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Abstract

People are capable of learning diverse functional relationships
from data; nevertheless, they are most accurate when learn-
ing linear relationships, and deviate further from estimating
the true relationship when presented with non-linear functions.
We investigate whether, when given the opportunity to learn
actively, people choose samples in an efficient fashion, and
whether better sampling policies improve their ability to learn
linear and non-linear functions. We find that, across multiple
different function families, people make informative sampling
choices consistent with a simple, low-effort policy that min-
imizes uncertainty at extreme values without requiring adap-
tation to evidence. While participants were most accurate
at learning linear functions, those who more closely adhered
to the simple sampling strategy also made better predictions
across all non-linear functions. We discuss how the use of this
heuristic might reflect rational allocation of limited cognitive
resources.
Keywords: Function learning; active learning; sampling

Introduction
People must often learn and generalize from relationships be-
tween continuous quantities, where these relationships can
take diverse forms. Temperatures rise and fall with the chang-
ing of seasons, trees grow steadily from saplings until they are
fully mature, crops have a “sweet spot” of climatic constraints
such as humidity and cold, foraging for food rests on con-
textual variables such as animal populations and water sup-
ply, and diseases can exponentially increase in the absence of
constraints. In order to represent these relationships and use
them to make accurate predictions, we must learn the under-
lying function from sparse observations to be able to predict
unseen outcomes in a variety of new scenarios.

In addition to the general challenge of learning a func-
tion faithfully, most investigations of explicit function learn-
ing have focused on the human ability to use observed data
to interpolate between previously observed points and to ex-
trapolate beyond the limits of their experience. Given suf-
ficient evidence, people can learn a wide variety of func-
tional relationships (Bott & Heit, 2004; Lucas, Sterling, &
Kemp, 2012; Wilson, Dann, Lucas, & Xing, 2015), but their
inductive biases strongly favor linear relationships: people
tend to learn linear relationships better than non-linear ones
(Brehmer, 1974) and often extrapolate linearly even having
learned that a relationship is non-linear in the data they have
observed (DeLosh, McDaniel, & Busemeyer, 1997; Kalish,
2013).

Given this systematic bias towards linearity, learning non-
linear relationships may require more or better evidence to
overwhelm this strong a priori belief. Standard function
learning experiments—at least those that have revealed the
human ability to learn non-linear relationships—tend to rely
on providing overwhelming evidence, such as multiple pre-
sentations of the same data point, large numbers of train-
ing examples, or multiple blocks of training (e.g., DeLosh et
al., 1997; Kalish, Lewandowsky, & Kruschke, 2004; Kalish,
2013). This is at odds with the view that people are efficient
learners, able to make good use of sparse evidence.

We hypothesize that difficulties with learning non-linear
relationships may be, at least in part, an artifact of using pas-
sive observational designs—that is, designs in which partici-
pants do not choose which points to learn about. The evidence
participants are presented with in these experiments is often
of limited utility, with the most informative observations pre-
sented alongside a large number of comparatively unhelpful
ones, increasing participants’ attentional and memory bur-
den, as well as fatigue. While active learning provides ben-
efits beyond efficient selection of samples (e.g., Markant &
Gureckis, 2014a; Markant, Ruggeri, Gureckis, & Xu, 2016),
we focus here on testing whether people tend to choose useful
samples, what policies may underlie the samples that people
choose, and whether their sampling strategies facilitate better
learning of linear as well as non-linear functions.

Previous work in active learning has suggested that people
can effectively learn linear functions by focusing their sam-
pling on regions of high uncertainty (Jones, Schulz, Meder, &
Ruggeri, 2018). An uncertainty-based sampling policy could
also be useful for non-linear functions, as maximizing infor-
mation gain about the extrema of a function eliminates the
need for extrapolation, which can otherwise be inaccurate
in non-linear functions (DeLosh et al., 1997; Kalish et al.,
2004). However, the computational demand of iteratively ad-
justing one’s sampling strategy could mean that, especially in
more complex non-linear domains, people trade off optimal
behaviour against the cognitive or temporal costs of doing
so (Gershman, Horvitz, & Tenenbaum, 2015). In these cir-
cumstances, using less accurate or flexible heuristics could
nonetheless be resource-rational, or optimal under constraint
(Gigerenzer, 2008; Lieder & Griffiths, 2020).

In the following sections, we first present a Gaussian
process-based framework for representing the task of func-



tion learning, describing how a learner can use their existing
knowledge about a functional relationship to interpolate or
extrapolate to unknown function values. We then introduce
simple candidate strategies that an active learner might use to
select samples and an experimental task to assess humans’
sampling behaviour and predictions, and compare these to
simulated learning under different sampling policies.

Gaussian Process Model
We use a Gaussian process (GP) model (e.g., Griffiths, Lu-
cas, Williams, & Kalish, 2008; Lucas, Griffiths, Williams, &
Kalish, 2015) to provide a general framework for understand-
ing both rule-based and similarity-based function learning.
This model uses samples xn = (x1 . . .xn) to further approxi-
mate a learned function f by inducing a Gaussian distribution
on the observed yi = f (xi) values based on sampled xi values
(Rasmussen & Williams, 2006). For known function outputs
f and new unknown points f∗ the joint probability distribu-
tion is then defined as
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In the above equation, we have K = k(x,x), K∗ = k(x,x∗)

and K∗∗ = k(x∗,x∗), where k denotes the generalized class of
Matérn kernel given by:
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where d denotes Euclidean distance, Kν is a modified Bessel
function, and Γ is the standard Gamma function. Throughout
this paper we use this model with smoothness ν = 1.5 and
length-scale `= 0.1 as these parameters provided consistent,
natural and realistic function interpolations for varied distri-
butions of known data and functional forms.

Sampling Strategies
Under this GP framework, as we get further from previously-
observed points, our uncertainty increases, which could lead
to more heterogeneous or inaccurate extrapolation if a func-
tion’s minimum and maximum values are not known. There-
fore, for a learner with limited opportunities to sample, we
expect that the most effective and informative strategies will
include sampling the extrema. We assess the informativeness
of three policies: uniform random sampling, an equidistant
sampling policy that selects the minimum and maximum val-
ues and interpolates equally between them, and uncertainty-
based sampling.

Random sampling One simple strategy to learn about a
function is to sample randomly from the possible domain of
values. While random sampling is straightforward, decision-
makers may display substantial sub-optimality in their sam-
pling choices if they happen to sample multiple points in

close proximity that are unlikely to be maximally informative.
Given human inductive biases towards linearity, this could
result in difficulty extrapolating or interpolating non-linear
functions where no samples have been drawn. We represent
this policy as drawing samples from a distribution where each
sample xi ∼ Uniform(0,1).

Equidistant sampling As mentioned previously, sampling
the minimum and maximum feasible values within the con-
fines of the problem to be solved minimizes the need for ex-
trapolation, and partitioning the remaining space among the
remaining samples likewise balances interpolation between
the remaining points, making it suitable for relatively ac-
curate prediction across many commonly-encountered func-
tions. While somewhat inflexible, this may represent a highly
tractable, efficient heuristic for sampling within a limited do-
main. We represent this sampling approach as taking the N
samples to be drawn and allotting them in such a way that the
points sampled roughly reflect N− 1 equal partitions of the
space to be sampled:

xi ∼Beta
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To reflect a moderate preference for sampling from the
peaks of the beta distributions while allowing for some sam-
ples to be drawn from nearby values, we chose a free param-
eter value of ρ = 10 that denotes the size of the peaks of the
sampling distribution.

Adaptive sampling The two above algorithms reflect sam-
pling procedures that do not dynamically update based on
new information. In order to choose the best samples, how-
ever, it may be effective to adapt one’s strategy to account
for already sampled points. Given that people preferentially
draw samples in regions that resolve current uncertainty, even
when this does not maximize information gain (Markant &
Gureckis, 2014b), we designed a sampling algorithm moti-
vated by a myopically ideal strategy that adapts to new infor-
mation by identifying the point of highest uncertainty.

This sampling procedure uses a GP model that greedily
chooses points from the domain-space by iteratively fitting
the model on the previously sampled points, and choosing
the next sample as the point on the posterior distribution of
GP functions with the highest variance.

To test the effectiveness of these algorithms and compare
their performance to human sampling strategies as well as the
learned functions, we designed an experimental task in which
participants must select a small number of samples to try to
optimize their performance in a prediction task.

Experimental Design
Recruitment and Procedure 98 adult participants (Mage =
31.8,SDage = 11.1) were recruited through Prolific and paid
£1.00 for completing an online learning task presented via a
web-based program.



Familiarization and Exposure In the task, participants
were told that they would be playing the role of a scientist.
The scientist’s job was to learn about a number of possible
drugs, each being researched for their role in improving pa-
tients’ well-being. Ultimately, the goal of the participant was
to learn the relationship between the length of time that a drug
was provided to patients and the patient’s well-being scores.

Before participating in the experimental trials, participants
were familiarized with a warm-up trial where they were pre-
sented with two empty horizontal bars. The first bar was la-
belled orange juice consumed and the second bar was labelled
hours of sleep. Participants were told that they could drag the
first bar to change the amount of orange juice consumed. Af-
ter confirming their choice, they learned about the amount of
sleep of an individual who consumed the specified amount
of orange juice, which is displayed on the second bar. Next,
participants were shown a specified amount of orange juice
consumed, and asked to predict the amount of sleep on the
second bar by dragging the bar to the predicted amount.

Experimental Task After completing the familiarization
trial, participants completed the experimental task. Partici-
pants learned about four total drugs, presented in a random-
ized order of four blocks of trials. Each drug had a prede-
fined relationship to the well-being of the patient: positive
linear (y = 0.8x + 0.1), exponential (y = 100(x−1)), quadratic

(y = 0.95 − (x−0.5)2

0.3 ), or periodic (y = 0.5 sin(7x)+0.5). For
each drug, participants completed a block of trials with the
same format as the warm-up. They first sampled time points
since the patient began taking the drug, to learn about its ef-
fect on well-being at a given time point, by manipulating a
blue horizontal bar (Figure 1). After sampling 5 points to
learn about, participants were asked to predict the well-being
of a patient at 8 randomly presented pre-selected time points
(values of x ∈ {0.01,0.15,0.29,0.43,0.57,0.71,0.85,0.99}),
displayed on the blue bar. Participants were not given the ex-
act values of data points, so the domains of x and y presented
here are arbitrary.

Figure 1: Participants chose 5 points to learn about the drug’s
effect on well-being by changing the value of the blue bar
(top), and then made 8 predictions using the red bar (bottom).

Results
Simulations To analyze the effectiveness of the identified
sampling strategies and establish comparison baselines, we
generated synthetic data for 100 participants under each sam-
pling strategy: random, equidistant, and adaptive sampling,
and fitted Gaussian process models for each function (Figure
2) using the sklearn library in Python. The correlation coef-
ficient and the pooled and average mean squared error (MSE)
of the GP fits were then computed and compared (Table 1).

Sampling randomly (row 1) resulted in reasonably good
approximations of the true function at the centre but demon-
strated wider deviations at the minimum and maximum val-
ues. As a large number of the simulated participants failed
to sample from the extrema of the function, this led to more
inaccurate extrapolations in areas where no samples were
drawn. The pooled and average MSE of simulations of this
policy demonstrates a comparative disadvantage at approxi-
mating the functions when compared to equidistant and un-
certainty minimization sampling.

In contrast, the process of sampling approximately equidis-
tant x values (row 2) appeared to perform better at producing
an estimate for the true functions. A considerable improve-
ment in terms of the fit of the Gaussian process model can
be visibly noticed as compared to random sampling. Notably,
equidistant sampling generated the lowest pooled and average
individual MSE of the three sampling strategies.

Finally, similar to the equidistant heuristic strategy, the
adaptive sampling algorithm (row 3) frequently sampled from
regions in the neighbourhood of zero and one. Overall,
the adaptive sampling strategy yielded comparable, though
slightly higher, MSE values to the equidistant strategy.

Given the cognitive costs of adaptive sampling, even when
calculated approximately rather than through the representa-
tion of the full posterior distribution of candidate functions,
we do not expect people to utilize this strategy to draw sam-
ples. Nevertheless, the similarity of this adaptive strategy to
a simple heuristic strategy of sampling evenly spaced points
in addition to the minimum and maximum values, suggests
that if people use such a strategy, they will select comparably
informative points to learn about, improving their subsequent
predictions of the true function’s value.

Sampling Task Gaussian process models were also fitted
on samples for each of the 98 human participants across all
four functions. These models were then compared against
previously established baselines produced by fitting GP mod-
els on generated data from different sampling strategies.

As observed in Figure 2 (row 4), the models fitted on hu-
man samples were able to predict the true function and were
comparable to the equidistant or adaptive sampling strategies
in terms of pooled approximation error (MSE), although peo-
ple’s choices showed considerable variability and some in-
dividuals chose less informative points to learn about; for
example, 15 participants did not sample a value above 0.5
for at least one of the functions. As a result, the average



Figure 2: Gaussian process best fits for random sampling (row 1), equidistant sampling (row 2), adaptive sampling (row 3),
human samples (row 4), and human predictions (row 5). Red lines represent individual GP fits for samples with a given
sampling strategy or fits for individual learned functions on the prediction task. The blue line represents the mean of all GP fits.

Function Sampling strategy Pooled MSE Average MSE r

Linear
Random 3.97 ·10−5 0.0001 > 0.999
Equidistant 1.63 ·10−7 6.88 ·10−6 > 0.999
Adaptive 4.87 ·10−6 2.23 ·10−5 > 0.999
Human 2.18 ·10−5 0.011 > 0.999

Exponential
Random 0.003 0.008 0.991
Equidistant 0.001 0.002 0.995
Adaptive 0.001 0.004 0.999
Human 0.001 0.044 0.998

Quadratic
Random 0.044 0.015 0.995
Equidistant 0.0004 0.002 0.997
Adaptive 0.002 0.005 0.989
Human 0.002 0.099 0.996

Periodic
Random 0.014 0.046 0.940
Equidistant 0.002 0.009 0.995
Adaptive 0.005 0.023 0.993
Human 0.006 0.154 0.980

Table 1: Pooled MSE, average individual MSE, and correlation coefficients for sampling strategies and human samples.



Figure 3: (a) Histogram showing frequency of human sampled points across the x axis by function; participants’ sampling
behaviour was comparable across all four function families. (b) Estimated probability density functions for the random (blue),
equidistant heuristic (green), and adaptive (orange) sampling strategies. (c) Participants were most accurate in predicting values
for the linear function (light blue), followed by the exponential (dark blue), quadratic (red), and periodic (orange), in order, and
were more accurate when their choices closely matched the equidistant strategy.

Human sampling (vs.) Equidistant Random Adaptive
KL divergence (DKL) 0.052 0.077 0.103
Hellinger distance (H) 0.113 0.140 0.161

Table 2: Distance metrics for sampling strategies.

MSE for individual fits was relatively high. Nevertheless,
in aggregate, the probability density of participants’ sam-
pled choices showed the greatest similarity to the equidistant
heuristic model predictions, compared to the random sam-
pling and adaptive sampling strategies (Table 2), as mea-
sured by Kullback-Leibler divergence (a measure of differ-
ence between probability distributions) and Hellinger dis-
tance (a measure of similarity between distributions).

Prediction Task To measure participants’ prediction errors
as well as their sampling behaviour, we calculated the sum of
squared errors of participants’ predictions from the true func-
tion, as well as the deviation of their samples from the pre-
dictions of the equidistant heuristic strategy. As participants’
errors for both the prediction task and the samples were not
normally distributed, sum of squared error (SSE) scores were
scaled and log transformed before performing inference.

We first tested the hypothesis that prediction accuracy
would be correlated with adherence to the equidistant sam-
pling heuristic by running a Bayesian mixed-effects linear re-
gression, with function and sampling deviation as predictors
for prediction accuracy, and random intercepts for baseline
accuracy, using the brms package in R, with uninformative
priors of N (0,3) placed on coefficients and a zero-truncated
Cauchy(0,2) prior placed on the standard deviation.

Confirming prior findings on the difficulty of learning non-
linear relationships, participants were best at the linear, with
increasing error, in order, on predictions for the exponential
function (β = 0.87, 95% CI: [0.71, 1.04]), followed by the
quadratic function (β = 1.61, 95% CI: [1.45, 1.77]) and the
periodic function (β = 1.96, 95% CI: [1.81, 2.12]) relative
to baseline performance on the linear function (Figure 3c).

Across all functions, there was strong evidence that greater
deviation from sampling points consistent with the equidis-
tant heuristic was associated with greater prediction errors,
(β = 0.19, 95% CI: [0.12, 0.26]).

Further, while participants in the quadratic and periodic
conditions had greater errors on average, this did not appear
to be because participants were failing to infer high-level fea-
tures of the functions such as their non-monotonicity. To in-
vestigate this phenomenon, we calculated the standard devi-
ation of interpolated slopes between participants’ predicted
points as a measure of the variability of the predicted func-
tion. Higher slope variability reflects larger deviation from
a constant slope, such as a rising and falling function, while
lower slope variability reflects a constant slope, closer to a
flat or linear relationship. There was strong evidence that
participants had more slope variability in predicting periodic
(β = 1.38, 95% CI: [1.00, 1.75]) and quadratic (β = 0.93,
95% CI: [0.71, 1.15]) functions. Participants with lower vari-
ability made fewer errors in predicting the linear function
(β = 0.93, 95% CI: [0.68, 1.16]), but no such relationship
existed for the periodic (β = −0.38, 95% CI: [–0.73, 0.04])
or quadratic (β =−0.10, 95% CI: [–0.39, 0.19]) functions.

Participants making predictions for non-linear functions
may have learned broader features of the functions, such as
the fact that the function had both increases and decreases at
various points, while not necessarily encoding exact values
or appropriate parametrizations for the functions, confirming
prior findings that participants readily extrapolate non-linear
functions even in sparse environments (León-Villagrá, Preda,
& Lucas, 2018). Failure to encode exact values while retain-
ing some qualitative representation of the higher-order struc-
ture of the function might also explain why participants dis-
proportionately estimated the minimum x value of the func-
tion to likewise have a y value of zero, as participants may
have relied more heavily on inductive biases for an intercept
value of zero (Kwantes & Neal, 2006).



General Discussion

Despite strong inductive biases towards positive linear rela-
tionships, people are able—at least in aggregate—to learn
a variety of functional relationships, even when given very
sparse evidence, and appear to be able to apply a relatively
simple heuristic strategy, sampling the minimum and max-
imum x values and evenly spaced points in between, that
requires little cognitive effort while providing a comparable
outcome, and comparable information gain, to a more com-
putationally expensive adaptive strategy. We also found that
those who made choices more in line with this policy were
more accurate in the prediction task.

Respondents showed vast variability in the informative-
ness of their samples and the accuracy of their predic-
tions; however, aggregated results showed that a recogniz-
able parametrization of the true function was learned, perhaps
the product of a “wisdom of crowds” effect (Steyvers, Miller,
Hemmer, & Lee, 2009) averaging out individual errors. Fig-
ure 2 shows the averages are compressed toward the center
of the range relative to the true function, which is expected if
some judgements are corrupted by additive zero-mean noise
that is truncated at the limits of the values participants can
select, or sometimes selected uniformly at random. Never-
theless, as Wilson et al. (2015) have pointed out, averaged
responses can eliminate important statistical structure in hu-
man predictions of functional relationships, and our analy-
sis revealed that even inaccurate individuals’ predictions sug-
gested that they had learned, for example, when a function
was non-monotonic.

While the proposed sampling strategy we introduced is rel-
atively inflexible, this policy could reflect the use of rational
metareasoning (Lieder & Griffiths, 2017), with participants
deploying a heuristic with a favourable trade-off between its
utility in giving relatively informative evidence for a variety
of common functional relationships (including the most a pri-
ori plausible, positive linear), while requiring little cognitive
effort to adapt to existing sampled points. This also coheres
with previous findings in active function learning, where par-
ticipants’ choices most closely fit a simpler linear regression
policy rather than a generalized GP policy when learning in
linear domains (Jones et al., 2018).

In this view, the equidistant heuristic may not be deter-
ministically employed in all situations in which people must
choose limited information to learn about a relationship, but
could perhaps be used situationally in a rational way. Future
research could place learners in a situation where use of a
similar heuristic would lead to less informative evidence; if
this heuristic is a rationally-adapted strategy trading off accu-
racy and efficiency, then we predict learners would adapt and
deploy a different strategy for learning on such a task. Nev-
ertheless, for limited domains, simple heuristics such as the
one we have outlined may be a valuable element of the human
cognitive toolkit to approximate optimal learning strategies.

Acknowledgements

We acknowledge the support of the Social Sciences and
Humanities Research Council of Canada to RAG [CGS-M
SSHRC] and DB [435-2018-0890].

References
Bott, L., & Heit, E. (2004). Nonmonotonic Extrapolation in

Function Learning. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 30(1), 38–50.

Brehmer, B. (1974). Hypotheses about relations between
scaled variables in the learning of probabilistic inference
tasks. Organizational Behavior and Human Performance,
11(1), 1–27.

DeLosh, E. L., McDaniel, M. A., & Busemeyer, J. R.
(1997). Extrapolation: The Sine Qua Non for Abstraction
in Function Learning. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 23(4), 968–986.

Gershman, S. J., Horvitz, E. J., & Tenenbaum, J. B. (2015).
Computational rationality: A converging paradigm for
intelligence in brains, minds, and machines. Science,
349(6245), 273–278.

Gigerenzer, G. (2008). Rationality for mortals: How people
cope with uncertainty. Oxford University Press.

Griffiths, T. L., Lucas, C. G., Williams, J. J., & Kalish, M. L.
(2008). Modeling human function learning with Gaussian
processes. In Advances in Neural Information Processing
Systems (Vol. 21, p. 553–560).

Jones, A., Schulz, E., Meder, B., & Ruggeri, A. (2018). Ac-
tive function learning. In Proceedings of the 40th Annual
Meeting of the Cognitive Science Society (pp. 578–583).

Kalish, M. L. (2013). Learning and extrapolating a periodic
function. Memory & Cognition, 41, 886–896.

Kalish, M. L., Lewandowsky, S., & Kruschke, J. K. (2004).
Population of Linear Experts: Knowledge Partitioning and
Function Learning. Psychological Review, 111(4), 1072–
1099.

Kwantes, P. J., & Neal, A. (2006). Why people underesti-
mate y when extrapolating in linear functions. Journal of
Experimental Psychology: Learning, Memory, and Cogni-
tion, 32(5), 1019–1030.
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