definite outcome: we don’t measure superpositions

Preferred basis: no unique definition of measured observables

collapse of the wave function
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The measurement problem in quantum mechanics

Stern-Gerlach

Unitary, deterministic
Schödinger evolution

Problem: how to reach the actual measurement                             or                             ?

}pure state

|Ψin� =
1√
2

(|↑ �+ |↓ �)⊗ |SGin�

�
|↑ � ⊗ |SGin�

�
∪
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Ĉ − �Ĉ�
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√

γ
�
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Possible solutions and a criterion: the Born rule

Superselection rules
Modal interpretation
Decoherent histories
Many worlds / many minds

Hidden variables
Modified Schrödinger dynamics}Born rule not put by hand!

A. Bassi, G.C. Ghirardi / Physics Reports 379 (2003) 257–426 277

Fig. 1.

4. Possible ways out of the macro-objecti!cation problem

Various ways to overcome the measurement problem have been considered in the literature: in
this section we brie!y describe and discuss them. It is useful to arrange the various proposals in a
hierarchical tree-like structure [14], taking into account the fundamental points on which they di"er:
in the #gure below we present a diagram which may help in following the argument. Subsequently
we will comment on the various options.

4.1. Listing the possible ways out

A #rst distinction among the alternatives which have been considered in the literature derives
from taking into account the role which they assign to the statevector | 〉 of a system (Fig. 1). This
leads to the Incompleteness versus Formal Completeness option:
Incompleteness: this approach rests on the assertion that the speci#cation of the state | 〉 of the

system is insu$cient: further parameters, besides the wavefunction, must be considered, allowing us
to assign de#nite properties to physical systems.
Formal Completeness: it is assumed that the assignment of the statevector represents the most

accurate possible speci#cation of the state of a physical system.
When the assumption of Formal Completeness is made, two fundamentally di"erent positions can

be taken about the status of an ensemble—a pure case in the standard scheme—all individuals of
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�

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)
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Hamilton-Jacobi 
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Hidden Variable Theories
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Louis de Broglie David Bohm 

1927 Solvay meeting and von Neuman mistake ... ‘In 1952, I saw the impossible done’ (J. Bell)

Ontological interpretation (dBB)
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The two-slit experiment:

Surrealistic trajectories?

Non straight in vacuum...
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Gaussian wave packet
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Trajectory

J. Acacio de Barros, N. Pinto-Neto & M. A. Sagorio-Leal,, Phys. Lett. A241, 229 (1998) 
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J. Acacio de Barros, N. Pinto-Neto & M. A. Sagorio-Leal,, Phys. Lett. A241, 229 (1998) 

Natural quantum solution to the sin
gularity problem!
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What about perturbations?
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Collapse in 1992 ???

+

+ + + ...

Superposition
Final (ultimate!) collapse

in 2012?
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Usual treatment of the perturbations?

conformal time

Einstein-Hilbert action up to 2nd order

Bardeen (Newton) gravitational potential
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1

Mukhanov-Sasaki variable

Simple scalar field with varying mass in Minkowski space!!! z = z[a(η)]
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V. F. Mukhanov, H. A. Feldman & R. H. Brandenberger, Phys. Rep. 215, 203 (1992) 

Both background and perturbations are quantum
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Both background and perturbations are quantum
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Both background and perturbations are quantum
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Self-consistent treatment of the perturbations?

Hamiltonian up to 2nd order

factorization of the wave function

comes from 0th order
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�2
dt|Ψ�

E (dWtdWt�) = dtdt
�δ(t− t

�)

Ĉ

�Ĉ� ≡ �Ψ|Ĉ|Ψ�
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�Ĉ� ≡ �Ψ|Ĉ|Ψ�
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�Ĉ� ≡ �Ψ|Ĉ|Ψ�
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1

break superposition principle

Modified Schrödinger
equation with collapse
towards     eigenstates

d|Ψ� = −iĤ|Ψ�dt +
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�Ĉ� ≡ �Ψ|Ĉ|Ψ�
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�
dWt|Ψ�
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Ĉ − �Ĉ�
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1

d|Ψ� = −iĤ|Ψ�dt +
√

γ
�
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√

γ
�
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√

γ
�
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1

d|Ψ� = −iĤ|Ψ�dt +
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�Ĉ� ≡ �Ψ|Ĉ|Ψ�
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√

γ
�
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√

γ
�
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Ĉ − �Ĉ�
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1

Primordial perturbations

Grown perturbations



Twelfth Workshop on Non-Perturbative QCD, Paris - June 13th, 2013 26

constrained...

Year first author [ref.] interfering m/mp τ d in GRW in GRW in CSL in CSL
object λ < λ/σ2 < λ < λ/σ2 <

1927 Davisson [13] electron 5× 10−4 N/A 2×10−10m 1014 s−1 3×1033m−2s−1 1017 s−1 5×1036 m−2s−1

1930 Estermann [15] He 4 N/A 4×10−10m 1011 s−1 6×1029m−2s−1 3×1010 s−1 1029 m−2s−1

1959 Möllenstedt [28] electron 5× 10−4 3×10−9 s 2×10−6 m 7×1011 s−1 1023m−2s−1 1015 s−1 3×1026 m−2s−1

1987 Tonomura [37] electron 5× 10−4 10−8 s 10−4 m 2×1011 s−1 2×1019m−2s−1 4×1014 s−1 4×1022 m−2s−1

1988 Zeilinger [40] neutron 1 10−2 s 10−4 m 2×102 s−1 2×1010m−2s−1 2×102 s−1 2×1010 m−2s−1

1991 Carnal [9] He 4 6×10−4 s 10−5 m 4×102 s−1 4×1012m−2s−1 102 s−1 1012 m−2s−1

1999 Arndt [4] C60 720 6×10−3 s 10−7 m 2×10−1s−1 2×1013m−2s−1 3×10−4 s−1 3×1010 m−2s−1

2001 Nairz [29] C70 840 10−2 s 3×10−7 m 10−1s−1 1012m−2s−1 10−4 s−1 109 m−2s−1

2004 Hackermüller [24] C70 840 2×10−3 s 10−6 m 100 s−1 1012m−2s−1 10−3 s−1 109 m−2s−1

2007 Gerlich [17] C30H12F30N2O4 103 10−3 s 3×10−7 m 100 s−1 1013m−2s−1 10−3 s−1 1010 m−2s−1

2011 Gerlich [18] C60[C12F25]10 7× 103 10−3 s 3×10−7 m 10−1s−1 1012m−2s−1 10−5 s−1 108 m−2s−1

Proposed future experiments

Romero-Isart [35] [SiO2]150,000 107 10−1 s 4×10−7 m 10−6s−1 6×106 m−2s−1 10−13s−1 6×10−1m−2s−1

Nimmrichter [30] Au500,000 108 6×100 s 10−7 m 2×10−9s−1 2×105 m−2s−1 2×10−17s−1 2×10−3m−2s−1

Table 1: Bounds on σ,λ obtained from different diffraction experiments. For each experiment, m = mass of the interfering
object, mp = proton mass, τ = time of flight between grating and image plane, d = period of grating (or transverse coherence
length in [37]), N/A = not applicable. For each theory (GRW or CSL), two bounds are obtained. This table is the basis for
Fig. 3.
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2007 Gerlich [17] C30H12F30N2O4 103 10−3 s 3×10−7 m 100 s−1 1013m−2s−1 10−3 s−1 1010 m−2s−1

2011 Gerlich [18] C60[C12F25]10 7× 103 10−3 s 3×10−7 m 10−1s−1 1012m−2s−1 10−5 s−1 108 m−2s−1

Proposed future experiments

Romero-Isart [35] [SiO2]150,000 107 10−1 s 4×10−7 m 10−6s−1 6×106 m−2s−1 10−13s−1 6×10−1m−2s−1

Nimmrichter [30] Au500,000 108 6×100 s 10−7 m 2×10−9s−1 2×105 m−2s−1 2×10−17s−1 2×10−3m−2s−1

Table 1: Bounds on σ,λ obtained from different diffraction experiments. For each experiment, m = mass of the interfering
object, mp = proton mass, τ = time of flight between grating and image plane, d = period of grating (or transverse coherence
length in [37]), N/A = not applicable. For each theory (GRW or CSL), two bounds are obtained. This table is the basis for
Fig. 3.
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Ĉ − �Ĉ�
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�Ĉ� ≡ �Ψ|Ĉ|Ψ�
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Ĉ − �Ĉ�

�
dWt|Ψ� −

γ

2

�
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�2
dt|Ψ�

E (dWtdWt�) = dtdt
�δ(t− t

�)
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Ĉ − �Ĉ�
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Ĥ =
p̂

2

2m

d|Ψ� = −iĤ|Ψ�dt +
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1

Example: free particle evolution
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Ĉ − �Ĉ�
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Ĉ − �Ĉ�

�
dWt|Ψ� −

γ

2

�
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�2
dt|Ψ�

E (dWtdWt�) = dtdt
�δ(t− t

�)
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√

γ
�
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�Ĉ� ≡ �Ψ|Ĉ|Ψ�
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Ĉ − �Ĉ�
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√

γ
�
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18

providing its time development.

Let us now come to another very important aspect of

the CSL theory and describe the so-called “amplification

mechanism” which enables to understand why the dy-

namics of microscopic systems is not much altered by the

extra stochastic and non linear terms in Eq. (106). This

is phenomenologically very important since this means

that the laboratory experiments performed on “small”

quantum systems are still accurately predicted by the

standard Schrödinger equation while the macroscopic ob-

jects are quickly and efficiently localized. Let us consider

an ensemble of N identical particles, assuming that, for

each of them, the collapse operator is the physical po-

sition in space. Therefore, we can identify the operator

and Wiener processes according to

B̂ → √
γ

N�

i=1

x̂i and dWt → dW
(i)
t (110)

in Eq. (106), with x̂i the position operator for the i
th

particle. Note that in this case, one has as many in-

dependent Wiener processes as there are particles; they

satisfy

E
�
dW

(i)
t dW

(j)
t�

�
= δijδ (t− t

�
) dt

2
. (111)

This naturally generalizes Eq. (106) to a set of operators

and particles on which to project the relevant states.

We now assume that one can decompose the total wave

vector |Ψ� in the form

|Ψ ({xi})� = |ΨCM (R)� ⊗ |Ψrel ({ri})� , (112)

where the total wavefunction depends on the set of all the

position operators {xi}, while the ”macroscopic” part of

it, |ΨCM�, depends only on the position R ≡ N
−1

�
i xi

of the center of mass, and the rest is a function only of

the relative coordinates ri defined through xi = R + ri.

Using Itô calculus to evaluate the differential of the

tensor product in Eq. (112), it is easily checked that

|Ψ ({xi})� satisfies Eq. (106) with B̂ and dWt given by

Eq. (110) if the components of the product respectively

satisfy

d|ΨCM (R)� =

��
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and

d|Ψrel ({ri})� =

��
−iĤrel −

γ
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(r̂i − �r̂i�)2
�

dt +
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(r̂i − �r̂i�) dW
(i)
t

�
|Ψrel ({ri})� , (114)

where we have assumed the total Hamiltonian could be

split into Ĥ = ĤCM(R̂)+Ĥrel ({r̂i}) and the new constant

γCM appearing in Eq. (113) is given by γCM = Nγ. This

illustrates the mechanism thanks to which localization

is amplified for a macroscopic object containing a large

number (in practice N ∼ 10
23 � 1 for usual classical

systems) of particles, while the usual quantum spread is

mostly conserved for the internal degrees of freedom. A

recent inventory of all the constraints derived so far in

various physical situations on the CSL parameter γ can

be found in Ref. [109].

B. An Illustrative Example: the Harmonic
Oscillator

In this section, we illustrate how the CSL theory works

on the example of the harmonic oscillator resetting the

Planck constant � for easier comparison with previous

works. This is an interesting case because it represents

the prototypical example of a quantum system and, to

our knowledge, this case has not been solved explicitly

in the case of the CSL theory. Moreover, in cosmology,

as explained before, we deal with a parametric oscillator,

a case which shares some similarities with an harmonic

oscillator, at least in some regimes. It is therefore im-

portant to understand first this simplest case in the CSL

framework. In the following, we assume that the opera-

tor B̂ introduced in the previous section is the position

operator x̂. As a consequence, the modified Schrödinger

equation can be written as

dΨ =

�
− i

�Ĥdt +
√

γ (x̂− �x̂�) dWt

− γ

2
(x̂− �x̂�)2 dt

�
Ψ , (115)

where Ĥ = p̂
2
/(2m)+mω2

x̂
2
/2 is the Hamiltonian. The

parameter γ sets the strength of the collapse mechanism

and, since we have chosen the position as the preferred

basis, it has dimension L
−2 × T

−1
. Following Ref. [71],

the wavefunction can be taken as a Gaussian state and
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as explained before, we deal with a parametric oscillator,

a case which shares some similarities with an harmonic

oscillator, at least in some regimes. It is therefore im-
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5.9× 10−28 m for the Earth

1
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−iĤCM −

γCM

2

�
R̂− �R̂�

�2
�

dt +
√

γCM

�
R̂− �R̂�

�
dWt

�
|ΨCM (R)� , (113)

and

d|Ψrel ({ri})� =

��
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split into Ĥ = ĤCM(R̂)+Ĥrel ({r̂i}) and the new constant

γCM appearing in Eq. (113) is given by γCM = Nγ. This

illustrates the mechanism thanks to which localization

is amplified for a macroscopic object containing a large

number (in practice N ∼ 10
23 � 1 for usual classical

systems) of particles, while the usual quantum spread is

mostly conserved for the internal degrees of freedom. A

recent inventory of all the constraints derived so far in

various physical situations on the CSL parameter γ can

be found in Ref. [109].

B. An Illustrative Example: the Harmonic
Oscillator

In this section, we illustrate how the CSL theory works

on the example of the harmonic oscillator resetting the

Planck constant � for easier comparison with previous

works. This is an interesting case because it represents

the prototypical example of a quantum system and, to

our knowledge, this case has not been solved explicitly
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where Ĥ = p̂
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/2 is the Hamiltonian. The

parameter γ sets the strength of the collapse mechanism

and, since we have chosen the position as the preferred

basis, it has dimension L
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. Following Ref. [71],

the wavefunction can be taken as a Gaussian state and
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√

γ
�
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Ĉ − �Ĉ�
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�Ĉ� ≡ �Ψ|Ĉ|Ψ�
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�2
dt|Ψ�

E (dWtdWt�) = dtdt
�δ(t− t

�)
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�
dWt|Ψ� −

γ

2

�
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Ĉ − �Ĉ�
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1

(number of particles)

Animations provided by V. Vennin... thx!



Twelfth Workshop on Non-Perturbative QCD, Paris - June 13th, 2013 29

x

d|Ψ� = −iĤ|Ψ�dt +
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�
dWt|Ψ� −

γ

2

�
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1

γ ∝ N

d|Ψ� = −iĤ|Ψ�dt +
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Ĉ − �Ĉ�
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1

σx

d|Ψ� = −iĤ|Ψ�dt +
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�
dWt|Ψ� −

γ

2

�
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�Ĉ� ≡ �Ψ|Ĉ|Ψ�
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√

γ
�
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Ĉ − �Ĉ�
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Ĉ − �Ĉ�
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√

γ
�
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�
dWt|Ψ� −

γ

2

�
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Constraints:
(falsifiable theory!)

Cosmological perturbations: different test by orders of magnitude!

Measurement problem exacerbated
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Classicalization of Cosmological Perturbations 

Predictions of the theory: Calculated by quantum average �Ψ|Ô|Ψ�
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Classicalization of Cosmological Perturbations 

Predictions of the theory: Calculated by quantum average �Ψ|Ô|Ψ�
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Ergodicity 

Here one has a single 
experiment (a single universe) 
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average over 
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average 
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Classical temperature fluctuations
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Inflationary perturbations: quantum fluctuations / expanding background
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second order perturbed Einstein action

5

The next step consists in deriving an equation of mo-
tion for v(η,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(η,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
one obtains [12]

(2)δS =
1
2

�
d4

x

�
(v�)2 − δij∂iv∂jv +

�
a
√

�1
���

a
√

�1
v
2

�
,

(6)
where �1 = 1 − H�

/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H

2(1 − �1) shows,
the condition �1 < 1 is in fact sufficient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if �1 � 1. In this case, it is easy to show that �1 �
(M2

Pl
/2V

2)(dV/dϕ)2, i.e. �1 is in fact a measure of how
much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has �1 = (2 + β)/(1 + β) and,
of course, �1 = 0 when β = −2 (de Sitter solution). The
scale factor can also be rewritten as a(η) � �0(−η)−1−�1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with β � −2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(η,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have

v (η,x) =
1

(2π)3/2

�

R3
d3k vk (η)eik·x

, (7)

with v−k = v
∗
k because v(η,x) is real. Then inserting

this expansion into Eq. (6), one arrives at [12]

(2)δS =
�

dη

�
d3k

�
v
�
kv

∗
k
� + vkv

∗
k

��
a
√

�1
���

a
√

�1
− k

2

��
,

(8)

where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk

pk =
δL

δv∗k
� = v

�
k , (9)

where L is the Lagrangian density in Fourier space that
can be derived from Eq. (8). This allows us to calculate

the Hamiltonian which reads

H =
�

d3k

�
pkp

∗
k + vkv

∗
k

�
k

2 −
�
a
√

�1
���

a
√

�1

��
. (10)

This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as

ω2 (η,k) = k
2 −

�
a
√

�1
���

a
√

�1
. (11)

We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
different inflationary backgrounds (i.e. different inflaton
potentials) lead to different ω(η,k) and, therefore, to dif-
ferent behaviors for vk(η). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v
��
k + ω2 (η,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (ϕ) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ω2(η,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions

vk ≡
1√
2

�
v
R
k + iv

I
k

�
, pk ≡

1√
2

�
p
R
k + ip

I
k

�
. (13)

In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, Ψ [v(η,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as

Ψ [v(η,x)] =
�

k

Ψk

�
v
R
k , v

I
k

�
=

�

k

ΨR
k

�
v
R
k

�
ΨI

k

�
v
I
k

�
.

(14)
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Sasaki variable. One obtains

v
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k + ω2 (η,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (ϕ) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ω2(η,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture
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bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
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In the Schrödinger approach, the quantum state of the
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The next step consists in deriving an equation of mo-
tion for v(η,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(η,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
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/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H

2(1 − �1) shows,
the condition �1 < 1 is in fact sufficient to have infla-
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if �1 � 1. In this case, it is easy to show that �1 �
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2)(dV/dϕ)2, i.e. �1 is in fact a measure of how
much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has �1 = (2 + β)/(1 + β) and,
of course, �1 = 0 when β = −2 (de Sitter solution). The
scale factor can also be rewritten as a(η) � �0(−η)−1−�1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with β � −2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(η,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
different inflationary backgrounds (i.e. different inflaton
potentials) lead to different ω(η,k) and, therefore, to dif-
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easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains
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which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (ϕ) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ω2(η,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.
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In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
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system is described by a wavefunctional, Ψ [v(η,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
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√

γ
�
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Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has �1 = (2 + β)/(1 + β) and,
of course, �1 = 0 when β = −2 (de Sitter solution). The
scale factor can also be rewritten as a(η) � �0(−η)−1−�1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with β � −2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(η,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk

pk =
δL

δv∗k
� = v

�
k , (9)
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This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
different inflationary backgrounds (i.e. different inflaton
potentials) lead to different ω(η,k) and, therefore, to dif-
ferent behaviors for vk(η). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v
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k + ω2 (η,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (ϕ) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ω2(η,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions
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In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, Ψ [v(η,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as
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tion for v(η,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(η,x). Expanding the action of
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where �1 = 1 − H�

/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H

2(1 − �1) shows,
the condition �1 < 1 is in fact sufficient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if �1 � 1. In this case, it is easy to show that �1 �
(M2
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2)(dV/dϕ)2, i.e. �1 is in fact a measure of how
much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has �1 = (2 + β)/(1 + β) and,
of course, �1 = 0 when β = −2 (de Sitter solution). The
scale factor can also be rewritten as a(η) � �0(−η)−1−�1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with β � −2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(η,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have

v (η,x) =
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(2π)3/2
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where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk
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This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
different inflationary backgrounds (i.e. different inflaton
potentials) lead to different ω(η,k) and, therefore, to dif-
ferent behaviors for vk(η). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v
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k + ω2 (η,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (ϕ) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ω2(η,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions
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In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, Ψ [v(η,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as
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The next step consists in deriving an equation of mo-
tion for v(η,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(η,x). Expanding the action of
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much the inflaton potential deviates from a flat potential.
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this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has �1 = (2 + β)/(1 + β) and,
of course, �1 = 0 when β = −2 (de Sitter solution). The
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and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with β � −2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.
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that we work with a linear theory and, hence, all the
modes evolve independently. We have
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where the integral over k is taken over half the Fourier
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
different inflationary backgrounds (i.e. different inflaton
potentials) lead to different ω(η,k) and, therefore, to dif-
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easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains
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which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (ϕ) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ω2(η,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.
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bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
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where �1 = 1 − H�

/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H

2(1 − �1) shows,
the condition �1 < 1 is in fact sufficient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if �1 � 1. In this case, it is easy to show that �1 �
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2)(dV/dϕ)2, i.e. �1 is in fact a measure of how
much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has �1 = (2 + β)/(1 + β) and,
of course, �1 = 0 when β = −2 (de Sitter solution). The
scale factor can also be rewritten as a(η) � �0(−η)−1−�1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with β � −2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.
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quantity v(η,x). This is of course justified by the fact
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where the integral over k is taken over half the Fourier
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This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
different inflationary backgrounds (i.e. different inflaton
potentials) lead to different ω(η,k) and, therefore, to dif-
ferent behaviors for vk(η). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v
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k + ω2 (η,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (ϕ) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ω2(η,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
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In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, Ψ [v(η,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
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scale factor can be calculated. This, in turn, allows us to
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cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
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/H2 is the first slow-roll parame-
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if �1 � 1. In this case, it is easy to show that �1 �
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2)(dV/dϕ)2, i.e. �1 is in fact a measure of how
much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has �1 = (2 + β)/(1 + β) and,
of course, �1 = 0 when β = −2 (de Sitter solution). The
scale factor can also be rewritten as a(η) � �0(−η)−1−�1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with β � −2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.
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modes evolve independently. We have
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
different inflationary backgrounds (i.e. different inflaton
potentials) lead to different ω(η,k) and, therefore, to dif-
ferent behaviors for vk(η). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains
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which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (ϕ) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ω2(η,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.
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is done in the Heisenberg picture. Here, we carry out the
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we introduce the following definitions

vk ≡
1√
2

�
v
R
k + iv

I
k

�
, pk ≡

1√
2

�
p
R
k + ip

I
k

�
. (13)

In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, Ψ [v(η,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
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tion for v(η,x). This can be done directly from the per-
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the slow-roll scenarios. Therefore, the fact that, in this
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
different inflationary backgrounds (i.e. different inflaton
potentials) lead to different ω(η,k) and, therefore, to dif-
ferent behaviors for vk(η). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains
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potential V (ϕ) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ω2(η,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
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choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
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sion deviates from a pure de Sitter solution. In the case
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
different inflationary backgrounds (i.e. different inflaton
potentials) lead to different ω(η,k) and, therefore, to dif-
ferent behaviors for vk(η). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains
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which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (ϕ) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ω2(η,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.

B. Quantization in the Schrödinger Picture

In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [15] because this
is more convenient for the problem we want to investigate
in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions
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1√
2

�
v
R
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k

�
, pk ≡
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2

�
p
R
k + ip

I
k

�
. (13)

In the Schrödinger approach, the quantum state of the
system is described by a wavefunctional, Ψ [v(η,x)].
Since we work in Fourier space (and since the theory is
still free in the sense that it does not contain terms with
power higher than two in the Lagrangian), the wavefunc-
tional can also be factorized into mode components as

Ψ [v(η,x)] =
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real and imaginary parts
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Quantization is achieved by promoting vk and pk to

quantum operators, v̂k and p̂k, and by requiring the

canonical commutation relations
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v̂
R
k , p̂

R
q

�
= iδ (k − q) ,

�
v̂
I
k, p̂

I
q

�
= iδ (k − q) . (15)

These relations admit the following representation

v̂
R,I
k Ψ = v

R,I
k Ψ , p̂

R,I
k Ψ = −i

∂Ψ
∂v

R,I
k

. (16)

The wavefunctional Ψ [v(η,x)] obeys the Schrödinger

equation which, in this context, is a functional differ-

ential equation. However, since each mode evolves in-

dependently, this functional differential equation can be

reduced to an infinite number of differential equations for

each Ψk. Concretely, we have

i
ΨR,I

k

∂η
= Ĥ

R,I
k ΨR,I

k , (17)

where the Hamiltonian densities Ĥ
R,I
k , are related to the

Hamiltonian by Ĥ =
�

d
3k
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ĤR

k + ĤI
k

�
. They can be

expressed as
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∂
�
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R,I
k

�2 +
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2
ω2

(η,k)

�
v̂
R,I
k

�2
, (18)

where we have made use of the representations (16).

We are now in a position where we can solve the

Schrödinger equation. Let us consider the following

Gaussian state

ΨR,I
k

�
η, v

R,I
k

�
= Nk(η)e

−Ωk(η)(v
R,I
k )

2

. (19)

The functions Nk(η) and Ωk(η) are time dependent and

do not carry the subscripts “R” and/or “I” because they

are the same for the wavefunctions of the real and imagi-

nary parts of the Mukhanov-Sasaki variable (see below).

Then, inserting Ψk given by Eq. (19) into the Schrödinger

equation (17) implies that Nk and Ωk obey the differen-

tial equations

i
N
�
k

Nk
= Ωk, Ω�k = −2iΩ2

k +
i

2
ω2

(η,k). (20)

The solutions can be easily found and read

|Nk| =
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2�e Ωk

π

�1/4

, Ωk = − i

2

f
�
k

fk
, (21)

where fk is a function obeying the equation f
��
k +ω2

fk =

0, that is to say exactly Eq. (12). The first equation (21)

guarantees that the wavefunction is properly normalized,

i.e.

�
ΨR,I

k ΨR,I
k

∗
dv

R,I
k = 1. (22)

Let us now discuss the initial conditions. The funda-

mental assumption of inflation is that the perturbations

are initially in their ground state. At the beginning of in-

flation, all the modes of astrophysical interest today have

a physical wavelength smaller than the Hubble radius,

i.e. k/(aH)→∞. In this regime, one has ω2
(η,k)→ k

2

and each mode now behaves as an harmonic oscillator (as

opposed to a parametric oscillator in the generic case)

with frequency ω = k. As a consequence, the differential

equation for fk(η) can easily be solved and the solution

reads fk = Ake
ikη

+ Bke
−ikη

, Ak and Bk being integra-

tion constants. Upon using the second equation (21), one

has

Ωk →
k

2

Ake
ikη −Bke

−ikη

Akeikη + Bke−ikη
. (23)

The wavefunction (19) represents the ground state wave-

function of an harmonic oscillator if Ωk = k/2. There-

fore, one must choose the initial conditions such that

Bk = 0. Moreover, it is easy to check that the Wronskian

W ≡ f
�
kf
∗
k − f

�∗
k fk is a conserved quantity, dW/dη = 0,

thanks to the equation of motion of fk. Straightforward

calculation leads to W = 2ik |Ak|
2
. In the Heisenberg

picture the canonical commutation relations require that

W = i. Even if in the Schrödinger picture presently used,

the specific value of W is irrelevant since it cancels out

on all calculable physical quantities, this value is conven-

tionally adopted, which amounts to setting Ak = 1/
√

2k.

As announced, requiring the initial state to be the ground

state has completely fixed the initial conditions. We

see that Eq. (12) (or, equivalently, the equation for fk)

should thus be solved with the boundary condition

lim
k/(aH)→+∞

fk =
1√
2k

e
ikη

. (24)

This choice of initial conditions is referred to as the

Bunch-Davies vacuum.

C. The Power Spectrum

Let us now turn to the calculation of the power spec-

trum and first introduce the two-point correlation func-

tion, defined by
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�Ĉ� ≡ �Ψ|Ĉ|Ψ�
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The next step consists in deriving an equation of mo-
tion for v(η,x). This can be done directly from the per-
turbed Einstein equations but, here, we first establish the
action for the quantity v(η,x). Expanding the action of
the system (i.e. Einstein-Hilbert action plus the action of
a scalar field) up to second order in the perturbations,
one obtains [12]

(2)δS =
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(v�)2 − δij∂iv∂jv +

�
a
√

�1
���
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√
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v
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,

(6)
where �1 = 1 − H�

/H2 is the first slow-roll parame-
ter [86, 87]. As the formula ä/a = H

2(1 − �1) shows,
the condition �1 < 1 is in fact sufficient to have infla-
tion. Moreover, we have slow-roll inflation [19, 86–89]
if �1 � 1. In this case, it is easy to show that �1 �
(M2

Pl
/2V

2)(dV/dϕ)2, i.e. �1 is in fact a measure of how
much the inflaton potential deviates from a flat potential.
Equivalently, according to the previous considerations,
this is also a measure of how much the inflationary expan-
sion deviates from a pure de Sitter solution. In the case
of power-law inflation, one has �1 = (2 + β)/(1 + β) and,
of course, �1 = 0 when β = −2 (de Sitter solution). The
scale factor can also be rewritten as a(η) � �0(−η)−1−�1

and this formula is in fact valid for any slow-roll model
of inflation, i.e. for arbitrary shaped potentials, not nec-
essarily of the exponential type. In this sense, power-law
inflation with β � −2 is a simple representative of all
the slow-roll scenarios. Therefore, the fact that, in this
paper, we focus on this particular model for technical
reasons (again, because this model allows an easy inte-
gration of the equations of motion at the background and
perturbative level) does not restrict in any way the gen-
erality of our considerations.

Our next move consists in Fourier transforming the
quantity v(η,x). This is of course justified by the fact
that we work with a linear theory and, hence, all the
modes evolve independently. We have

v (η,x) =
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(2π)3/2
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R3
d3k vk (η)eik·x

, (7)

with v−k = v
∗
k because v(η,x) is real. Then inserting

this expansion into Eq. (6), one arrives at [12]
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(8)

where the integral over k is taken over half the Fourier
space only. Next, we define pk, the variable canonically
conjugate to vk

pk =
δL

δv∗k
� = v

�
k , (9)

where L is the Lagrangian density in Fourier space that
can be derived from Eq. (8). This allows us to calculate

the Hamiltonian which reads
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This Hamiltonian represents a collection of paramet-
ric oscillators (i.e. one oscillator per mode), the time-
dependent frequency of which can be expressed as
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We see that the frequency depends on the scale factors
and its derivatives (up to the fourth). This means that
different inflationary backgrounds (i.e. different inflaton
potentials) lead to different ω(η,k) and, therefore, to dif-
ferent behaviors for vk(η). From Eq. (10) or Eq. (8), it is
easy to derive the equation of motion for the Mukhanov-
Sasaki variable. One obtains

v
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k + ω2 (η,k) vk = 0, (12)

which confirms that each mode behaves as a parametric
oscillator. Once a model of inflation has been chosen, the
potential V (ϕ) is known and, hence, the corresponding
scale factor can be calculated. This, in turn, allows us to
determine ω2(η,k) and, then, one can solve the equation
of motion (12). However, in order to find the solution for
the Fourier component of the Mukhanov-Sasaki variable,
one also needs to specify the initial conditions. Classi-
cally, there does not seem to exist a natural criterion to
choose them. However, when quantization has been per-
formed, the requirement that it be initially in the vacuum
state of the theory leads to well-defined initial conditions.
We now turn to these questions.
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In this section, we review how the cosmological pertur-
bations are quantized. Very often in the literature, this
is done in the Heisenberg picture. Here, we carry out the
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in this article. In order to quantize the system, it is also
more convenient to work with real variables. Therefore,
we introduce the following definitions

vk ≡
1√
2

�
v
R
k + iv

I
k

�
, pk ≡

1√
2

�
p
R
k + ip

I
k

�
. (13)

In the Schrödinger approach, the quantum state of the
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�Ĉ
�≡

�Ψ
|Ĉ
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Ĉ − �Ĉ�
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Ĉ − �Ĉ�
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Primordial Power Spectrum 
Standard case 

Quantization in the 
Schrödinger picture 
(functional representation) 

i
d|Ψkkk�
dη

= Ĥkkk |Ψkkk�

Ĥkkk =
p̂2kkk
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+ ω2(kkk, η)v̂2kkk

ω2(kkk, η) = k2 −
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√
�1)��

a
√
�1

= k2 − β(β + 1)

η2

p̂kkk = i
∂

∂vkkk

v̂kkk = vkkk
with 

and 

(de Sitter:                )  

β � −2

a(η) = �0(−η)1+β

β = −2

Parametric Oscillator System 
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Primordial Power Spectrum 
Standard case 

Quantization in the 
Schrödinger picture 
(functional representation) 
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Primordial Power Spectrum 
Standard case 
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Primordial Power Spectrum 
Standard case 
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5.9× 10−28 m for the Earth
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Primordial Power Spectrum 
Modified Theory 

Modified Schrödinger equation 

Extended Gaussian 
wave function 

Ψkkk (η, vkkk) =
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2�eΩkkk(η)

π

�1/4
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−�eΩkkk (η) [vkkk − v̄kkk (η)]
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2
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Modified equation of 
motion 
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kkk +
i

2
ω2(η, kkk)+γ
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d|Ψkkk� = −iĤkkk |Ψ�dη+√
γ
�
v̂kkk − �v̂kkk�

�
dWη |Ψkkk� −

γ

2

�
v̂kkk − �v̂kkk�

�2
dη |Ψkkk�



Twelfth Workshop on Non-Perturbative QCD, Paris - June 13th, 2013 40

Primordial Power Spectrum 
Modified Theory 

f ��
kkk +

�
k2 − β(β + 1)

η2
−2iγ

�
fkkk = 0

log
�
H

−1
�

inflation radiation matter 

log (λk)!" log(λγ)!"

N

ω2(η, k)

=⇒

�

�γ � 1013�
H

Q ≡ − 1

2m

∇2|Ψ|
|Ψ|

m
d2x

dt2
= −∇(V + Q)
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|Ψ(x, t)|2 = −∇S
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Modified Theory 
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Plenty of new effects awaiting to be discovered/understood...


