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1 Introduction

Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This

is closer to the real world QCD compared to those studies, and hence of some interest.

2 Quarks with Dirac mass

We begin with our naive expectations, starting with adding massive quark supermultiplets.

We generalize the setup of Ref. [2] by adding N

f

massive chiral super fields in the fundamental

of the gauge group (their fermionic parts constitute N

f

Dirac fundamental flavours).

2.1 Taming the perturbative contributions
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Thomas Schäfer Mithat

¨

Unsal

Tin Sulejmanpašić
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the general theme:

while the LHC continues looking for SUSY 
- and may or may not see evidence for it -
the development I will describe is an(other) 
example of how ideas initially studied in string 
theory and supersymmetry improve our 
understanding of non-SUSY gauge dynamics

our case: 
          it is well known that Yang-Mills theories, when “heated up” 
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undergo a confinement-deconfinement transition - from models, 
lattice data, and, more recently, heavy-ion collisions at RHIC. 

R4

R3 � S1

R3

Z(�) = tr[e��H ], � = 1/T = radius of S1

high� T low � T

The phase transition occurs at strong scale of 
gauge theory and is non-perturbative.  It is 
very hard to study by analytical methods. 
Lattice works, but it should be seen as 
numerical experiment.  

 Phases of pure Yang-Mills theory

R3 � S1

Quark-Gluon Plasma
phase (sQGP)

Hadronic (confined) phase

The problem is experimentally relevant and theoretically interesting.
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Thermal partition function is (without fermions): 

L - size of S
1
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L

the eigenvalues leads to spontaneous breaking of the Z
2

center symmetry, h1
2

tr⌦i = ±1, and
the appearance of two vacua. In the center broken phase, we expect that these two vacua are
continuously connected to the two thermal equilibrium states of pure Yang-Mills theory as
m̃ ! 1.

One crucial point here is the following. In the confined phase, the e↵ective description of
the dynamics is given in terms of the Wilson line ⌦ (the b0-field) and dual photon �. On the
other hand, � is not a well-defined notion in the “deep” deconfined phase where the SU(2)
gauge symmetry is fully restored and the abelianization of the dynamics is lost. In other
words, the combined potential (2.36) is strictly valid beyond L � Lc(m) and for a range
L . Lc(m) provided the eigenvalues are su�ciently apart. For most of the range L < Lc(m),
the potential is solely in terms of ⌦, without �.

Finally, we can try to perform a (very rough) extrapolation of our result to pure Yang-
Mills theory and obtain an estimate of the critical temperature of the deconfining phase

transition. In the semi-classical domain, from (2.39), we find Tc
⇤

= 1

Lc⇤
⇠

q
8⇤

m , which drops
with m, but for m � ⇤ the result must become independent of m. Not much is known
numerically about the decoupling scale for a Weyl fermion in the adjoint representation. In
the case of Nc = 3 QCD with three flavors of fundamental fermions it is known that relatively
large values of the fermion mass, m >⇠ 5⇤, are needed in order for the phase transition to
approach the deconfinement transition of the pure gauge theory [22]. Assuming that the
decoupling scale for an adjoint Weyl fermion is in the range mdec ⇠ (5 � 10)⇤ we expect
Tc ⇠ (0.8� 1.3)⇤, broadly consistent with lattice data.

3. Pure Yang-Mills theory

In the previous Section, we showed that for m̃ ⌧ 1 the center-symmetry restoring phase tran-
sition can be described semi-classically. In this regime the transition is driven by the com-
petition between center-stabilizing topological molecules and center-destabilizing monopole-
instantons. In this Section, we will show that the same mechanism also exists in the pure
gauge theory, even though in this case the e↵ects cannot be computed reliably. This implies
that it is plausible that the deconfinement transition in pure gauge theory is driven by the
same topological phenomena that operate in the small m̃ limit.

3.1 Non-perturbative e↵ects on the classical background

In this Section, we will consider possible non-perturbative contributions to the potential for
the Wilson line in pure Yang Mills theory. The question is whether there are terms that favor
the center-symmetric vacuum and compete with the perturbative contributions to V (⌦). We
consider a classical background field on R3 ⇥ S1:

⌦ =

✓
ei�✓/2

e�i�✓/2

◆
, (3.1)

where�✓ is the separation between the eigenvalues of Wilson line. In the classical background
(3.1), and at weak coupling, the Wilson line behaves as an adjoint Higgs field breaking the

– 14 –
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   Quark Gluon Plasma
high-T: low-T:

Hadronic Confined Phase 

Transition occurs at temperatures of order the strong scale of the 
theory. It is, thus,  hard to study by analytical means. Numerical 
experiment - lattice - works... Theoretically interesting and 
experimentally relevant problem.
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Consider (for now, pure) Yang-Mills theory on 
• ZN  center symmetry, order parameter = Wilson line $

•  L> Lc:  unbroken center symmetry
                
               
             confined phase

• L < Lc:  broken center symmetry

               
              deconfined plasma phase      

�tr �n⇥ = 0

Example 1 : Yang �Mills on R3 ⇥ S1

⇥tr �n⇤ �= 0

circumference L

g(x + L) = hg(x), hN = 1

tr�(x, x + L)� h tr�(x, x + L)

Aperiodic gauge rotations, h ∈ ZN ‘t Hooft

Order parameter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.26 0.28  0.3  0.32 0.34 0.36 0.38  0.4  0.42

b

<|P|>

<|W|>

A typical simulation result
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of a genuine (thermal) deconfinement phase transition in certain limits. This is due to the
the following decoupling argument. If the mass of the fermion is infinite, or much larger than
the strong scale of N = 1 SYM, eZ(L,m) reduces to the ordinary thermal partition function
of pure Yang-Mills theory:

eZSYM(L,m)
���
m!1

=) ZYM(�) = tr[e��H ] , � ⌘ L . (1.6)

In this limit, because the heavy fermion decouples, we may identify the circumference L with
the inverse temperature �. For a heavy fermion, the choice of the boundary condition is
immaterial.

In this work, we will show that the center-symmetry changing phase transition at small m
can be computed semi-classically. In this limit the transition takes place at small L, as shown
in Figure 1. The physics of the transition is quite interesting. It is based on the competition
between topological molecules, called “neutral bions” or “center-stabilizing bions”, and semi-
classical monopole-instanton e↵ects, as well as perturbative e↵ects. We will argue that these
e↵ects are also present at large m, in the pure gauge theory, but that in this limit the e↵ect
cannot be reliably computed using semi-classical methods.

2. Mass deformation of N = 1 super-Yang-Mills on S1 ⇥ R3

2.1 Perturbation theory

Classical vacua of the theory on R3 ⇥ S1 are labeled by the expectation value of the Wilson
line

⌦ = exp


i

Z
A

4

dx
4

�
. (2.1)

When L⇤ ⌧ 1, non-zero frequency Kaluza-Klein modes are weakly coupled and may be
integrated out perturbatively. If we consider periodic boundary conditions for both the gauge
fields and the adjoint Weyl fermions, Aµ(L) = Aµ(0) and �(L) = +�(0), the one-loop e↵ective
potential for the Wilson line is [5, 7]:

V SYM

pert. [⌦,m] =
2

⇡2L4

1X

n=1


�1 +

1

2
(nLm)2K

2

(nLm)

�
|tr⌦n|2

n4

. (2.2)

Here m is the fermion mass and K
2

(z) is the modified Bessel function of the second kind,
with asymptotic behavior

K
2

(z) =

⇢
2

z2
� 1

2

+O(z2) , z ⌧ 1 ;p
⇡
2z e�z , z � 1 .

(2.3)

As the mass m ! 1, the fermions decouple regardless of their boundary conditions, and the
e↵ective potential (2.2) reduces to the pure gauge result given in (1.3), with the identification
L = �:

V SYM

pert. [⌦,m]
��
m!1 = V YM

pert.[⌦](1 +O(e�Lm)) . (2.4)
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low T

high T

T

T>>T  behavior has been understood for 30 years 
                                                               [Gross, Pisarski, Yaffe, 1981] 
High-T perturbation theory good, gives one-loop V(pert), which favors center-
broken vacuum. 

c

L - size of S
1
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of a genuine (thermal) deconfinement phase transition in certain limits. This is due to the
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terms of functions with essential singularities as above, there is a sense in which (1.1) should
be seen as a double expansion, a perturbative expansion in g and a non-perturbative expansion
in e�1/g.

In this paper, we will use this double expansion to study the phase diagram of an asymp-
totically free gauge theory with strong coupling scale ⇤ on R3 ⇥ S1. In a theory without
fermions the compactification scale on the S1 circle can always be given a thermal inter-
pretation. At small S1, of size L ⌧ ⇤�1, it is well-known that such theories are amenable
to a perturbative treatment. A less widely appreciated fact is that, if certain conditions
are satisfied, such theories are also amenable to non-perturbative semi-classical studies. Let
⌦ = P exp

⇥
i
R
S1 A4

dx
4

⇤
denote the gauge holonomy (or Wilson line) in the compact direction,

which, classically, is a “flat direction”. We expect that quantum e↵ects will induce a potential
for the holonomy ⌦ of the form:

V (⌦) = V
pert.(⌦) + V

nonpert.(⌦) , (1.2)

where V
pert. is the contribution of the perturbative loop-expansion in g2 and V

nonpert.(⌦) is
a non-perturbative expansion, presumably containing terms of the form e�c/g2 . The pertur-
bative term V

pert. was initially computed in [1], and the calculation was extended to higher
order in [2–4]. Although the perturbative potential V

pert.(⌦) is by now part of the standard
books of thermal field theory, V

nonpert.(⌦) has not received as much attention.

The perturbative calculation of the e↵ective potential for the Wilson line in pure SU(N)
Yang-Mills theory on R3 ⇥ S1 with small L = � gives [1]:

V
pert.(⌦) = � 2

⇡2�4

1X

n=1

1

n4

|tr⌦n|2(1 +O(g2)), (1.3)

leading to the conclusion that at small � the theory is in a deconfined phase, with broken
center-symmetry h 1

N tr⌦i = 1. If one thinks in terms of eigenvalues of ⌦, the potential (1.3)
generates an attraction among the eigenvalues. In other words, the e↵ective mass-squared for
the Wilson line is negative.

Based on numerical simulations on the lattice we know that the deconfinement transition
in pure Yang-Mills theory takes place at a temperature of order ⇤: Td = a⇤ where a is a pure
number of order one. At one-loop order in perturbation theory, (1.3) shows that the center-
symmetry is broken. Higher order corrections do not alter this conclusion; there is no e↵ect at
any order in perturbation theory that competes with center symmetry breaking. Hence, the
phase transition must be induced by V

nonpert.(⌦). Disregarding such non-perturbative e↵ects,
one would conclude that one cannot explore the transition as the temperature is lowered,
from the deconfined to the confined phase, using weak coupling techniques.

In this work, we propose a strategy to analytically study the center-symmetry changing
phase transition in four dimensional gauge theories based on an observation discussed in [5].
The main idea, schematically shown in Figure 1, is as follows: It is well-known that N = 1
SYM with periodic boundary conditions for fermions does not have a phase transition as
a function of radius. In fact, for a supersymmetric gauge theory with Hamiltonian H and
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minima at T/Tc=5.5 correspond exactly to
 V_pert, coinciding eigenvalues                          
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Figure 2: The SU(2) free energy density in lattice units as a function of ⌫ for di↵erent
temperatures T .

For the calculation of F (T,X) with the direct approach based on numerically solving
the integral (16) we set � = 2.6 for the upper limit of the gauge coupling and used
27 sampling points for �

0 between 0 and 2.6 spaced by ��

0 = 0.1. In a conventional
simulation without any prescribed values of the temporal links done at � = 2.6 we
scanned the temperature T = 1/N

t

by varying N

t

between N

t

= 2 and N

t

= 20. We
evaluated the Polyakov loop susceptibility and found its maximum for N

t

= 11. Thus
for � = 2.6 the deconfinement temperature in lattice units is T

c

⇠ 1/11. This implies
that when varying N

t

between 20 and 2 we cover a range of temperatures from T/T

c

=
11/20 = 0.55 at N

t

= 20 to T/T

c

= 11/2 = 5.5 at N
t

= 2.
For the parameterization of X(⌫) = diag (e�i⇡⌫

, e

i⇡⌫) we used the values ⌫ = n/8 with
n = 0, 1, 2, 3, 4. For notational convenience, in this section we use the notation F (T, ⌫)
for the free energy density, i.e., in the general notation F (T,X) used so far we replace
the parameterized matrix X by the single parameter ⌫ that is needed for X 2 SU(2). In
the plots we show, we explore the symmetries F (T, ⌫) = F (T,�⌫) = F (T, 1� ⌫) to plot
our results in the full range of ⌫ 2 [�1, 1].

We begin the discussion of our results with Fig. 2 where we show the free energy density
F (T, ⌫) in lattice units as a function of ⌫ 2 [�1, 1] and compare di↵erent temperatures
T/T

c

below and above the deconfinement transition. For the lowest temperature T =

6
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= 1

e.g., Diakonov, Gattringer,Shadler, 1205.4768
 SU(2) 40x40x40x30 lattice calcul. of  V

 Polyakov loop unitary, 
 eigenvalues            (SU(2))
 lie on unit circle 

So, I am still puzzled by Scott’s statement that he couldn’t see symmetry
breaking in the low-T data as I have no experience with that, I would ask you
to see if you can detect that in the Ising model simulations.

Btw, see Figures 3a and 3b in the attached paper (Kosterlitz is one of the
authors, btw). They study a more complicated system where a fourth- and eight-
order symmetry breaking fields compete with each other (describing “hydrogen-
induced reconstruction of the W(100) surface”, whatever this means! - and
also shows, again, how di↵erent physical systems can be described by the same
e↵ective model). They are able to see a Z

2

symmetry breaking transition (from
a Z

4

to a Z
8

-breaking phase) in a histogram. However, note that the peaks of
the two-peak distributions in Fig. 3b are small at small volume and may require
more statistics. I wonder whether this is the problem why Scott wasn’t able to
observe this in the low-T pure Z

4

case? However, note that there are peaks on
8, 12, 16 size lattices.

In other words, I think one of the morals (not new!) is that we need to learn
how to control the error bars.

Feel free to ask questions, I will be surely online until/including Tuesday.
Sorry about getting confused about my own paper (this will probably not

be the last time).
All for now, cheers,
Erich
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L

Nonetheless, it is of interest to find examples where one could study 
deconfinement by reliable analytical techniques (“why bother?”):
 
- understanding an analytically calculable regime is always good,     
  likely to give insight into important aspects of the physics                                                                               
- pushing a calculable regime to/beyond borders of its validity can    
  be useful (and fun); resulting models can be compared, e.g. with      
  lattice - (e.g., work of Shuryak, Sulejmanpasic)

Gross, Pisarski, Yaffe, 1981:  

It is hardly surprising that we cannot explore the transition, as 
the temperature is lowered, from the unconfined to the 
confined phase using solely weak coupling techniques

“

”

T>>Tc  behavior has been understood for 30 years.
 As for lower T:
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L
Nonetheless, it is of interest to find examples where one could study 
deconfinement by reliable analytical techniques (I do not include models in my list 
below, as these are not my topic today; see e.g.: Pisarski et al./ Diakonov, Petrov/ Zhitnitnsky, 

Parnachev/ Shuryak, Sulejmanpasic-Faccioli/... FRG approach to deconf. I know nothing about!)
Several ways to do this have been found in the past 30 years: 

Gauge-gravity duality

S xS  compactifications3

pro: semiclassical string theory provides a weak-coupling
 description of strongly-coupled gauge theory

con: comes with extra baggage - non decoupling KK 
modes; no asymptotic freedom; 
useful macroscopically; microscopic connection(?)

1.

2.

[many, after Witten 1998, ...]

[Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk, 2003-5]

pro:  at small S , a weakly coupled matrix model

con: thermodynamic limit means large-N transition only
These authors rejected the possibility of finding a weak-coupling transition at infinite volume...

1

thermal
non-thermal

3
low-T:  Vandermonde repulsion of EVs
high-T: pert. attraction of Polyakov loop EVs

deconfinement=Hawking-Page
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R xS xS compactifications  2 1 1

thermal
non-thermal
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L

Nonetheless, it is of interest to find examples where one could study 
deconfinement by reliable analytical techniques...

Several ways to do this have been found in the past 30 years: 

3. [Simic, Unsal 2010         Anber, EP, Unsal 2011

abelian (de-)confinement, L< infinite - nonetheless (I think) fascinating 
systems: 2d “gases” of el. and m. charged particles, with Aharonov-Bohm 
interactions, inheriting the symmetries of their respective 4d gauge 
theories and showing a deconfinement transition [not all understood!]

pro: at small S , map 4d thermal gauge theory to a 2d spin system - “affine” 
XY spin models related to cond. mat. systems: e.g., 2d triangular lattice 
crystal melting for SU(3)(adj) (or more general new stat-mech models)

1

“deformed” pure-YM 

con:

“QCD(adj)” = YM with many 
 massless adjoint Weyl fermion

Anber, Collier, EP 2012]Unsal 2012

>>> talk by Mohamed Anber
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R xS  compactifications of super YM with small m 3 1

(non-) thermal

4. gaugino

FINALLY, THE TOPIC OF THIS TALK!

[EP, Schaefer, Unsal 1205.0290, 1212.1238]

pro:
con: DIY!
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R xS  compactifications of super YM with small m 3 1

(non-) thermal

4.

FINALLY, THE TOPIC OF THIS TALK!
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i.) No phase transition as L is varied from small to large. 

Let’s first flesh out the idea:

       SU(2) 

2

Z1

Lc

∞

Center symmetric 

∞
   

Center broken 

L

YMSYM

0

Thermal YM  

m
non−thermal SYM with mass deformation 

Z

Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects

– 3 –

  “twisted partition function”  [= Witten index]

periodic fermions

gaugino

[EP, Schaefer, Unsal 1205.0290, 1212.1238]
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L
i.) no phase transition as L is varied from small to large. 
ii.) N=1 pure SYM in this geometry was studied by

M

KK

salient points: theory dynamically Abelianizes & preserves center-symmetry,              
                     dynamics semi-classically calculable at small-L; L<<1/(strong scale)

major players: monopole-instanton (M) and twisted (KK) [Piljin Yi, Kimeyong Lee, 1997]

Late ’90’s studies relied heavily on SUSY & string. Unsal, 2007, realized that there’s a 
general mechanism at play, transcending SUSY: theories with Nf massless adjoints 
confine due to a locally-4d generalization of Polyakov’s 3d “Debye screening” 
by monopole-instantons - the “magnetic bion” mechanism.

Seiberg,Witten; 
Aharony, Hanany, Intriligator, Seiberg, Strassler ; 
Davies, Hollowood, Khoze - late 1990’s

Q_M=1
Q_T=1/2

Q_M= 1
Q_T=1/2

-
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L

M

KK

Furthermore, in softly broken N=2 SYM: “magnetic bion” confinement is 
continuously connected to 4d Seiberg-Witten confinement by monopole 
condensation - via Poisson resummation          [EP, Unsal - Paris - QCD 2011]                                                                                                                                                                                                                                                           

eL 4 
2  1/g (L)   

L

  L/g (L)   
4 
2 

KK*

Rich hierarchy of scales in the 4d QCD(adj) bion plasma at small-L ensures 
the semiclassical calculability. First theory where confinement analytically shown 
in a locally 4d, continuum, nonsupersymmetric theory.       [Unsal 2007; Unsal+one of 
Shifman, Yaffe, EP, Argyres 2008-]
4d important! - KK monopoles do not exist at zero size circle & theory does not confine at zero L

4d QCD(adj)
vacuum at small L

(N  =1 case, i.e. SUSY,          
 brings in more fun          
 objects! - to come)

f
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i.) no phase transition as L is varied from small to large. 

ii.) at small L, supersymmetric theory confines due to a locally-4d                 
    generalization of Polyakov’s 3d “Debye screening” due to monopole-         
    instantons - the “magnetic bion” mechanism [Unsal, 2007]. 
     Due to i.), this smoothly connects to 4d limit.

iii.) add gaugino mass “m” 
     
“twisted”-Z still defined     but not an index 
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Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.
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eZSYM(L) = tr
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e�LH(�1)F
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(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z
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= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB
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n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects
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Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.
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⌦ = exp


i

Z
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dx
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�
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When L⇤ ⌧ 1, non-zero frequency Kaluza-Klein modes are weakly coupled and may be
integrated out perturbatively. If we consider periodic boundary conditions for both the gauge
fields and the adjoint Weyl fermions, Aµ(L) = Aµ(0) and �(L) = +�(0), the one-loop e↵ective
potential for the Wilson line is [5, 7]:
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
�1 +

1

2
(nLm)2K

2

(nLm)

�
|tr⌦n|2

n4
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Here m is the fermion mass and K
2

(z) is the modified Bessel function of the second kind,
with asymptotic behavior

K
2

(z) =

⇢
2

z2
� 1

2

+O(z2) , z ⌧ 1 ;p
⇡
2z e�z , z � 1 .

(2.3)

As the mass m ! 1, the fermions decouple regardless of their boundary conditions, and the
e↵ective potential (2.2) reduces to the pure gauge result given in (1.3), with the identification
L = �:

V SYM

pert. [⌦,m]
��
m!1 = V YM

pert.[⌦](1 +O(e�Lm)) . (2.4)
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as “m” becomes large, fermions decouple and twisted-Z 
approaches the pure-YM thermal-Z:

Friday, 7 June, 13



       SU(2) 

2

Z1

Lc

∞

Center symmetric 

∞
   

Center broken 

L

YMSYM

0

Thermal YM  

m
non−thermal SYM with mass deformation 

Z

Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects

– 3 –

       SU(2) 

2

Z1

Lc

∞

Center symmetric 

∞
   

Center broken 

L

YMSYM

0

Thermal YM  

m
non−thermal SYM with mass deformation 

Z

Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects

– 3 –

       SU(2) 

2

Z1

Lc

∞

Center symmetric 

∞
   

Center broken 

L

YMSYM

0

Thermal YM  

m
non−thermal SYM with mass deformation 

Z

Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects

– 3 –

       SU(2) 

2

Z1

Lc

∞

Center symmetric 

∞
   

Center broken 

L

YMSYM

0

Thermal YM  

m
non−thermal SYM with mass deformation 

Z

Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects

– 3 –

       SU(2) 

2

Z1

Lc

∞

Center symmetric 

∞
   

Center broken 

L

YMSYM

0

Thermal YM  

m
non−thermal SYM with mass deformation 

Z

Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects

– 3 –

 >
iv.) at small L, the mass-deformed SYM theory has an interesting phase          
     structure - depending on the order of limits as m, L --  0, there is a 
     center-symmetry breaking phase transition 

L

m (dashed line is an artifact of plot)

Pure SYM on with periodic (supersymmetric) b.c. for gaugino. 

• ZN  center symmetry, order parameter = Wilson line $

•  L> Lc:  unbroken center symmetry
                
               
             confined phase

• L < Lc:  broken center symmetry

               
              deconfined plasma phase      

�tr �n⇥ = 0

Example 1 : Yang �Mills on R3 ⇥ S1

⇥tr �n⇤ �= 0

circumference L

g(x + L) = hg(x), hN = 1

tr�(x, x + L)� h tr�(x, x + L)

Aperiodic gauge rotations, h ∈ ZN ‘t Hooft

Order parameter

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.26 0.28  0.3  0.32 0.34 0.36 0.38  0.4  0.42

b

<|P|>

<|W|>

A typical simulation result

3Wednesday, May 18, 2011

L

[already noted in Unsal, Yaffe 2010]

In the small-(m,L) corner, transition is semiclassically 
calculable with rather rich physics...                                                                               
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In the semiclassical regime, center-
symmetry breaking occurs due to 
competition between contributions 
to the potential for Polyakov loop
due to various topological objects 
and the perturbative V(eff):
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1 Introduction

Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This

is closer to the real world QCD compared to those studies, and hence of some interest.

2 Quarks with Dirac mass

We begin with our naive expectations, starting with adding massive quark supermultiplets.

We generalize the setup of Ref. [2] by adding N

f

massive chiral super fields in the fundamental

of the gauge group (their fermionic parts constitute N

f

Dirac fundamental flavours).

2.1 Taming the perturbative contributions
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relevant bosonic fields: A  (gauge field in compact direction)
 and A  (3d gauge field) in the unbroken U(1) of SU(2), equivalent to:

- 3d dual to A  = “dual photon” (potential for magnetic charge)

- deviation of A   from center symmetric value

4 
i

i

4
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monopole-instantons - M,M*,KK,KK*
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center-stabilizing
“bions” - II and I
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at small-L the SYM vacuum is Z_Nc symmetric
Nc monopole-instanton amplitudes are same, respect Z_Nc

The neutral “center-stabilizing bion” molecules’ contribution can 
be computed using supersymmetry,  V = |W’| , with W from monopole-instantons,
or via the Bogomolnyi-Zinn-Justin (BZJ) prescription [late 1970s, also Balitsky, Yung 

mid-1980s; Yung ~1990].  BZJ allows one to identify molecules also in non-SUSY Yang-
Mills theory... check: minus sign via BZJ = SUSY

2
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1 Introduction

Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This

is closer to the real world QCD compared to those studies, and hence of some interest.

2 Quarks with Dirac mass

We begin with our naive expectations, starting with adding massive quark supermultiplets.

We generalize the setup of Ref. [2] by adding N

f

massive chiral super fields in the fundamental

of the gauge group (their fermionic parts constitute N

f

Dirac fundamental flavours).

2.1 Taming the perturbative contributions

1

L

3
e

� 8⇡2

g2(L) (cosh 2�� cos 2�) +
m

L

2
e

� 4⇡2

g2(L) (cosh� cos�)� m

2

L

�

2

e

�2S0
e

�i2�

e

�2S0
e

�2�

e

�2S0
e

+2�

– 1 –

now turn on small gaugino mass “m”:

parameter m

soft

Le

S0 is varied (by writing the potential in (3.8) in dimensionless terms, it

is clear that m

soft

Le

S0 controls the relative strength of the supersymmetry-breaking terms

in the potential). Notice that m

soft

Le

S0 can equivalently be written as
m

soft

L

2
⇤

3 and that we

keep the strong coupling scale ⇤ fixed (as (⇤L)3 = e

�S0). Thus, temporarily setting ⇤ = 1,

at small values of
m

soft

L

2 , the center-stabilizing neutral bions dominate and the ground state

is center symmetric. At
m

soft

L

2 larger than some critical value, the �-term in (3.8), due to

monopole-instantons, destabilizes the center-symmetric vacuum and leads to a second-order

(for N

c

= 2) center-symmetry breaking transition. This is also the known order of the decon-

finement transition in nonsupersymmetric thermal SU(2) YM theory.

Further evidence for the continuous connection of the small-m
soft

, small-L center-breaking

transition to the thermal deconfinement transition in YM theory was given in [7]. For N

c

> 2

a first-order transition was found, as seen on the lattice in thermal pure YM theory, see the

recent review [18]. The phase transition temperature also acquires topological ✓-angle de-

pendence due to the “topological interference” discussed in [19]; see also [20, 21] for earlier

related discussions of ✓-dependence. The ✓-dependence of the critical L

c

was studied in [7, 22]

and is in qualitative agreement with recent lattice studies in thermal pure YM theory, see

[23] and references therein. We also note that a model of the deconfinement transition in

pure YM, incorporating the center-stabilizing neutral-bions in an instanton-monopole liquid,

along with a comparison with lattice data, was recently proposed in [24].

Finally, we mention the case most closely related to the present paper. This is the

study [7] of a theory without center symmetry: pure SYM with gauge group G

2

and soft-

breaking on R3 ⇥ S1. This theory is similar to real QCD in that fundamental quarks can

be screened (in G

2

, by three gluons). Proceeding along the lines described above for SU(2),

one finds a discontinuous transition of the Polyakov loop from almost center-symmetric to

center-breaking upon increasing 1

L

, as seen on the lattice for thermal G

2

YM theory [25, 26].

4 Towards QCD: adding fundamental flavors

We now generalize the setup of Ref. [6] by adding N

f

massive chiral superfields in the funda-

mental of the gauge group (their fermionic parts constitute N

f

Dirac fundamental flavors).

This introduces N

f

fundamental quark flavors and 2N

f

complex scalars (thus, each quark

flavor comes with two complex fundamental scalars, in the fundamental and antifundamental

representation, respectively), with the action:

S

fund

=

Z

R3⇥S1

✓

 ̄(i /

D � iM) +
1

2
|D

µ

�|2 +
1

2
�

2

M

2

◆

+ . . . (4.1)

where /

D = �

µ

D

µ

, µ = 0, 1, 2, 3, and �µ are four dimensional gamma matrices, where we have

momentarily departed from the notation of [17] (the dots denote additional interaction terms

in the SQCD action, the superpartners of the interaction with the gauge boson, showing which

is not relevant for our study). We assume that each quark flavor multiplet has an arbitrary
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Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects
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In the semiclassical regime, center-
symmetry breaking occurs due to 
competition, as L (1/T) is varied,  
between contributions to the 
potential for Polyakov loop
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and the perturbative V(eff):
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1 Introduction

Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This

is closer to the real world QCD compared to those studies, and hence of some interest.

2 Quarks with Dirac mass

We begin with our naive expectations, starting with adding massive quark supermultiplets.

We generalize the setup of Ref. [2] by adding N

f

massive chiral super fields in the fundamental

of the gauge group (their fermionic parts constitute N

f

Dirac fundamental flavours).

2.1 Taming the perturbative contributions
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now turn on small gaugino mass “m”:

center-stabilizing
“bions” - II and I

center-breaking (sigma=Pi is min)
“monopole-instantons”

center-breaking
GPY potential shown before,
expanded for small phi

parameter m

soft

Le

S0 is varied (by writing the potential in (3.8) in dimensionless terms, it

is clear that m

soft

Le

S0 controls the relative strength of the supersymmetry-breaking terms

in the potential). Notice that m

soft

Le

S0 can equivalently be written as
m

soft

L

2
⇤

3 and that we

keep the strong coupling scale ⇤ fixed (as (⇤L)3 = e

�S0). Thus, temporarily setting ⇤ = 1,

at small values of
m

soft

L

2 , the center-stabilizing neutral bions dominate and the ground state

is center symmetric. At
m

soft

L

2 larger than some critical value, the �-term in (3.8), due to

monopole-instantons, destabilizes the center-symmetric vacuum and leads to a second-order

(for N

c

= 2) center-symmetry breaking transition. This is also the known order of the decon-

finement transition in nonsupersymmetric thermal SU(2) YM theory.

Further evidence for the continuous connection of the small-m
soft

, small-L center-breaking

transition to the thermal deconfinement transition in YM theory was given in [7]. For N

c

> 2

a first-order transition was found, as seen on the lattice in thermal pure YM theory, see the

recent review [18]. The phase transition temperature also acquires topological ✓-angle de-

pendence due to the “topological interference” discussed in [19]; see also [20, 21] for earlier

related discussions of ✓-dependence. The ✓-dependence of the critical L

c

was studied in [7, 22]

and is in qualitative agreement with recent lattice studies in thermal pure YM theory, see

[23] and references therein. We also note that a model of the deconfinement transition in

pure YM, incorporating the center-stabilizing neutral-bions in an instanton-monopole liquid,

along with a comparison with lattice data, was recently proposed in [24].

Finally, we mention the case most closely related to the present paper. This is the

study [7] of a theory without center symmetry: pure SYM with gauge group G

2

and soft-

breaking on R3 ⇥ S1. This theory is similar to real QCD in that fundamental quarks can

be screened (in G

2

, by three gluons). Proceeding along the lines described above for SU(2),

one finds a discontinuous transition of the Polyakov loop from almost center-symmetric to

center-breaking upon increasing 1

L

, as seen on the lattice for thermal G

2

YM theory [25, 26].

4 Towards QCD: adding fundamental flavors

We now generalize the setup of Ref. [6] by adding N

f

massive chiral superfields in the funda-

mental of the gauge group (their fermionic parts constitute N

f

Dirac fundamental flavors).

This introduces N

f

fundamental quark flavors and 2N

f

complex scalars (thus, each quark

flavor comes with two complex fundamental scalars, in the fundamental and antifundamental

representation, respectively), with the action:

S

fund

=

Z

R3⇥S1
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where /

D = �

µ

D

µ

, µ = 0, 1, 2, 3, and �µ are four dimensional gamma matrices, where we have

momentarily departed from the notation of [17] (the dots denote additional interaction terms

in the SQCD action, the superpartners of the interaction with the gauge boson, showing which

is not relevant for our study). We assume that each quark flavor multiplet has an arbitrary
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Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects
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1 Introduction

Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This

is closer to the real world QCD compared to those studies, and hence of some interest.

2 Quarks with Dirac mass

We begin with our naive expectations, starting with adding massive quark supermultiplets.

We generalize the setup of Ref. [2] by adding N

f

massive chiral super fields in the fundamental

of the gauge group (their fermionic parts constitute N

f

Dirac fundamental flavours).

2.1 Taming the perturbative contributions
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L
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Our main result:

Center-breaking quantum phase 
transition, second order for SU(2), 
with causes that are well understood 
and under theoretical control - “fight” 
between topological molecules and 
perturbative contribution to 
holonomy potential - appears 
continuously connected to thermal 
deconfinement transition.

same topological excitations can be used to model pure 
YM deconfinement: Shuryak, Sulejmanpasic 1305.0796

parameter m

soft

Le

S0 is varied (by writing the potential in (3.8) in dimensionless terms, it

is clear that m

soft

Le

S0 controls the relative strength of the supersymmetry-breaking terms

in the potential). Notice that m

soft

Le

S0 can equivalently be written as
m

soft

L

2
⇤

3 and that we

keep the strong coupling scale ⇤ fixed (as (⇤L)3 = e

�S0). Thus, temporarily setting ⇤ = 1,

at small values of
m

soft

L

2 , the center-stabilizing neutral bions dominate and the ground state

is center symmetric. At
m

soft

L

2 larger than some critical value, the �-term in (3.8), due to

monopole-instantons, destabilizes the center-symmetric vacuum and leads to a second-order

(for N

c

= 2) center-symmetry breaking transition. This is also the known order of the decon-

finement transition in nonsupersymmetric thermal SU(2) YM theory.

Further evidence for the continuous connection of the small-m
soft

, small-L center-breaking

transition to the thermal deconfinement transition in YM theory was given in [7]. For N

c

> 2

a first-order transition was found, as seen on the lattice in thermal pure YM theory, see the

recent review [18]. The phase transition temperature also acquires topological ✓-angle de-

pendence due to the “topological interference” discussed in [19]; see also [20, 21] for earlier

related discussions of ✓-dependence. The ✓-dependence of the critical L

c

was studied in [7, 22]

and is in qualitative agreement with recent lattice studies in thermal pure YM theory, see

[23] and references therein. We also note that a model of the deconfinement transition in

pure YM, incorporating the center-stabilizing neutral-bions in an instanton-monopole liquid,

along with a comparison with lattice data, was recently proposed in [24].

Finally, we mention the case most closely related to the present paper. This is the

study [7] of a theory without center symmetry: pure SYM with gauge group G

2

and soft-

breaking on R3 ⇥ S1. This theory is similar to real QCD in that fundamental quarks can

be screened (in G

2

, by three gluons). Proceeding along the lines described above for SU(2),

one finds a discontinuous transition of the Polyakov loop from almost center-symmetric to

center-breaking upon increasing 1

L

, as seen on the lattice for thermal G

2

YM theory [25, 26].

4 Towards QCD: adding fundamental flavors

We now generalize the setup of Ref. [6] by adding N

f

massive chiral superfields in the funda-

mental of the gauge group (their fermionic parts constitute N

f

Dirac fundamental flavors).

This introduces N

f

fundamental quark flavors and 2N

f

complex scalars (thus, each quark

flavor comes with two complex fundamental scalars, in the fundamental and antifundamental

representation, respectively), with the action:

S

fund

=

Z

R3⇥S1

✓
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D � iM) +
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2
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µ
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+ . . . (4.1)

where /

D = �

µ

D

µ

, µ = 0, 1, 2, 3, and �µ are four dimensional gamma matrices, where we have

momentarily departed from the notation of [17] (the dots denote additional interaction terms

in the SQCD action, the superpartners of the interaction with the gauge boson, showing which

is not relevant for our study). We assume that each quark flavor multiplet has an arbitrary
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Apart from correct order of deconfinement transition, the theta-angle 
dependence of T , recently studied on the lattice [D’Elia, Negro 1205.0538]

is also correct.  Theta dependence of T  occurs because monopole-instantons 
carry topological charge, physics: “topological interference”... T (theta) first seen by 
Unsal in `deformed’ QCD (2012) 

(for theta-dependence at T>0 above and below T , see Zhitnitsky(w/ Parnachev/Thomas 2000/9)

c
c

c

c

[EP, Schaefer, Unsal, 1212.1238] 

[theta-dependence for SU(N ): Mohamed Anber 1302.2641]c

Similar story holds for other gauge groups. 
For SU(N >2), 1st order, as known from the lattice; e.g.:c

Friday, 7 June, 13



just below transition just above transition

0 2 4 6 8 10 12 14 16 18
x 104

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 3: Monte Carlo history of the Polyakov loop from a numerical simulation on
a 203 × 6 lattice at 7/g2 = 9.765.

very close to zero, i.e. the free energy of a static quark is very large (although not
infinite). As one approaches the phase transition, a second peak emerges. This
peak corresponds to the high-temperature phase and has a much larger value of
the Polyakov loop, i.e. a static quark now has a much smaller free energy. As we
further increase the temperature (by increasing 7/g2) the peak corresponding to the
low-temperature phase disappears and we are left with the deconfined peak only.
We have varied Nt to check that the critical bare coupling 7/g2

c varies accordingly,
but we have not attempted to extract the value of the critical temperature in the
continuum limit.
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Figure 4: Polyakov loop probability distributions in the region of the deconfinement
phase transition in (3+1)-d G(2) Yang-Mills theory. The temperature increases from
left to right. The simulations have been performed on a 203 × 6 lattice at the three
gauge couplings 7/g2 = 9.75, 9.765, and 9.775 (left to right).

In the high-temperature phase we have observed tunneling events between differ-
ent minima of the effective potential for the Polyakov loop. In SU(3) gauge theory
these would simply represent the three different ZZ(3) copies of the deconfined phase.

11

[Pepe, Wiese 2006; Cossu et al. 2007] 

value (4.3):

cm < ccrm : htr⌦i = �0.15
g2

4⇡
,

cm = ccr+

m : htr⌦i = 3.21
g2

4⇡
. (4.7)

To obtain the second number above, we substituted the expectation value of h~�i, Eq. (4.2)
with the vevs of ~b0 as given in the previous paragraph, into Eq. (4.1). It is interesting to
compare Eq. (4.7) to the results obtained in the lattice simulations of pure Yang Mills G

2

theory [32, 34]. Fig. 4 of Pepe et al. [32] shows histograms of htr⌦i in the low and high
temperature phase. The results show that htr⌦i changes from slightly negative values below
Tc to large positive values above Tc, in agreement with Eq. (4.7).

5. Weak vs. strong coupling non-trivial Wilson line holonomy

We would like to conclude with a general discussion of the relation between semi-classical
theories of confinement, discussed in this work, and strong coupling confinement, studied on
the lattice. For simplicity we consider SU(Nc) gauge theory. A question that is not well
understood is whether the expectation value of the trace of the Wilson line vanishes in the
confined phase because

a) the Wilson line is dominated by gauge configurations in which its eigenvalues are located
at the Nc roots of unity with small fluctuations around them. This is the adjoint Higgs
regime, see Fig. 3b.

b) fluctuations randomize the eigenvalues over the unit circle, and there is no preferred
background, as in Fig. 3c.

This question is a source of confusion especially when one considers the phase transition
in pure YM theory. There, the transition occurs at the strong scale, hence there is no
parametric separation of scales to justify an e↵ective field theory in the transition regime.9

This regime is often modelled by a potential which breaks the center symmetry in the high
temperature deconfined phase and restores it in the low temperature confined phase. In the
limit of asymptotically high T the potential can be justified via a perturbative calculation [3],
but at low T the coupling is strong and one cannot systematically derive a potential. Ref. [37]
discusses this issue and proposes that option a) is operative in the low T confined regime of
Yang-Mills theory.

First, we emphasize that both a) and b) take place in the confined phase of a large class
of gauge theories on R3 ⇥ S1

L, where S1

L is a spatial circle. Examples include N = 1 SYM and

9An exception is the second order transition of pure SU(2) gauge theory. In this case universality arguments

imply the existence of a 3d e↵ective theory for the Wilson line [38]. We also note that one can always define

an e↵ective potential for the Wilson line. This potential simply determines the free energy as a function of the

average Wilson line — it is not the potential in a local e↵ective field theory.
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To obtain the second number above, we substituted the expectation value of h~�i, Eq. (4.2)
with the vevs of ~b0 as given in the previous paragraph, into Eq. (4.1). It is interesting to
compare Eq. (4.7) to the results obtained in the lattice simulations of pure Yang Mills G
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theory [32, 34]. Fig. 4 of Pepe et al. [32] shows histograms of htr⌦i in the low and high
temperature phase. The results show that htr⌦i changes from slightly negative values below
Tc to large positive values above Tc, in agreement with Eq. (4.7).

5. Weak vs. strong coupling non-trivial Wilson line holonomy

We would like to conclude with a general discussion of the relation between semi-classical
theories of confinement, discussed in this work, and strong coupling confinement, studied on
the lattice. For simplicity we consider SU(Nc) gauge theory. A question that is not well
understood is whether the expectation value of the trace of the Wilson line vanishes in the
confined phase because

a) the Wilson line is dominated by gauge configurations in which its eigenvalues are located
at the Nc roots of unity with small fluctuations around them. This is the adjoint Higgs
regime, see Fig. 3b.

b) fluctuations randomize the eigenvalues over the unit circle, and there is no preferred
background, as in Fig. 3c.

This question is a source of confusion especially when one considers the phase transition
in pure YM theory. There, the transition occurs at the strong scale, hence there is no
parametric separation of scales to justify an e↵ective field theory in the transition regime.9

This regime is often modelled by a potential which breaks the center symmetry in the high
temperature deconfined phase and restores it in the low temperature confined phase. In the
limit of asymptotically high T the potential can be justified via a perturbative calculation [3],
but at low T the coupling is strong and one cannot systematically derive a potential. Ref. [37]
discusses this issue and proposes that option a) is operative in the low T confined regime of
Yang-Mills theory.

First, we emphasize that both a) and b) take place in the confined phase of a large class
of gauge theories on R3 ⇥ S1

L, where S1

L is a spatial circle. Examples include N = 1 SYM and

9An exception is the second order transition of pure SU(2) gauge theory. In this case universality arguments

imply the existence of a 3d e↵ective theory for the Wilson line [38]. We also note that one can always define

an e↵ective potential for the Wilson line. This potential simply determines the free energy as a function of the

average Wilson line — it is not the potential in a local e↵ective field theory.
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[EP, Schaefer, Unsal 1212.1238]

both show discontinuous change of Polyakov loop, without symmetry breaking

Extensions... 
Theories without center symmetry: pure G   YM ... or QCD?2

I. pure G  (s)YM small-L: semiclassical result vs. lattice2

lattice study of G2
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Extensions... 
Theories without center symmetry: pure G   YM ... or QCD?2

[EP, Sulejmanpasic...in progress]II. towards QCD?

- take SU(N ) SQCD with N  fundamental flavors on R x S  of size L
- take vector supermultiplet periodic and N   flavors antiperiodic (w/“real masses”)

- turn on gaugino mass, scalar mass induced by “gaugino mediation”
- limit of infinite gaugino mass 
               = thermal T=1/L  QCD with N  flavors of fundamental fermions 

what does this theory “do”? is it calculable at small L? is it center symmetric?

c
3 1 

f
f

f

- quarks do not respect center - on R  x S  seen by the fact that 
 different monopoles-instantons have different fundamental zero modes   
   [Nye-Singer index (2000), Unsal, EP (2008)]

- zero quark mass SQCD on R xS  not calculable at N >0... 
  ... various - often strongly coupled - dual descriptions (incl. “Aharony dualities”, etc...)

- but finite-M calculable:

3 1

3 1
f
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B appearing in (3.24) is expressed through the holonomy b

0 (recall the redefinition (3.22)) as

follows:

ReB| = �b

0
✓

1 +
g

2

N

f

8⇡2

log
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◆
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2
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�(1
2

+ g
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2 b
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+N

f

X(⇡ +
g

2

4⇡
b

0
,ML) . (3.25)

We also recall that the fermion component of the chiral superfield B is proportional to �̄, where

� is the 4d gaugino field. Equation (3.25) is the scalar superpartner of the usual photon-dual

photon duality. It takes into account the one-loop modification of the moduli space metric

(i.e., the kinetic term of v, or of b0). By supersymmetry, the one-loop modification of the

moduli space metric is related to the one-loop determinants around monopole-instantons; see

[1] for details.

Since the two terms in (3.21)—and hence the superpotential (3.24)—have identical co-

e�cients, the supersymmetric minimum, determined by the extremum of the superpotential,

dW/dB = 0, occurs at hBi = 0. It is clear from (3.25) that hB|i = 0 does not imply hb0i = 0

contrary to what happens in the pure-SYM case. In general, with fundamental multiplets

present, the relation (3.25) is complicated, but in the limit where the deviation from center

symmetry is small, it is clear that hB|i = 0 corresponds to, up to corrections suppressed by

g

2:

hb0i ' N

f

X(⇡,ML) = �N

f

2

⇡

1
X

n=1

1

n

sin
⇣

n⇡

2

⌘

K

0

(LMn) . (3.26)

Thus, for LM ' 1 and larger, we can estimate the deviation from center-symmetry by keeping

the first term in the sum:

hb0i ' �N

f

r

2

⇡

e

�ML

p
ML

. (3.27)

This corresponds to an expectation value of the Polyakov loop:

htr⌦i = g

2

4⇡
hb0i ' �N

f

g

2

(2⇡)3/2
e

�ML

p
ML

. (3.28)

Naively, assuming (3.28) holds at ML ⌧ 1, we can infer that the semiclassical approximation

breaks down when tr⌦ becomes close to unity, i.e. M  g

4
N

2
f

64⇡

4
L

, an estimate that needs to

be refined...!

Consider now the scalar potential following from (3.24). In our convention of (3.24,

3.23), the first term in W is due to BPS monopoles and the second—due to KK monopoles.

Recall that the fundamental zero modes (for zero M) for periodic quark superfields are lo-

calized on the BPS monopoles. The scalar potential that follows from W is, omitting once

more the overall constant, V ⇠ e

2ReB| + e

�2ReB| � cos(2ImB|). The first term is due to

BPS-anti-BPS “center stabilizing” neutral bions, the second—due to KK-anti-KK neutral

bions, and the third—due to magnetic bions. Written in terms of the deviation from center

symmetric holonomy, b0, and the dual photon (ImB = �) instead, the potential looks like:

V ⇠ e

�2b

0
+2NfX(⇡,ML)+ e

2b

0�2NfX(⇡,ML)+cos 2�, where we assumed that the deviation from
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~
- leading term at large M;
  SUSY limit, at small L - cf. exp(-M/T)
[correlator - string breaking behavior]

- finite quark mass calculable: M and KK contribute to superpotential

- one-loop fermionic and bosonic nonzero-mode determinants around monopole-    
  instantons do not cancel, but instead related to “index function” (see Unsal, EP ’08) 
              - fermion-boson density of continuum states do not match (e.g., Kaul/E.Weinberg 1970s) - 

   the ratio of one-loop dets is thus exactly calculable in M and KK backgrounds

- thus, the relation between monopole superfield  Y (W= Y + 1/Y) and holonomy    
  “deformed” by quarks; holonomy vev shifted away from center symmetry:

[EP, Sulejmanpasic...in progress]II. towards QCD?

Extensions... 
Theories without center symmetry: pure G   YM ... or QCD?2

- at least up to quark masses > dual photon mass topological excitations same, but     
   “deformed” - precise range & details of “deformation” can be found numerically

1307.xxxx
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- with nonzero small SUSY breaking, there is a calculable transition from the small  
  Polyakov loop regime to one where it is O(1), similar to G  - 
  but smooth, for SU(2) at least - as seen on lattice, always done with finite quark mass.

2

[EP, Sulejmanpasic...in progress]II. towards QCD?

Extensions... 
Theories without center symmetry: pure G   YM ... or QCD?2

b

0 � �

2

, we find the potential (4.8):

V (b0
, � = ⇡) ⇡

✓
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)4 +

✓

4 � c

2

◆

(b0 � �

2

)2 � c

2

c

0
5

b

02
. (4.10)

It is easy to see that taking into account the perturbative potential, the behavior of the

minimum value b

0
min

(c) smooths out and the transition becomes a crossover, as illustrated in

Fig. 1. Note that since there is a lack of center symmetry (or variation thereof), the Polyakov

loop is no longer an order parameter. Nevertheless it is still connected to the energy of an

infinitely massive quark, and it shows rapid variation as a function of temperature in lattice

QCD simulations.8

3.8 3.9 4.0 4.1 4.2
c

d

b'min

Figure 1. The minimum of b

0, proportional to the Polyakov loop trace, tr ⌦ ⇡ g2

4⇡ b

0, as a function of the

parameter c = c

0
3

m
soft

L2 ⇤�3+
N

f

2
M

�
N

f

2 . The value b

0 = � corresponds to an almost center-symmetric
Polyakov loop and the behavior at c > 4 indicates a transition towards collapsing eigenvalues of
the Polyakov loop. The solid-blue, dashed-purple and dotted-yellow curves are for three values of
parameter c

0
5 = 0, 0.0001, 0.0005 respectively. Recall that the c

0
5 = 0 case corresponds to neglecting

the (suppressed by powers of g

2) perturbative holonomy potential, leading to a second order transition,
which turns into a crossover once c

0
5 6= 0. This is the behavior seen on the lattice, see Ref. [13] for an

early study of SU(2) theory with dynamical massive quarks.

Finally, recall that the vanishing soft mass limit, m

soft

= 0, is supersymmetric SQCD

with Dirac mass M on R3 ⇥ S1. The dynamics of this theory is not always under analytical

does not change the qualitative picture we outline here. We note in passing that we could tune the squark

mass to be such that the perturbative potential of the vector multiplet and the matter multiplet combine into

the same form as the instanton-monopole terms (b0 � �2)
2, which would restore the b

0 ! �b

0 + 2�2 symmetry

and again induce a second order phase transition. Although this transition seems of limited interest, it could

be relevant for the exploration of the imaginary chemical potential of the phase diagram and its connection to

the real chemical potential.
8It is clear from (4.9) that the fixed-m

soft

transition from the almost center-symmetric to center-broken

phase occurs as 1
L

is decreased.
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- for small physical quark mass, however, calculable semiclassical picture breaks 
down - always before quarks are to contribute to the long-range instanton-
monopole binding into bions

Polyakov loop 
trace

1/L

1307.xxxx

small

large

[in correlator, see 
string breaking behavior]

Friday, 7 June, 13



Main message:

It appears, from the examples we studied, that, quite generally, 
deconfinement occurs due to a competition between center-stabilizing 
topological molecules (“neutral bions”) and center-breaking 
monopole-instanton and perturbative contributions. 

The various topological objects’ contributions can be computed using 
SUSY, or via the BZJ prescription.  The latter helps identify them in non-
SUSY theories - but no semiclassical limit where they dominate exists 
there . However, monopole-instanton-liquidmodels of deconfinement can 
be constructed, studied, and compared with lattice data...
                                           Shuryak, Sulejmanpasic - “excluded volume”, instead of BZJ...

In particular:

SYM with soft masses on a (non-)thermal S  provides a theory laboratory
allowing study of deconfinement transition, at infinite V, 
in a controlled setting: a quantum phase transition appears continuously 
related to the thermal deconfinement one.

1

SUMMARY
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Our results lead to/support the conjectured phase diagram.  The entire m-L 
plane in pure SYM can be studied on the lattice with current technology and 
future effort.

In particular, “topological” (with Qtop=0) “molecules” in pure YM - via defect 
localization of probe Dirac eigenmodes on the lattice - not a dilute gas, likely

Ways to go? - some concrete things and some throwaway questions...

[e.g., Bruckmann, Kovacs, Schierenberg 2011]

As in Seiberg-Witten? [EP, Unsal 2011]
Can one make precise?

Short(ish) term: 
To understand other calculable cases with “quarks”, e.g. with “baryon chemical 
potential” (= imaginary Wilson line for U(1)_Baryon)...

Relation to various bions to R  center vortices/monopoles 
 - Abelian projection vs. Poisson duality? 

4

Is there a relation (precisely what?) between the streamline and BZJ prescription 
in SYM/SQCD?  
- Yung’s 1990 (heroic, in my view) calculation in R  SQCD, now for M-M*, KK-KK*, etc.? 4

Do the Seiberg/Aharony type dualities shed any light on deconfinement? 
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