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A B S T R A C T   

Abstract concepts are a powerful tool for making wide-ranging predictions in new situations based on little 
experience. Whereas looking-time studies suggest an early emergence of this ability in human infancy, other 
paradigms like the relational match to sample task often fail to detect abstract concepts until late preschool years. 
Similarly, non-human animals show difficulties and often succeed only after long training regimes. Given the 
considerable influence of slight task modifications, the conclusiveness of these findings for the development and 
phylogenetic distribution of abstract reasoning is debated. Here, we tested the abilities of 3 to 5-year-old chil
dren, chimpanzees, and capuchin monkeys in a unified and more ecologically valid task design based on the 
concept of “overhypotheses” (Goodman, 1955). Participants sampled high- and low-valued items from containers 
that either each offered items of uniform value or a mix of high- and low-valued items. In a test situation, 
participants should switch away earlier from a container offering low-valued items when they learned that, in 
general, items within a container are of the same type, but should stay longer if they formed the overhypothesis 
that containers bear a mix of types. We compared each species’ performance to the predictions of a probabilistic 
hierarchical Bayesian model forming overhypotheses at a first and second level of abstraction, adapted to each 
species’ reward preferences. Children and, to a more limited extent, chimpanzees demonstrated their sensitivity 
to abstract patterns in the evidence. In contrast, capuchin monkeys did not exhibit conclusive evidence for the 
ability of abstract knowledge formation   

1. Introduction 

Humans greatly benefit from their ability to detect commonalities 
between two or more objects, relations, processes, or situations, allow
ing them to extract general patterns that go beyond the immediate 
sensory input. This ability for abstraction enables humans to adaptively 
transfer knowledge and problem solutions from one situation to another 
without the need to remember situation-specific details. For example, 
imagine that upon acquiring a large collection of vinyl records, you 
embark on a quest to curate ‘60s music for an upcoming event. After 

examining the first five records in one box, all dated 1982, and 
discovering only records from 1969 in another box and some from 1975 
in a third, you recognize an abstract pattern - within each box, all re
cords are from the same year. This realization about how the records are 
sorted in boxes enables you to optimize your search strategy: a brief 
inspection of the first record in each box offers a strong indication of 
whether it contains records from the ‘60s, eliminating the need to look at 
every individual item. This kind of abstract reasoning is central to 
human intelligence, plays an essential role in the evolution of human 
culture, and is crucial for a variety of human-unique accomplishments in 
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social interaction, language, mathematics, arts, and teaching (Brand, 
Mesoudi, & Smaldino, 2021; Gentner, 2003; Tomasello, 2020; Wasser
man & Young, 2010). Some believe it is a relatively late-developing skill, 
dependent on language or symbols and only present in humans (e.g. 
Gentner, 1988, 2003; Holyoak & Lu, 2021; Penn, Holyoak, & Povinelli, 
2008; Tomasello, 2020). Others argue that the ability for abstraction as a 
powerful and efficient learning tool is relevant for fast knowledge 
acquisition in infancy (e.g. Kemp, Perfors, & Tenenbaum, 2007; Xu & 
Tenenbaum, 2007b; Yin & Csibra, 2015). Moreover, the ability to 
extract recurring patterns in different contexts and transfer adaptive 
behaviours across situations could be advantageous for many species in 
light of evolutionary pressures to find food and reproduce, which unite 
disparate perceptual features according to their function or utility. 

1.1. The abstract concepts of sameness and difference in animals and 
children 

As outlined above, detecting similarities and differences between 
entities is crucial for forming abstract concepts. Thus, the abstract 
concepts of same and different itself play a central role in human 
cognition. However, their developmental timeline and the extent to 
which abstract reasoning is uniquely human continue to be debated. 
Human infants and a variety of other animals, including insects (Giurfa, 
Zhang, Jenett, Menzel, & Srinivasan, 2001), can learn to expect a spe
cific event or engage in a particular action when stimuli are perceived to 
be the same or can learn to choose matching stimuli (e.g. Ferry, Hespos, 
& Gentner, 2015; Hochmann, Carey, & Mehler, 2018; Hochmann, Mody, 
& Carey, 2016; Wasserman, Castro, & Fagot, 2017). However, success in 
these tasks, including the transfer of the training performance to a test 
phase with novel stimuli, may not require flexible, fully abstract rep
resentations but could stem from simpler perceptual matching processes 
(e.g. Kroupin & Carey, 2022a; Penn et al., 2008; Zentall, Andrews, & 
Case, 2018). 

In the more difficult relational matching-to-sample task (RMTS), 
participants are required to match not individual stimuli but instead the 
relations (same/different) between stimuli in pairs or arrays (XX 
matches AA but not BC. XY matches BC but not AA; Premack, 1983), 
which represents a second level of abstraction. Children under the age of 
5 perform poorly on RMTS tasks (e.g. Hochmann et al., 2017). Their bias 
for conflicting object matches (e.g., choosing XX matches XB over AA) 
suggests that children only start attending to common relational struc
tures in late preschool or early school age (Gentner, 1988; Rattermann & 
Gentner, 1998). 

However, slight task modifications like presenting multiple samples 
(e.g. do XX and YY match XY or AA; Christie & Gentner, 2010), labels for 
samples (e.g. “this is a truffet, which one is also a truffet?”, Christie & 
Gentner, 2014), larger item arrays (Hochmann et al., 2017), causal 
framing (Goddu, Lombrozo, & Gopnik, 2020), or design cues drawing 
attention to relations between the stimuli (Walker, Rett, & Bonawitz, 
2020) enable 3- and 4-year-olds to succeed in relational matching tasks. 
After learning that either only “same” or only “different” object pairs 
activate a blicket detector toy, English-speaking 18-month-olds out
performed 3-year-olds when choosing between new objects to put on the 
toy (Walker, Bridgers, & Gopnik, 2016). Mandarin-speaking children, 
however, succeed in choosing relational matches at both ages (Car
stensen et al., 2019). These findings suggest that abstract relational 
reasoning may develop early but that learned, culture-dependent biases 
may shift children’s focus to individual objects. Thus, learned biases, 
rather than a lack of capacity for abstraction, may cause failures in 
RMTS tasks in 3- to 5-year-olds (Hoyos, Shao, & Gentner, 2016; Kroupin 
& Carey, 2022b; Walker et al., 2016). Supporting this argument, Krou
pin and Carey (2022a, 2022b) found that a brief match-to-sample (MTS) 
training based on less attended object dimensions (like number or size) 
improved RMTS scores in 4-year-olds and adults, while an MTS training 
based on the objects’ shape and/or color did not. The RMTS task also 
represents a challenge for non-human animals (henceforth animals). 

Only a few monkey species have shown success on the task (e.g., 
capuchin monkeys (Truppa, Piano Mortari, Garofoli, Privitera, & 
Visalberghi, 2011), baboons (e.g. Fagot & Thompson, 2011)) after 
extensive training or the presentation of larger item arrays while still 
showing a drop in performance when new stimulus sets are introduced 
(Wasserman et al., 2017). Thus, animals seem to rely primarily on slow 
perceptual learning processes based on the specific stimulus combina
tions or on comparing their perceptual variability of the stimulus arrays 
(Penn et al., 2008; Wasserman et al., 2017). In birds and great apes, prior 
MTS experience and language or symbol training lead to faster success in 
RMTS tasks (Obozova, Smirnova, Zorina, & Wasserman, 2015; Premack, 
1983; Smirnova, Zorina, Obozova, & Wasserman, 2015; Thompson, 
Oden, & Boysen, 1997) that is partly robust against conflicting percep
tual matches (Vonk, 2003). This suggests that despite the apparent 
species differences (e.g. between monkeys and apes), having acquired a 
relevant symbol system (Gentner, Shao, Simms, & Hespos, 2021; Pre
mack, 1983) or at least extensive prior exposure to the relation of 
sameness (Smirnova et al., 2015) supports the representation of abstract 
relations. However, even for those results, lower-level explanations have 
not been entirely ruled out (e.g. Dymond & Stewart, 2016; Penn et al., 
2008; Vonk, 2015). 

Similar to the argument for children, animals’ poor RMTS perfor
mance may not indicate a lack of abstract reasoning capacity. Inductive 
biases to pay attention to and assume meaning of other stimulus fea
tures, such as salient or previously relevant object features like shape, 
color or location, could influence animals’ relational responses. 
Numerous repetitions or specific training might shape their behavior to 
match the experimenter’s expectations (Carstensen & Frank, 2021; 
Kroupin & Carey, 2021). 

Despite its popularity, the RMTS task presents an arbitrary scenario, 
especially for animals. The procedure often involves geometric shapes 
with little meaning shown on computer screens. Christie (2021) argues 
that some interest in the individual stimuli is necessary to detect re
lations between them. Human RMTS performance improves when 
meaningful stimuli (words vs. random letter strings) are presented, 
supporting the importance of stimulus choice for abstraction (Flemming, 
Beran, Thompson, Kleider, & Washburn, 2008). The RMTS as a binary 
forced-choice task, where a decision for one option makes another 
inaccessible, lacks ecological plausibility. Moreover, any learned 
response strategy here has to overcome the non-human primates’ strong 
focus on spatial solution strategies (e.g. Flemming & Kennedy, 2011; 
Haun, Call, Janzen, & Levinson, 2006) as apparent in the occurrence of 
side biases (e.g. Flemming, 2006). Given the RMTS task’s low-ecological 
validity, its susceptibility to lower-level explanations, and the ambiguity 
in its interpretation, we turned to another perspective on abstract 
reasoning that has more prominently been examined in developmental 
psychology. Further, we use computational modeling to achieve a more 
informative cross-species comparison. 

1.2. Overhypotheses and Hierarchical Bayesian Models 

Strongly related to the traditional formalization of “same-different” 
concepts is the notion of overhypotheses (Goodman, 1955) which offers 
a different perspective on testing abstract concepts and is a well- 
established term in computational, cognitive, and developmental psy
chology. Similar to the vinyl record example from above, Goodman 
(1955) illustrated this concept with a thought experiment on bags filled 
with marbles. Out of the first bag, you blindly draw some marbles, which 
turn out to be all red. From the second bag, you sample only blue, and 
from the third, only black marbles. With each draw, you become more 
confident in forming a first-order generalization about each bag’s 
marble distribution, for example, “the third bag contains only black 
marbles”. Further, you can extract the commonality of the events and 
form a second-order generalization, the overhypothesis: “Within a bag, 
all marbles have the same color”. This overhypothesis allows powerful 
predictions about the color of all marbles in a new bag after sampling 
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just one (Goodman, 1955). Similar to the bags example, one can imagine 
the marble-filled bags as trees growing fruit. If, after visiting a few trees, 
an animal can form the overhypothesis that trees generally carry a 
uniform fruit type, only one bite of a fruit from a novel tree is sufficient 
to determine whether to spend more time and energy foraging in this 
tree. In contrast, after lifting stones on the ground, an animal may learn 
the overhypothesis that a variety of insects can be hiding under any 
given rock. In this case, the first insect you see under a new stone does 
not make you sure about the type of the next insect you will find in this 
location. Similarly, learning that bags are each filled with a mix of 
colours means that the color of the next marble from a specific container 
is less predictable. 

Conceptualizing abstract generalizations as overhypotheses repre
sents them as theories (or hypotheses) that shape and constrain the 
hypothesis space at more specific levels (Kemp et al., 2007). For 
example, given that trees grow a uniform fruit type (overhypothesis), it 
is likely that this specific tree bears only apples but unlikely that it grows 
a mix of apples and cherries (lower-level hypothesis). While an RMTS 
task tests the possession of abstract knowledge, assuming concepts 
“same” and “different” are already in place and readily applied to dis
played object pairs, the overhypothesis framework quantifies the genesis 
of abstractions from evidence and their application to novel instances. 
By so doing, it can explicitly investigate how features of the evidence at 
the concrete level might impact or facilitate such inferences - such as the 
contrasting impact of recently experiencing feature-based or relation- 
based rules on performance in the RMTS task in children described 
above (Kroupin & Carey, 2021). This is a desirable feature for a theo
retical framework exploring how abstractions can be derived and used. 

Probabilistic hierarchical Bayesian models (HBM; e.g., Kemp et al., 
2007; Tenenbaum & Griffiths, 2001; Tenenbaum, Griffiths, & Kemp, 
2006) show how, in theory, this structured abstract knowledge could be 
acquired after observing limited data, due to simultaneous Bayesian 
inference at multiple levels of abstraction. These overhypotheses are 
updated in light of new evidence across a broad range of situations (e.g., 
multiple trees and kinds of trees) and thus can be learned faster than 
hypotheses concerning more specific situations (this particular tree; 
Tenenbaum, Kemp, Griffiths, & Goodman, 2011). The HBM also in
corporates how overhypotheses determine the probability distribution 
for the hypothesis space at lower levels. For example, knowing that 
items within bags are highly uniform, one assigns a high probability of 
sampling another item of the previous type but a low probability of 
sampling any other type. However, if one samples from a bag and en
tertains the overhypothesis that bags usually have a mix of items, one 
would assign similar (low to moderate) probabilities to multiple types of 
items to be the next sample. Thus, as a computational formalism, they 
capture the ability for rapid inferences and wide-ranging predictions 
when encountering new but related situations. 

At the extreme end of the continuum of uniformity, these over
hypotheses map well onto the concepts of ‘same’ and ‘different’. How
ever, it should be noted that they remain inherently probabilistic in 
nature. While relations (e.g. larger than, same, middle of) can be rep
resented as overhypotheses, there are other ways in which relations 
could be conceptualised – for example, as all-or-nothing propositional 
rules. Our study will examine how participants might form abstractions 
concerning the uniformity of different populations from evidence but 
leaves open whether the nature of the representations generated can be 
termed relational as such. 

This modeling approach has successfully characterized human 
behavior in different inductive learning scenarios (Gopnik & Wellman, 
2012) like language acquisition (Xu & Tenenbaum, 2007a, 2007b), in
ferences about social groups (Kemp et al., 2007) or causal learning 
(Lucas & Griffiths, 2010). For example, Lucas, Bridgers, Griffiths, and 
Gopnik (2014) showed that consistent with hierarchical models with 
different a priori overhypotheses, preschoolers flexibly learned that a 
conjunction of two objects was causally necessary to activate a machine. 
Meanwhile, older children and adults made inferences consistent with 

having previously formed an overhypothesis that individual objects hold 
causal power. Similarly, an acquired object focus that harms RMTS 
performance could be represented as a prior overhypothesis. 

In studies by Sim and Xu (2015, 2017), 2- and 3-year-old children 
and 17- to 20-month-old toddlers formed a second-order generalization 
regarding the functionality of objects. They were presented with three 
sets, each including two machines and one activator block that matched 
the machines in either color or shape (depending on the condition). In 
the subsequent test, both age groups chose a correct novel activator 
block (color or shape match) for familiar (first-order) and novel ma
chines (second-order generalization). Unlike the older children (Sim & 
Xu, 2017), toddlers needed guidance from an experimenter or parent to 
generate the required evidence for later generalizations but failed to do 
so in independent free play (Sim & Xu, 2015). 

Utilizing the idea of overhypotheses and testing even younger in
fants, Dewar and Xu (2010) found positive evidence for abstract con
cepts in 9-month-old infants. In an evidence phase, the experimenter 
sampled four objects from each of three boxes. The items within a box 
had the same unique shape but varied in color (e.g. 4 spheres, 4 cubes, 4 
stars). Then, a new box was presented from which the experimenter 
sampled two items of the same shape or two items of differing shapes. 
Infants looked longer at the latter sample, suggesting that they noticed 
the apparent violation of the previously learned overhypothesis: “ob
jects within a box have the same shape”. This suggests that already 
preverbal infants can form abstract concepts based on limited sampled 
evidence. However, whether this ability can support decision-making in 
a choice situation and translates to the later preschool age range is 
unclear. 

Inspired by this paradigm and the original overhypothesis thought 
experiment (Goodman, 1955), Felsche, Stevens, Völter, Buchsbaum, and 
Seed (2023) conducted a choice study with 4- and 5-year-old children 
and capuchin monkeys. They compared the empirical performance of 
each species to an HBM (adapted from Kemp et al., 2007), capturing the 
choices participants should normatively make if they had learned the 
relevant overhypotheses. Participants saw sampled evidence indicating 
either that containers hold items of uniform type (e.g. A: banana, B: 
carrot, C: apple) but varying size, or that items are sorted by size (e.g. A: 
small items, B: large items, C: medium size), but that each container 
offers a mix of item types. Subsequently, participants of both conditions 
were presented with two new test boxes: from container D, the experi
menter sampled a small, high-valued item, and from E, a large but low- 
value item. Next, participants could choose between a new hidden 
sample from each container. The HBM predicted that if participants 
inferred the overhypothesis that items are sorted by type, they should 
choose the sample from D to obtain another high-valued item (of a 
random size). In contrast, they should select the item from E to secure 
another large reward (of a random type) when they have seen that items 
are sorted by size. Children showed the expected difference between 
conditions, and their performance was well predicted by the HBM 
capable of overhypothesis formation. However, the capuchin monkeys 
showed no evidence of overhypothesis formation. While these findings 
could indicate that capuchin monkeys lack a capacity for abstract 
concept formation, the passive sampling procedure likely imposed 
additional task demands regarding abilities for inhibition, object 
permanence, and working memory that might have especially impacted 
the capuchin monkeys’ performance (Tecwyn, Denison, Messer, & 
Buchsbaum, 2017). 

1.3. The current study 

To accurately investigate the abilities of non-human primates and 
young children to engage in abstract reasoning, we need to use a less 
demanding test environment with a more naturalistic choice situation in 
which the evidence-gathering process is self-determined by the subject. 
In the current study, we apply the idea of overhypothesis and the HBM 
approach to the comparative study of abstract relational reasoning. In 
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contrast to the classic RMTS design, we implement a more ecologically 
valid approach with reduced task demands based on a participant-led 
and self-conducted sampling procedure. Rather than using a binary 
forced-choice procedure, we introduced a natural foraging scenario in 
which we measured the efficiency of a search through food patches with 
actual reward items of differing values. Here, participants did not need 
to explicitly detect the commonality of “sameness” or “difference” in 
arbitrarily displayed item pairs but could instead acquire an overhypo
thesis about the commonalities of the container contents (items within 
containers are of the same type or different types) over time when sam
pling their own evidence. To further reduce task demands, we varied 
only the distribution of item types across containers instead of con
trasting the variation in two item dimensions (as in Dewar & Xu, 2010; 
Felsche et al., 2023). In statistical reasoning paradigms, infants (e.g. 
Denison & Xu, 2014; Gweon, Tenenbaum, & Schulz, 2010; Téglás et al., 
2011), preschoolers (Denison, Bonawitz, Gopnik, & Griffiths, 2013; 
Girotto, Fontanari, Gonzalez, Vallortigara, & Blaye, 2016) as well as 
non-human primates (Eckert, Call, Hermes, Herrmann, & Rakoczy, 
2018; Eckert, Rakoczy, & Call, 2017; Rakoczy et al., 2014; Tecwyn et al., 
2017) have shown sensitivity to the composition of item populations 
within containers and the resulting probability for a sampled item to be 
of a specific item type. However, none of these studies have investigated 
the generalization of item distribution patterns across containers. 

In the current study, we included 3-, 4- and 5-year-old English- 
speaking children as this age range usually marks the transition of 
failure in the classic RMTS task at age 3 to mostly successful perfor
mance at five years of age (Christie & Gentner, 2010; Hochmann et al., 
2017; Walker et al., 2016). However, as outlined above, slight task 
modifications have shown success in 3-year-olds and thus suggest that 
abilities for abstraction are present at that age. The current study ex
plores further the conditions under which preschool children show 
spontaneous abstract concept formation. Additionally, we tested sym
bol- and language-naïve chimpanzees (Pan troglodytes) and capuchin 
monkeys (Sapajus apella) in our study. Members of both species have not 
only reached above-chance level performance in RMTS tasks (e.g. 
Flemming et al., 2008; Premack, 1983; Thompson et al., 1997; Truppa 
et al., 2011) but also showed some intuition for abstract patterns in 
relational reasoning tasks based on spatial or size relations (Flemming & 
Kennedy, 2011; Haun & Call, 2009; Kennedy & Fragaszy, 2008). In these 
tasks, subjects had to choose the cup from a set of three with the same 
relative but not necessarily absolute size or position as a visibly baited 
cup in the experimenter’s set (e.g. largest cup). In all experiments on 
abstract relational reasoning, chimpanzees typically succeeded at higher 
rates and within fewer trials than capuchin monkeys. Thompson and 
Oden (2000) even proposed that the line differentiating species capable 
of abstract reasoning from those solely relying on first-level cues should 
not be drawn between humans and other primates but between apes and 
monkeys. However, the sample sizes in these studies usually involve less 
than ten individuals per species, and unlike the capuchin monkeys, most 
chimpanzees tested received prior language or symbol training. 
Including non-enculturated chimpanzees and capuchin monkeys in the 
current study will provide crucial evidence on non-human primates’ 
abilities for abstraction and give insights into whether their difficulties 
in RMTS might reflect context and bias rather than ability (Kroupin & 
Carey, 2021). 

In the current study, we provided chimpanzees, capuchin monkeys, 
and 3- to 5-year-old children with the opportunity to sample their own 
evidence that either suggested that containers are filled with reward 
items of a uniform type (all items in a container are of high or all of low- 
value, like the fruit trees or uniformly coloured marble-bags) or that 
each container offers a balanced 50:50 mixture of high- and low-valued 
item types (like the insects under stones or the mixed-coloured marble 
bags). In a subsequent test situation, all participants were simulta
neously presented with two new containers, which, unbeknownst to the 
participants, were both filled entirely with low-valued items, regardless 
of the condition. Suppose participants in the uniform condition learned 

the overhypothesis that containers provide items of the same type. In 
that case, receiving one low-valued item should, in theory, motivate the 
learner to consider switching away from this container, which likely 
contains only low-valued items, and explore the second container for 
potential high-valued items. In contrast, participants that previously 
experienced that each container offers the same mix of item types should 
on average be more persistent with the first container and not get 
discouraged to the same degree by the first few low-valued items. As in 
Felsche and colleagues (2023), we compared the participants’ behavior 
to the predictions of a probabilistic hierarchical Bayesian model fitted to 
the species’ item preferences and equipped with a choice rule for when 
to switch from one container to the other. 

While abstract reasoning is often seen as a domain-general ability 
(Gentner, 2003; Penn et al., 2008), task performance nonetheless shows 
sensitivity to slight task modifications, as observed for variations of 
RMTS tasks. Further, for a given task the required response behavior 
may better match the behavioural repertoire of some species over others 
(e.g., foraging for items on the ground vs. pressing a button on a ma
chine), introducing varying task demands outside of the cognitive ability 
in focus. To ensure the generalizability of the results and account for 
varying peripheral task demands across species, we presented three 
versions of the task: foraging for items hidden in material-filled buckets, 
lifting cups to uncover items, and operating a button to dispense items 
from a machine. We chose these presentations because each had prag
matic advantages and disadvantages. The machine version builds on 
previous findings of successful causal reasoning about puzzle boxes in 
both children and primates (e.g. Schulz, Kushnir, & Gopnik, 2007; 
Tennie et al., 2019) but is arguably the least ecologically valid for non- 
human species. The cups procedure clearly displayed the overall number 
of items available. The material-filled buckets were perhaps the most 
ecologically valid for the primates; however, the most challenging to 
determine which items had been sampled (see below). 

The overall procedure and reward distributions were identical across 
versions. Only the presentation of the rewards and actions required to 
sample the rewards differed. The use of varied materials further facili
tated a within-subject design for non-human primates, minimizing po
tential carry-over effects of learned overhypotheses from one session to 
the next. 

2. Experiment 1 

2.1. Method 

2.1.1. Participants 
Children. A total of 212 children between the ages of 3 and 5 was 

included in our final sample (106 female, Mage = 54.78 months ±10.36 
SD; see SM, Table S1). The data collection took place at two local mu
seums in Toronto (the Royal Ontario Museum and the Ontario Science 
Centre). An additional 16 children were excluded from the analysis due 
to experimenter error (6), interference by parents (4), apparatus error 
(3), their wish to stop early (1), emptying both test containers simulta
neously (1) or switching without any evidence (1). For the separate 
preference testing, we collected data from an additional 40 3- to 5-year- 
old children (19 female, Mage = 54.83 months ±10.08 SD) tested at the 
same two museums. Three additional children were excluded from the 
analysis due to interference by family members (2) or misunderstanding 
of the task materials (1). The study was planned and conducted 
following ethical guidelines. It was approved by the School of Psychol
ogy and Neuroscience ethics committee at the University of St Andrews 
and by the Institutional Research Ethics Board for Human Subjects at the 
University of Toronto. The parents of all children who participated had 
given prior consent for their participation. Further, we explained to the 
children that they could stop participating at any point and asked them 
multiple times throughout the procedure if they would like to proceed 
with the experiment. 

Capuchin Monkeys. Overall, 22 capuchin monkeys (Sapajus sp.) 
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participated in this study (9 female, Mage = 9.27 years ±4.08 SD; see SM, 
Table S2). All but one are zoo-born and mother-raised. The capuchin 
monkeys are housed in two groups at the Living Links to Human Evo
lution Research Centre at Edinburgh Zoo. The animals have access to a 
large outdoor and indoor enclosure and are cohoused with squirrel 
monkeys (Saimiri sciureus) with whom they share their natural envi
ronment. The monkeys were never food or water restricted. 

Chimpanzees. We collected data from 30 chimpanzees (17 female 
(57%), Mage = 21.2 years ±7.97 SD; see SM, Table S3) at the Sweet
waters Chimpanzee Sanctuary in the Ol Pejeta Conservancy in Laikipia 
county, Kenya. The chimpanzees live in two separate social groups and 
spend their day outside in large outdoor enclosures. They are provided 
with water ad-lib and fed three times daily. The experimental protocol 
and study design for the apes and monkeys was approved by the School 
of Psychology and Neuroscience ethics committee at the University of St 
Andrews, the local ethics committee at the chimpanzee sanctuary, 
Kenya Wildlife Service, and the Kenyan National Council for Science and 
Technology. 

2.1.2. Materials 
For all species, the experiment involved high- and low-value reward 

items that could be sampled from containers. For the chimpanzees, we 
used food items whose value was based on the caregiver’s judgment 
(high: apple & banana, low: orange & carrot in evidence, raw sweet 
potato in test). Capuchin monkeys’ rewards were based on a previous 
preference testing conducted in the same group (high: date & peanut, 
low: carrot & eggplant (evidence), zucchini (test); see Felsche et al., 
2023 for details). For children, high-valued rewards were yellow and 
green balls that could subsequently be rolled down a marble run while 

producing an engaging sound. We used cubes that could not be inserted 
in the marble run game as low-valued items. A preference testing 
confirmed the relative value of the items (see SM for details). 

We presented all participant groups with three versions of the task 
(see Fig. 1). Whereas children engaged with the materials on tables or on 
the floor, non-human primates sampled their rewards through a metal 
mesh or plexiglass barrier. 

Machine version. Uniquely coloured and shaped machines released a 
reward upon pressing a button on the front of the machines. 

Cup version. Participants could find rewards by knocking over cups 
attached to a board. For children, all 10 cups were randomly distributed 
on a rectangular board. For non-human primates, the 10 cups were ar
ranged in a row to be accessible through the barrier. 

Foraging Version. Participants could retrieve rewards from containers 
filled with other materials (children: packing peanuts; non-human pri
mates: saw dust). While the setup for chimpanzees and children led them 
to sample rewards one by one, the capuchin monkeys often swept out 
most containers’ contents with one arm movement. This impeded their 
opportunity to notice the items individually. Thus, we presented the 
monkeys with a second foraging version in which plastic barriers sub
divided each container. We placed a reward covered by cut straw in each 
of the ten emerging compartments. 

2.1.3. Procedure 
Each session consisted of 4 evidence trials followed by the test sit

uation. In each evidence trial, participants sampled items from a new 
container. Depending on the version, “container” represents a machine, 
board with cups, or bucket (see Materials). Each container held ten 
items. To prevent children from implicitly learning a game rule that they 

Fig. 1. Photos of the test situation for each version (rows) and species (columns) as presented during the experiment. Left: children, Middle: capuchin monkeys, 
Right: chimpanzees; from top to bottom: machine version, cup version, foraging version (for capuchin monkeys, the second foraging version is depicted). 
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must empty a container before moving on, the experimenter changed 
evidence containers after a counterbalanced item number or time cri
terion (dependent on condition, see SM for details) that was not 
communicated to children. The non-human primates were allowed to 
empty all ten items in each evidence trial to avoid frustration caused by 
taking away food. We adapted the computational model to these species- 
specific amounts of evidence. 

In a given session, participants were either presented with the uni
form or the mixed condition (see Fig. 2). In the uniform condition, the 
sampled rewards were uniform or all the “same” within an evidence 
container but different across containers. In two evidence trials, the 
containers were filled with only high-valued items, and in the other two 
trials with only low-valued items. In the mixed condition, each evidence 
container offered an equal mix of five high- and five low-valued items 
(see Fig. 2). In both conditions, we counterbalanced the order of 
container and reward types across participants so that they experienced 
a low and a high-valued reward type in the first two evidence trials and 

another two reward types in the last two evidence trials. We also ensured 
a random sampling from each container (see SM for details). 

After four evidence trials, participants moved on to the test situation 
in which two containers were presented simultaneously. The experi
menter told the children that she had to do some other task but that 
there are two more containers left and that they should try to find more 
marbles to play the game. For the non-human primates, the experi
menter set up both containers and ensured each participant had seen 
both before moving them simultaneously in reach of the participant. 
Each test container held ten low-valued items in all species, versions, 
and conditions. This ensured that participants would only find low- 
valued items, whichever container they started sampling from. After 
the participants switched containers, indicated the wish to leave the 
testing area or one minute without engagement with the test containers 
had passed, the session ended, and participants got rewarded with some 
high-valued items. 

Fig. 2. Hierarchical Bayesian model of overhypothesis formation adapted for the current study. The parameters α and β describe an overhypothesis at the second 
level of abstraction: α represents the extent to which item types in containers, in general, tend to be uniform vs. mixed, and β captures the type variability across all 
containers. Type distributions of a specific container (θi, Level 1 abstraction) are constrained by overhypotheses at Level 2 and, in turn, constrain the items yi sampled 
from that container. Squares represent low-valued items and circles represent high-valued items. In their choice to switch, a learner puts the expected values of the 
item distribution in each test container into relation. 
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2.1.4. Design 
We applied a 2 (condition: mixed or uniform) x 3 (version: machine, 

cups, foraging) design in all species. 
Children. We applied a between-subjects design where each child 

received one session. This session was run in one of the six condition x 
version combinations. Each of the six groups consisted of 33 to 37 
participants (see Table S1). 

Chimpanzees. Each chimpanzee received three sessions, one for 
each version. The first two sessions were run in the cup and foraging 
versions, and the third session was always run in the machine version. 
Conditions were applied in an ABA design. We counterbalanced across 
the sample, which pairing of condition and version was presented first. 

Capuchin Monkeys. The capuchin monkeys received four sessions. 
The first three sessions followed the design and counterbalancing 
applied to the chimpanzees. Due to problems with the foraging version 
in this group, we ran a second foraging version in a fourth session where 
partitions in the foraging buckets prevented rush emptying of the entire 
content. Continuing the alternating condition order (ABAB), half of the 
capuchin monkeys received in the fourth session the same condition as 
in the first foraging version, while the other half received a condition 
opposite to the one in their first foraging session. 

2.1.5. Computational model 
To predict the behavior of an ideal learner capable of multiple levels 

of abstraction, we adapted the Probabilistic Hierarchical Bayesian 
model introduced by Kemp et al. (2007). While Hierarchical Bayesian 
models have successfully characterized a variety of human adult and 
child behavior, Felsche and colleagues (2023) were the first to directly 
test this model of overhypothesis formation in children and non-human 
primates. Here we apply their model to the current task design, 
including the variation of only one item dimension (type) and the idea of 
switching from a current container to another one instead of making a 
binary choice between containers. Similar to previous work on optimal 
foraging and utility-based optimal decision-making (Cain, Vul, Clark, & 
Mitroff, 2012; Jara-Ettinger, Schulz, & Tenenbaum, 2020; Lucas, 
Bridgers, et al., 2014; McNamara, 1982; Olsson, Brown, & J., 2006), we 
assume that, while the learner updates their representations of the 
containers with each new piece of data, the learner’s primary goal in 
deciding whether or not to switch containers is to probabilistically 
maximize their expected utility (versus other possible goals such as 
maximizing information gain). As discussed in more detail below, par
ticipants stay at the first container as long as its expected value is greater 
than that of the second container. They then start to probabilistically 
switch containers in proportion to the difference in the container’s ex
pected value if the alternative container promises better rewards than 
the one they are currently sampling from. 

We adapted the a priori model predictions to species-specific factors 
like the amount of received evidence and each species’ reward utilities 
that were inferred based on the results of preference testing. To evaluate 
each species’ ability for abstract knowledge formation, in addition to 
comparing performance to the predictions of the full HBM, we also 
compared their performance to simpler alternative models differing in 
their capability for abstraction at various levels. The HBM model was 
implemented in WebPPL (Goodman & Stuhlmüller, 2014), while the 
preference inference model was implemented in R (R Core Team, 2019). 

Fig. 2 provides an overview of both our task and the generative 
computational model of this task–how the model formalizes the way in 
which evidence is sampled from the containers. The model assumes that 
reward items yi are randomly sampled from evidence containers i, each 
of which has a specific item distribution (θi) of item types (k = 2 types, 
high- and low-value). These item distributions within containers 
represent a first level of abstraction (Level 1), capturing e.g., “this 
container has mostly high-value items”, and are described by a multi
nomial function. The number of samples was adapted to each species’ 
amount of seen evidence (10 items per container for non-humans, 4 or 6 
items per container for children (in total 10 high- and 10 low-valued 

items)). 
The model assumes that the containers themselves were sampled 

from a higher-level distribution. In other words, the per-container item 
distributions are, in turn, constrained by an overhypothesis at the sec
ond level of abstraction (Level 2), capturing e.g., “containers are mostly 
uniform in type of item”, and “overall, there are roughly equal amounts 
of high- and low-value items”. This second level is described by a 
Dirichlet distribution parameterized by two hyperparameters: α and β. α 
describes the extent to which item types within each container tend to be 
uniform (e.g., all are the same or an equal mixture of types). β describes 
the overall composition of item types across all containers (e.g. many 
high-valued and only a few low-value items or an equal amount of both 
types). The α parameter is sampled from an exponential prior that as
sumes a fairly uniform distribution across the probabilities for different 
item compositions in containers. This corresponds to not having a strong 
a priori belief that would favor one of the contrasted conditions (mixed 
or uniform) or over the other, ahead of seeing the evidence. We sample β 
from a symmetric Dirichlet distribution which corresponds to a model 
that does a priori to assume an equal distribution of item types. 

With these assumptions about how the observed evidence is gener
ated, the model uses standard Bayesian updating to simultaneously infer 
the parameters (overhypotheses) defining the item distributions at the 
first level (within individual containers, θi) and second level of 
abstraction (across containers, α and β), given the sampled evidence 
from the individual containers (see Appendix for further technical de
tails). In the uniform condition, where the learner is presented with 
items that are uniform in type from each container, α will be updated to 
anticipate that any new containers will have distributions that are also 
highly peaked around a single item type (uniform or near uniform) and 
therefore will contain either uniformly (or nearly uniformly) high or 
low-valued items. In the mixed condition, α would expect more equal 
item distributions within containers, expecting novel containers to have 
a similar probability of sampling high- and low-valued items (see 
Table S20 and S21 in the SM for the expected container distributions in 
each condition). 

To predict the participant’s choice behavior in the test situation, the 
model first needs to estimate the probability distribution over the items 
in each test container (θi+1,θi+2), and over the type of the potential next 
sample from each test container (yi+1, yi+2), using the overhypotheses 
inferred about containers in general. With every new low-value sample 
from the first test container, the model updates the estimate of the item 
distribution for this current container, θi+1, using both the observed 
sample and what it has learned about containers in general from the 
preceding evidence trials (through the updated hyperparameters, α and 
β). In turn, the model also updates the hyperparameters from the 
sampled evidence in the first test container. Further, the model also 
estimates the item distribution in the second test container, from which 
no items have been sampled yet, based on the current values of the 
hyperparameters. Thus, after each low-value sample from the first test 
container, the model has an updated probability distribution over what 
it thinks the next item from the container will be and what it thinks the 
first item from the second container would be. As in two of our three 
conditions the number of items is hidden, for simplicity the model 
samples with replacement from the test containers. Thus, removing a 
low-valued sample from, e.g. a mixed container will not decrease the 
probability of receiving low-valued samples in the future but rather the 
opposite. 

To predict the actual switching behavior, we added a rational 
switching rule drawn from the psychological literature (Luce-Shepard 
choice rule; Luce, 1959; Shepard, 1957) to the original model structure 
by Kemp et al. (2007). We assume that the expected utility of a container 
is calculated by summing the utilities of each item type u, weighted by 
that item’s probability of being the next sampled type (Lucas et al., 
2014). Since sampling is assumed to be random, this is equivalent to 
weighting by the inferred distribution of item types within that 
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container. Naturally, disengaging from a current activity (sampling from 
container 1) and switching to another (sampling from container 2) in
volves some cost. However, we assume this cost to be small in our study 
as containers were placed relatively close together and switching was 
not particularly spatially or temporally effortful; thus, it might primarily 
involve cognitive effort like attention shifting (see General Discussion). 
Consequently, we assume that a learner’s probability of staying with the 
current container is proportional to its expected utility and the expected 
utility of the alternative following the Luce-Shepard choice rule (Luce, 
1959; Shepard, 1957; Swait & Marley, 2013 also used in, e.g. Jara- 
Ettinger et al., 2020; Lucas, Bridgers, et al., 2014). The resulting 
switching probability is 1- the probability of staying (see Appendix). 
Using this switching rule, we assume that a participant will not switch 
when the next possibly sampled item from the first container is of 
greater or equal value to the one sampled from the second container. 
This is broadly consistent with models in the human and animal optimal 
foraging literature, which suggest that foragers should consider leaving 
when the predicted value of staying is less than the predicted value of 
searching a new location (e.g., Cain et al., 2012; McNamara, 1982; 
Olsson et al., 2006). 

Switching probabilistically occurs when the alternative container 
promises greater value, with a switch rate proportional to the difference 
in the expected value of the next sample from each container. Thus, the 
probability of switching increases with the growing utility advantage of 
the second over the first container. However, the model never predicts a 
100% switching rate, even if the second container promises a certain 
high-value item and the first container a certain low-value item. This is 
because the high-value items are not infinitely more preferred than the 
low-value items, but only to a certain degree as inferred from the pref
erence testing (see below) and participants are expected to choose 
proportional to the value difference between the containers. This 
reluctance to switch in the case of equally valued containers can also be 
seen as capturing the small cost of switching containers in our experi
ment. However, to further analyze the potential role of assumed switch 
costs in the participants’ behavior, we conducted an exploratory anal
ysis of an added switch cost parameter. The switch cost was established 
as a constant subtracted within the switching rule (see SM for details). 
We conducted a parameter sweep and determined the assumed switch 
cost for each species that best described the data. 

To obtain the utilities for each reward type (i.e. the relative value of 
high and low-valued rewards to each species), we used the preference 
inference model developed by Lucas, Bridgers, et al. (2014), see Ap
pendix) for inferring overall relative item utilities from a two-alternative 
forced-choice preference testing procedure. Preference testing was 
conducted for children (see SM) and capuchin monkeys (Felsche et al., 
2023). Unfortunately, due to time constraints, we could not conduct 
preference testing with the chimpanzees. Here, we used the monkeys’ 
preference values for high- vs low-value items as an approximation for 
chimpanzees’ relative utilities, as initial high and low-valued categori
zations for both species were based on the caregiver’s estimations. 
During the data collection, we later observed that chimpanzees 
consumed presumably low-valued items to a lesser extent than the high- 
valued food types. However, the chimpanzees consumed relatively more 
low-valued items than the capuchin monkeys, who almost always 
refused them. Thus, the monkey’s preference values might slightly 
overestimate the chimpanzees’ actual preferences. 

2.1.6. Model predictions 
Based on the preference testing with children and monkeys, we 

inferred large utility differences between high- and low-valued items for 
both species (children:Δ1.50; monkeys (and chimpanzees): Δ1.56). As 
described above, we used these values to make a priori predictions about 
the expected switching behavior. We calculated the probability that a 
learner would switch away from the first test container for each possible 
number of sampled items from the first container (1 to 10). This rep
resents the normative probability of switching after each sampled item, 

given the modeling assumptions described above, and that species’ 
inferred item preferences, thus providing a baseline against which to 
evaluate participant performance. Then, we determined the difference 
between conditions by subtracting the predicted switching probability 
at each sampling event in the mixed condition from that in the uniform 
condition. 

As expected, the full idealized model described above, based on Level 
2 abstraction (abstraction across containers), predicted that in the test 
situation, participants should switch earlier (after seeing fewer items) in 
the uniform as compared to the mixed condition (see Figs. 3 and 4). For 
example, after sampling the first test item in the uniform condition, the 
model estimated a 91% probability for a subsequent low-value item 
from this source and a corresponding 57% probability for a next low- 
valued item from the second container2 (see Table S20 in the SM). 
Based on the reward utilities and the proportional switching rule 
described above, the Level 2 model thus predicts that around 40% of the 
participants should switch immediately after the first sampled item in 
the uniform condition, with a slightly increasing switching rate for the 
remaining participants after each of the following samples (see Fig. S6 in 
the SM). In the mixed condition, only around 15% of participants are 
predicted to switch after the first test sample (the probability for the next 
item to be of low value is 64% for the first container and 53% for the 
second container). As the prognosis for the first container gets pro
gressively worse, the more low-valued items are sampled from it, and 
the estimate for the alternative container remains relatively constant 
(see Table S20), the switching rate is predicted to increase after each 
sample. For both conditions, the model predicts that after sampling the 
9th item, almost all participants should have switched to the second 
container (children: mixed = 95.6%, uniform = 99.5%; non-human 
primates: mixed = 96.1%; uniform = 99.6%; see Fig. 4). Importantly, 
this confirms that, in principle, an overhypothesis that licenses large 
differences in switching rates is learnable from the amount of evidence 
and a priori item-type utilities presented in this study. We also formal
ized a lesioned model capable of only Level 1 abstraction (abstraction 
from sampled items to the specific container they were sampled from). 
This model was solely informed by the low-valued samples from the first 
test container and the fixed priors for the hyperparameters while 
ignoring the preceding evidence from other containers. This results in 
the same prediction for both conditions. With accumulating low-value 
samples from the first test container, the model assumes an increasing 
majority of low-value items in this container (e.g. after 1 sample, 60% 
low-value items, after 5 samples, 78% and after 9 samples, 85%). 
However, as the model does not update the hyperparameters, the pre
dictions for the second test container stay at the level of the priors, 
assuming an equal chance of a low and high-value item, independent of 
the number of samples from the first container. As a result, after every 
new sample from container 1, between 14 and 43% of the participants 
that have not yet switched are expected to do so. To account for other 
potential switching strategies that do not involve abstract reasoning, we 
compared participants’ performance to two random or heuristic learners 
that operate on different switching strategies. As in the Level 1 model, 
the random models do not consider condition-specific evidence; thus, 
they predict no difference in switching rates between conditions. In the 
first random model, the learner’s decision to switch at each point is at 
chance level, disregarding all samples. Thus, 50% of the remaining 
participants switch after each new sample from the first test container 
(Chance 1). This leads to an immediate switching rate after the first item 
of 50% and a prediction that over 90% of participants should have 

2 The predictions for the unsampled second container are not at 50%, because 
the low-value samples from the first test container also update the overhypo
thesis hyperparameter β, suggesting that there may be slightly more low- 
compared to high-valued items in the environment. In the uniform condition 
this would translate to predicting more uniformly low-value than uniformly 
high-value containers. 
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switched after four samples (see Fig. 4). The second random model 
(Chance 2), formalizes a learner who randomly predicts the value of the 
next sample from each container or assumes that, in general, containers 
have an equal 50/50 mix of high and low-valued items. Based on our 

switching rule, equal container utilities cause the learner to always stay 
with the current container. Thus, we introduced a small error term so 
that 1% of the participants would switch despite assuming equal item 
distributions in containers (Chance 2). This leads to a very low switching 

Fig. 3. Model predictions and empirical data for the mean number of low-valued items sampled from the first container before participants switch. Means are 
indicated by diamond symbols, medians are indicated by horizontal lines. A: Predictions from the full model capable of Level 2 abstraction (across containers), a 
lesioned model only capable of Level 1 abstraction (from samples to container population and vice versa), a Chance (1) model predicting that after every sample half 
of the participants switch and a Chance 2 model assuming random contents in containers, all adapted for children’s preferences. The predictions in the form of 
probabilities were multiplied by the factor 100 to simulate a study with 100 participants in each condition. B: Model predictions for the Level 2 and Level 1 model 
with the switching costs (left) that best matched the empirical child data (right) for children. C: The same predictions as in A adapted to the monkeys’ preferences 
(the chance predictions are identical to A and thus not depicted). D) Same as in B for the chimpanzee data E) Same as in B for the capuchin monkey data. 
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rate so that after the 9th item, <9% of the sample has switched. 

2.2. Scoring and analysis 

2.2.1. Dependent variables 
Number of Items Until Switch. To determine the amount of evi

dence a learner has received during the test phase before they switch, we 
measured the number of items sampled from the first test container 
before switching. This variable precisely captures the received infor
mation and thus is compared to the model predictions. However, as this 
measure is not suitable for the foraging version in chimpanzees and 
children (as here it is unclear how many items participants felt inside the 
filling material), we did not include it in the statistical analyses for all 
versions (but see analysis in the SM with this variable for the cup and 
machine versions and the second foraging version for capuchin 
monkeys). 

Time Until Switch. As an approximation to the number of items 
participants have received in each version, we determined the time in 
seconds until the participants switched from the first test container to 
the alternative. The time started as soon as the participants touched the 
filling material/the machine/a cup (depending on the version) of 
container A and ended as soon as they touched the filling material/the 
machine/a cup of container B. If a participant indicated the wish to leave 
or stopped interacting with the test materials for one minute, the time 
ended after the last interaction with the materials. We analyzed this 
variable because the time until the switch could be measured in all 
versions and species. Individual variations in sampling speed were ex
pected to be random and to not vary with the experienced condition. 

2.2.2. Statistical analysis 
All sessions were video recorded. A second observer naïve to the 

experiment’s hypothesis coded 20% of all sessions. As the number and 
the time variable are measured on an interval scale, we used the Pearson 
correlation for comparisons between observers. Interrater-reliability 
was very good for the number variable in the cup and machine 
version (children: r(23) = 0.99, p < 0.001; chimpanzees: r(7) = 0.83, p 
= 0.005; capuchin monkeys: r(7) = 0.99, p < 0.001); and for the time 
variable in all versions (children: r(41) = 0.94, p < 0.001; chimpanzees: 
r(15) = 0.99, p < 0.001; capuchin monkeys: r(14) = 0.85, p < 0.001). 

All statistical analyses were conducted in R (R Core Team, 2012) using 
the packages lme4 (Bates, Mächler, Bolker, & Walker, 2015) and 
emmeans (Lenth, Singmann, Love, Buerkner, & Herve, 2018). All pre
sented analyses with chimpanzees and capuchin monkeys were pre- 
registered (https://osf.io/r29nw/?view_only=72d0a6be37fd4f4ca674d 
a847def3181, https://osf.io/prhgq/?view_only=60c206040a5f4 
132ada70a5d07f6bf35). To answer for each species whether the par
ticipants formed abstractions based on the sampled evidence, we 
examined whether there was a difference between the mixed and the 
uniform condition in the time until participants switched away from the 
first test container. As pre-registered, we were interested in whether the 
condition effect varied depending on the presented version (foraging, 
cups, machine). Instead of running multiple independent t-tests for each 
presentation version we ran equivalent paired contrasts on our regres
sion model, requiring fewer independent statistical tests (for results of 
the registered independent t-tests analysis are consistent, and are pre
sented in the SM). In addition, some secondary pre-registered analyses 
were not run due to insufficient data (see SM for further explanation). 

Children. We used a linear model to analyze possible interactions 
between the versions and conditions and main effects for these factors 
across the whole sample. For the children, we were further interested in 
a possible developmental effect and thus included a three-way interac
tion of version, condition, and age (continuous and centered) in the 
model. We used the box-cox method by applying the function power
Transform from the R package car to all linear model analyses to account 
for failed assumptions of normality. The model outputs were analyzed 
using a type 3 ANOVA based on F tests. In case of a significant three-way 
interaction, we used the emtrends function of the emmeans package to 
see how the condition contrast changes with age depending on the 
version. To analyze the difference between conditions separately for 
each version, we conducted pairwise comparisons using the emmeans 
function. 

Non-human Primates. Due to the within-subject design for chim
panzees and capuchin monkeys, where some subjects did not complete 
all versions, we used linear mixed-effects models (function lmer) for 
these species. We conducted two linear mixed effects models, one for 
each non-human species. In these models, we included a condition-by- 
version interaction. Due to the high overlap between the factors of 
session and condition (for each session-level, only one to two condition 

Fig. 4. Model predictions and empirical data for each species, showing the cumulative switch rates after each low-valued sample from the first test container. A 
difference in switching rate between conditions is seen in children and, to a lesser extent, chimpanzees, but not capuchins. Only the level 2 model predicts a dif
ference in switching rate between conditions. In contrast, the level 1 model and both chance models did not consider condition-specific evidence and thus made 
identical predictions for both conditions. The chance 1 prediction reflect that 50% of the remaining participants switch after every sample. The chance 2 prediction 
assumes a minimal error switching rate of 1% when participants predict item types in each container randomly. 
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levels), we did not include the session factor in the analysis. However, 
the random effect of participant was included in the model to account 
for individual effects in the repeated testing. As in children, the model 
outputs were analyzed using type 3 ANOVAS based on F tests. Again, we 
conducted pairwise comparisons of the conditions within each version 
using the emmeans function. For the capuchin monkeys, the data from 
the first foraging version was unreliable since they removed most of the 
evidence items in their first action on the container. As a result, their 
switching behavior could not be adjusted to an accumulating amount of 
witnessed evidence. Thus, we excluded the data from the first foraging 
version from the analysis and instead only used the data from the second 
foraging version (Foraging 2) for all analyses with the capuchin 
monkeys. 

2.2.3. Model comparison 
Because the number of items sampled before the switch could not be 

reliably determined in the foraging version of chimpanzees and children 
(as participants may have sampled items tactilely and did often not 
remove the low-values items from the containers), only data from the 
cup and machine versions and the second foraging version in capuchin 
monkeys was used for all model comparisons. Our main aim was to 
analyze whether participants of each species showed a difference be
tween conditions consistent with the predictions of an idealized learner 
capable of Level 2 abstraction. Thus, we correlated the model’s pre
dicted condition difference in switch rates after each sampled item with 
the corresponding empirical difference in switch rates. To determine the 
empirical switching rates, we calculated for each condition and test item 
number, the percentage of remaining participants still sampling from 
the first container, who switched after each item (e.g. 15 participants 
sample the 6th item from the first test container, 3 of them switch, thus, 
the switching rate after the 6th item is 3/15 or 20%). To compare the 
model predictions, which assumed an unlimited number of possible 
samples, to the observed data, where sampling ended with the tenth 
item, only the switch rates for items 1–9 were considered because all 
remaining participants by task design had to switch after sampling the 
10th item. As the lesioned model only capable of Level 1 abstraction and 
the two chance models do not take any condition-specific evidence into 
account, their condition difference is zero. Thus, no correlation can be 
computed for these alternative models. 

Further, we compared the absolute switching rates of the model and 
the empirical data. Here, we were able to compare both the Level 2 
model predictions as well as those of the lesioned model (Level 1) and 
both chance predictions (Chance 1: random decision to switch, Chance 
2: random prediction of next sampled item) to the children’s, capuchin 
monkeys’ and chimpanzees’ behavior. To evaluate how well the model 
predictions describe the data, we compared them separately for each 
species by minimizing the negative log-likelihood for the model’s pre
diction of the observed data. In this process, empirical switch rates and 
model predictions for each of the four models were compared separately 
for every trial and condition before calculating a sum score for each 
model and species. Model comparisons were then conducted using the 
difference in AIC scores. AIC scores determine model fit while favoring 
simpler models with fewer free parameters. ΔAIC > 2 is generally 
considered strong support for the higher-scoring model. In an explor
atory analysis we conducted a parameter sweep for potential switching 
costs from 0 to 0.5 in steps of 0.01 for the Level 2 and Level 1 model 
(across both conditions) and compared them to the data using the dif
ferences in AIC scores. In a final step, we compared the Level 2 and Level 
1 model with their respective switch cost value that best described the 
data.3 

2.3. Results 

2.3.1. Statistical results 
Children. The linear model revealed a highly significant effect of 

condition (F(1) = 20.13, p < 0.001), showing that overall, children 
switched sooner in the uniform (M = 32.73 s) than in the mixed con
dition (M = 46.92 s; see Fig. 3). The main effects of version (p = 0.055) 
and age (p = 0.065) were trending towards significance (see Table S4). 
Children tended to take the longest time to switch in the cup version (M 
= 45.16 s), followed by the foraging (40.89 s) and machine version 
(33.80s). 

The condition by age interaction trended towards significance (F(1) 
= 3.74, p = 0.054), showing that overall younger children tended to 
differentiate more between conditions than older children (Fig. 5, right). 
Looking at the plot for age in years (Fig. 5, left), 3-year-olds show a 
strong difference between conditions in the cup and foraging version but 
do not seem to consider the evidence in the machine version. Four-year- 
olds show a more consistent difference between conditions across ver
sions. In contrast, 5-year-olds differentiated most clearly between con
ditions in the machine version but showed only small differences in the 
other two versions. All other two-way interactions were not significant 
(p ≥ 0.16). 

There was also a trend towards significance in the three-way inter
action of version by condition by age (F(2) = 2.88, p = 0.058). The 
emtrends analysis showed that the condition difference was significantly 
reduced with increasing age in the cup version (estimate = − 0.005, SE 
= 0.002, t(200) = − 2.46, p = 0.01) but not in the other two versions 
(foraging: estimate = − 0.003, SE = 0.002, t(200) = − 1.55, p = 0.12; 
machine: estimate = 0.001, SE = 0.002, t(200) = 0.77, p = 0.44). The 
two-way interaction between version and condition was not significant, 
however pairwise comparisons of the conditions within each version 
revealed a strong significant difference in the cup version and foraging 
version but not in the machine version (see Table S5 and Fig. 5). 

Chimpanzees. The linear mixed model (Table S6) revealed a sig
nificant condition by version interaction (F(2) = 3.42, p = 0.04) as well 
as a significant main effect of condition (Muniform = 30.14, Mmixed =

37.74, F(1) = 4.61, p = 0.04). The main effect of version trended to
wards significance (F(2) = 48.72, p = 0.06). Pairwise comparisons 
showed that the chimpanzees in the machine version switched signifi
cantly quicker in the uniform condition than in the mixed condition 
(estimate = 26.12, SE = 8.66, t(60.1) = 3.02, p = 0.004). We found no 
significant differences between conditions in the other two versions (see 
Table S7 and Fig. 6). 

Capuchin Monkeys. The linear model revealed no significant con
dition by version interaction (F(2) = 0.44, p = 0.65). The main effect of 
condition on the time to switch shows a slight trend towards significance 
(F(1) = 2.88, p = 0.098, Muniform = 22.85 s, Mmixed = 33.69 s). In 
contrast to the chimpanzees and children, where the “number of samples 
before the switch” variable confirms their sensitivity to the condition- 
specific evidence (see Table S10 and S12), the capuchin monkeys 
show no difference between conditions in the number of items they 
sample before the switch (Muniform = 7.77 samples, Mmixed = 7.81 
samples, p = 0.97, Table S14). For the capuchin monkeys, the time and 
number analyses are based on the same data, as in both, all 3 versions 
were included (as here the foraging 2 version provided clearly countable 
results). Thus, the marginal condition difference in the time variable is 
only based on capuchins sampling the test evidence slightly slower in the 
mixed as compared to the uniform condition but not on an actual dif
ference in the number of samples seen before the switch. Pairwise 
comparisons (of the time and number variable) showed no significant 
differences between the uniform and the mixed condition within any 
version (see Table S9 and S15; Fig. 6). In addition, the model revealed 
that the effect of version was trending towards significance (F(2) = 2.99, 
p = 0.06), as monkeys switched slightly earlier in the cup (M = 18.15 s) 
compared to the foraging 2 (M = 33.25 s) and machine (M = 35.94 s) 
version. 3 The exploratory analysis of switch costs was recommended by a reviewer. 
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2.3.2. Model comparison 
The change in the condition difference in children’s switching rate 

across test samples correlates highly with the level 2 model prediction (r 
(7) = 0.84, p ≤ 0.01; see Fig. S6). Both, children and the Level 2 model 
predictions show the largest difference in switching rates between the 
uniform and mixed conditions after the first item, which decreases 
progressively with subsequent samples. Here, the Level 2 model pre
dicted that, for all species, about 40–43% of participants should switch 
after the first low-value sample in the uniform condition but that only 

around 13–15% should switch after one test sample in the mixed con
dition. The corresponding empirical values are 31% and 14% for chil
dren and 15% and 4% for chimpanzees. 

The correlation between chimpanzees’ predicted and empirical 
condition difference after each sample is of medium strength but not 
significant (r(7) = 0.40, p = 0.28). This is likely because, while the 
model and the chimpanzees exhibit a parallel decrease in the switching 
rate difference from the first to the 5th test sample, thereafter the 
empirical switch rate difference does not decrease as predicted (see 

Fig. 5. Results for children by condition and version showing the time in seconds until the switch. Left: Results separated by age group. Means are indicated by 
diamond symbols, medians are indicated by horizontal lines. Note that we included age as a continuous measure in the analysis and only used age in years here for 
presentation purposes. Right: Results for the time until the switch dependent on age for both conditions collapsed across all versions. Displayed are the individual 
data and the regression lines for each condition. 

Fig. 6. Results for the time until the switch measured in all species, versions, and conditions. Means are indicated by diamond symbols, medians are indicated by 
horizontal lines. For the capuchin monkeys, only data from Foraging 2 was used for all analyses due to the unreliability of their first foraging version). 
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Fig. S6). The capuchin monkeys’ empirical condition difference is small 
and shows no clear direction. Thus, it is not correlated with the level 2 
model predictions (r(7) = − 0.07, p = 0.86). Notably, in the non-human 
species, the number of switching individuals per condition after each 
new sample is very small (n ≤ 5). Consequently, the behavior of a single 
individual can greatly impact the switching rate difference. Thus, the 
correlation results for these species should be interpreted with caution. 

Regarding the absolute rate of switching across the sampled items 
during the test, the model without any switching costs predicted much 
quicker switching in both conditions than we saw in all three species. 
Thus, the empirical data were in absolute terms best predicted by the 
Chance 2 (children and capuchin monkeys) or Level 1 model (chim
panzee) which predict no condition difference but overall lower 
switching rates (see Fig. S6, S8 and the SM for more details). While the 
Level 2 predictions indicate that <3% in both conditions would fully 
empty the first container before switching, more than a third of each 
species sampled all ten items from the first container before exploring 
the alternative (see Fig. 4). This kind of comparative “stickiness” or 
reluctance to switch relative to an idealized model has been found in 
previous foraging and patch-switching tasks (Cain et al., 2012; Hutch
inson, Wilke, & Todd, 2008). Thus, we considered the possibility that 
the participants incorporated switching costs into their foraging decision 
during the test situation. Indeed, the parameter sweep showed that all 
three species match Level 2 and Level 1 model predictions best when 
including a switch cost of around 0.35 (see SM for detailed results). 
When comparing the models with their respective optimal switch cost 
value, the Level 2 model predicts the children’s data best; while the 
Level 1 model still outperforms the Level 2 model for the non-human 
species (see Table S26). Likewise, when focussing on the relative 
switching rates after the first sample only, even without considering 
switching costs, the Level 2 model matches children’s performance best, 
while chimpanzees and capuchin monkeys are best described by the 
Level 1 predictions (see SM for AIC values). 

2.4. Discussion 

The results of Experiment 1 show strong evidence for abstract 
reasoning abilities in 3- to 5-year-old children who switched away from 
the first test container earlier in the uniform compared to in the mixed 
condition. While this effect seemed stronger in younger age groups and 
showed some variability across versions (see General Discussion), those 
factors did not reach significance. The children’s condition difference in 
switching behavior was well predicted by a hierarchical Bayesian model 
capable of Level 2 overhypothesis formation. Similarly, albeit to a lesser 
extent, the chimpanzees’ switching behavior also showed a significant 
difference between conditions that correlated to a medium extent with 
the Level 2 model predictions, even if this was mainly driven by only one 
version of the experiment. In general, all species were much more hes
itant to switch than the overhypothesis model predicted (see General 
discussion), and thus, the original model failed to predict their behavior 
in absolute terms. However, when including a switch cost parameter in 
the model, the children’s behavior is best described by the Level 2 model 
while the non-human primates absolute switching numbers better match 
the Level 1 prediction. In contrast to children and chimpanzees, the 
capuchin monkeys have failed to show any sensitivity to the condition- 
specific evidence. This suggests that their abstract reasoning abilities are 
somewhat reduced, less robust or slower than that of apes and humans. 
However, slight variations in the experimental procedure or species 
differences in other cognitive abilities could also contribute to this 
pattern in results. In experiment 2, we further explore the reasons for the 
capuchin monkeys’ failure in experiment 1 by varying the reward 
structure to be more similar to that of children. 

3. Experiment 2 

In the first experiment, one crucial difference between the study 

design for non-human primates and children lies in the reward items’ 
nature. Whereas children received balls that could be used for a game 
(high value) and entirely non-functional blocks (low value), the non- 
human primates received food items of different values. Thus, for chil
dren, the two categories of high- and low-valued items were clearly 
distinguishable based on form and function. While the food rewards for 
the monkeys and chimpanzees had relatively higher and lower values, 
there is not necessarily a clear categorical distinction. Further, even food 
items of low value could be eaten and thus were never non-functional or 
of zero value. To align the reward structure for children and non-human 
primates, we conducted a follow-up study with the capuchin monkeys 
(we could not conduct this study with the chimpanzees due to testing 
constraints). Here, we presented them with only two types of rewards 
that differed in function and appearance, as was the case for children. 
Using this simpler design, we predicted that the monkeys might find it 
easier to learn the overhypotheses about the reward distribution within 
and across containers and thus show a difference in their switching 
behavior between the two conditions. 

3.1. Method 

3.1.1. Participants 
We tested 16 capuchin monkeys at the Living Links research centre, 

all of which had participated in at least one session of the previous study 
(6 female, age: M = 8.81 ± 3.51 SD, range 5–18 years). Five additional 
monkeys were excluded from the analysis due to experimenter error (3) 
or because they asked to leave the testing area before the final test phase, 
and their session could not be repeated in the given time for the study 
(2). 

3.1.2. Materials and procedure 
The procedure was identical to the previous study except that only 

two different object types were involved: pieces of grape as high-value 
items and blue stones as low-value items. The non-edible stones were 
familiar to the monkeys, as they have been used in previous studies, but 
they were never associated with positive or negative reinforcement. Due 
to this modification, the monkeys already saw the same low-value item 
type used in the test phase during the evidence trials. We only imple
mented this experiment in the machine version, as it provides the most 
precise measure for the number of items before the switch. It was also 
the version in which chimpanzees were most successful in Study 1. The 
appearance of the machines was altered so that carry-over effects from 
Experiment 1 were minimized (see SM). 

The monkeys were assigned to either the uniform or the mixed 
condition in a between-subjects design. As this version resembled the 
previous machine version of the main experiment, we counterbalanced 
whether monkeys received the same condition as in their previous ma
chine session or if they now experienced a different condition in this 
version. Of the 8 monkeys in the uniform condition, 4 had received the 
uniform condition in the previous machine version, whereas 4 had 
previously experienced that machines contained a mix of items. Of the 8 
monkeys in the mixed condition, 3 had received the mixed condition 
previously in their machine version, whereas 5 had previously experi
enced the uniform condition with the machines. The first machine 
condition in Experiment 1 was session 3 for all subjects, and the current 
study was conducted as session 5 (after the second foraging version). 

3.2. Results and discussion 

As shown in Fig. 7, the capuchin monkeys switched earlier (after less 
samples from the first container) compared to experiment 1, and they 
descriptively showed more sensitivity to the condition-specific evidence. 
However, a two-sided t-test revealed no significant difference (t (13.99) 
= 1.32, p = 0.21) between the mixed and uniform conditions regarding 
the number of sampled items before the switch. The correlation of the 
predicted (Level 2) and empirical condition difference in the switch rate 
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after every test sample is of medium strength but not significant (r(7) =
0.50; p = 0.17; see Fig. S6 and Model Comparison for details of this 
analysis). Given the small sample size and the overall low switching 
rates (per condition and sample number n ≤ 2 switch), this result must 
be interpreted with caution. Nevertheless, after the first five samples, 6/ 
8 monkeys in the uniform condition have switched, while only 3/8 did 
so in the mixed condition, a result that is consistent with the direction of 
the predicted effect. 

Comparing the absolute values for the data and the model pre
dictions regarding the percentage of remaining participants that switch 
after each sample (without considering switching costs), the Level 1 
model (AIC = − 83.17) most accurately predicts the capuchin monkeys’ 
choices (comparisons to Level 2 (AIC = − 88.35) ΔAIC = 5.18; Chance 1 
(AIC = − 119.99) ΔAIC = 36.83; Chance 2 (AIC = − 110.86) ΔAIC =
17.69). This pattern resembles the results of the children and chim
panzees in Experiment 1, whose results were best described by 
condition-independent models (Level 1 and Chance 2) with lower pre
dicted switching rates, despite showing a clear empirical condition dif
ference. However, when including the best fitting switch cost parameter 
to the model, the capuchin’s behavior was best predicted by the Level 2 
model (AIC = − 69.11, see Fig. 3 and SM). Thus, it is possible that the 
capuchins were able to generalize the condition-specific knowledge to 
the test situation but also considered the costs of switching containers. 

Overall, these findings suggest that reducing cognitive demands by 
emphasizing category membership and implementing a larger value 
contrast between categories is a promising route of future study design, 
but was in this limited sample of capuchin monkeys not sufficient to 
detect the ability for overhypothesis formation. 

4. General discussion 

Over the course of two experiments, we examined whether children, 
chimpanzees, and capuchin monkeys can form overhypotheses about 
item distributions, given limited evidence, to optimize their search for 
high-valued rewards in different situations. A probabilistic hierarchical 
Bayesian model showed that a learner capable of abstract concept for
mation should switch away early from a container providing low-valued 
rewards when previously self-sampled evidence suggested that all re
wards in a container tend to be the same. However, when previously 
sampled containers provided a mix of high and low-value items, the 

model predicted that a learner capable of forming overhypotheses would 
persist at sampling from such a container for longer before switching to 
an alternative. 

Preschoolers’ switching behavior matched the predicted difference 
between conditions, showing that they can form overhypotheses and 
generalize abstract patterns across situations already at age 3. There was 
also tentative evidence for chimpanzees’ ability to form abstractions, as 
they showed the expected difference between conditions in one of three 
experimental contexts. However, in contrast to the capuchin monkeys, 
chimpanzees ate many low-valued items during the test. This suggests 
that chimpanzees may have less extreme food preferences than assumed 
by the model (which was based on the monkeys’ preferences). Thus, the 
results may represent a conservative estimate of their actual abilities for 
abstraction. Finally, in contrast to the other species, the capuchin 
monkeys’ behavior in Experiment 1 showed no sensitivity to the 
condition-specific evidence and was best explained by a model based on 
random expectations about the item distributions, and thus provided no 
evidence for abstract concept formation in this species. With more 
distinct reward categories (Experiment 2) the capuchin monkeys’ per
formance resembled both the model capable of abstractions and chil
dren’s performance in Experiment 1 more closely. However, the 
difference in the monkeys’ performance across conditions was not sta
tistically significant. 

Our results contrast with the usually poor performance of young 
preschoolers and non-language-trained chimpanzees in abstract rela
tional reasoning tasks (e.g. Christie & Gentner, 2010; Hochmann et al., 
2017; Premack, 1983; Walker et al., 2016). Thus, our findings contradict 
the assumption that flexible abstract reasoning is a human-unique 
ability that relies on relational language (Gentner, 2003; Penn et al., 
2008). As evidence from infants and toddlers suggests, detecting over
hypotheses might be present already from an early age – before the 
emergence of relational language- and possibly supports the efficient 
knowledge expansion in early childhood (Dewar & Xu, 2010; Sim & Xu, 
2015; Walker & Gopnik, 2014). Our results are further supported by 
another study showing that task designs beyond the RMTS task can 
reveal abstract reasoning abilities in human preschoolers. In Felsche and 
colleagues (2023) 4 and 5-year-old children in a passive sampling 
paradigm were sensitive to the general sorting patterns of reward items 
based on their type or size and adapted their choices accordingly. 

The common critique of studies with non-human participants 

Fig. 7. Results and model predictions for Experiment 2. Left: Mean number of samples before the switch for each condition, including individual monkeys’ absolute 
values. Means are indicated by diamond symbols, medians are indicated by horizontal lines. Right: Empirical cumulative switching rates for capuchin monkeys and 
the predicted cumulative switching rates for all four modelled learners. 
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claiming that success in RMTS tasks is based on lower-level perceptual 
processes like comparing the perceptual variability (or entropy) within 
stimulus pairs (Penn et al., 2008; Wasserman et al., 2017) cannot be 
applied in our study. Across conditions, we also vary the perceptual 
similarity of the successively sampled items from each container (e.g. all 
same vs. different) during the evidence phase. However, we do not 
believe that a representation in terms of a minimalist version of expected 
entropy (that does not incorporate some aspect of abstraction) could, on 
its own, account for success in this task. In the final test phase of our 
study, participants made choices based on yet unseen, predicted future 
samples from the test containers instead of being confronted with a 
forced choice between visible item pairs or arrays. In addition, the test 
situation in all conditions only presented uniformly low-valued items 
and children and chimpanzees already showed a condition difference in 
their switching behavior after only a single sample from the test box. 
Together with the fact that they never had the opportunity to switch 
containers in the evidence phase, this eliminates the possibility that the 
participants learned a simple perceptual rule like: “low perceptual 
variability of items, switch away from a container; high perceptual 
variability of items continue sampling, “ which would also not be 
adaptive in the case of high-valued uniform items. In contrast to pre
vious studies showing successful abstract reasoning performance in 
primates after hundreds or thousands of trials, our paradigm only 
included a minimal amount of evidence, which further excludes the 
possibility of a slow, associative learning process contributing to the 
results. 

A concern might be that chimpanzees succeed due to a training ef
fect, as they only showed a significant difference between conditions in 
the machine version that was always presented last. We believe that this 
is unlikely as, despite a possibly heightened understanding to pay 
attention to the reward distribution in the evidence phase, nothing from 
the previous versions could have been learned that would support a 
larger condition difference in the third session, as the types of food, 
presentation and foraging method, and condition changed between 
versions. In particular, all chimpanzees gained equal experience with 
mixed and uniform evidence in the first two sessions and thus could not 
have learned that, in general, across all versions, food items in con
tainers are all mixed or all uniform. Following, they could not expect the 
distributions found in the final machine version (and indeed, if they had 
learned something along these lines that would itself be a high-level 
abstraction). Even if they had learned the association that whenever 
sweet potato is presented, both test containers will only provide sweet 
potato (a pattern that is the same in the mixed and uniform version), this 
would not increase the difference in switching behavior between con
ditions but rather cause a general motivation decline to engage in the 
task, which was not the case. 

In contrast to those lower-level explanations, our study provides 
further evidence for more recent arguments explaining population dif
ferences in relational reasoning tasks based on context-sensitive induc
tive biases rather than capacity differences (Carstensen & Frank, 2021; 
Kroupin & Carey, 2021; Walker et al., 2016). Our task design presented 
participants with stimuli and overhypotheses that are intrinsically 
meaningful, an intuitive self-directed foraging mechanism of evidence 
acquisition, and an ecologically valid pat-switching test situation. Those 
attributes contrast with the arbitrary stimuli, abstract patterns, and 
forced-choice situations used in traditional tasks. Thus, our procedure 
may have provided an improved context to measure our participants’ 
abilities for abstraction. 

The difference between the capuchin monkeys, whose performance 
did not differ significantly between conditions, and chimpanzees that 
showed some sensitivity to the abstract patterns, is in line with earlier 
studies demonstrating differences between apes and monkeys in abstract 
reasoning abilities (e.g. Flemming & Kennedy, 2011; Kennedy & Fra
gaszy, 2008; Thompson & Oden, 2000). In addition to this capacity 
difference between the species, variation in related abilities or other 
skills involved in the task performance are conceivable. For example, 

monkeys’ inability to analyze the overall structure of the evidence could 
be rooted in a narrowed focus on individual food items. Research on 
hierarchical stimulus perception supports this assumption. Here, mon
keys seem to process the local components with more ease than the 
global pattern (e.g. De Lillo, Spinozzi, Truppa, & Naylor, 2005; Spinozzi, 
De Lillo, & Truppa, 2003), whereas chimpanzees show more mixed re
sults (Fagot & Tomonaga, 1999; Hopkins & Washburn, 2002). Another 
factor contributing to the species difference could be chimpanzees’ su
periority compared to capuchin monkeys when judging sequentially 
presented item quantities (Beran, 2001, 2004; Evans, Beran, Harris, & 
Rice, 2009). In the current study, monkeys and chimpanzees usually 
consumed at least high-value items as soon as they found them. Thus, 
they were required to keep track of and summarize the (previously 
consumed) evidence to detect the pattern underlying the samples. It can 
be excluded that capuchin monkeys were not motivated to engage in 
efficient search in an experimental context (De Lillo, Visalberghi, & 
Aversano, 1997). Further, it is unlikely that capuchins were insuffi
ciently motivated to look for more high-value food in the test situation 
after eating the evidence items. The overall food amount was equal to 
amounts used in previous studies conducted with these same monkeys, 
in which no motivational decline was observed, and the monkeys’ 
relative preference for the high- vs. low-value items was high (e.g. 
Tecwyn et al., 2017). As mentioned earlier, the less extreme food pref
erences of the chimpanzees as compared to the capuchin monkeys 
potentially led to an underestimation of the actual species difference in 
abstraction abilities, as it may have reduced the chimpanzees’ motiva
tion to look for high-value food after encountering the low-value sam
ples. Supporting the importance of relative food preferences for the 
chimpanzees’ test behavior, their switch behavior is associated with the 
number of consumed low-valued reward items during the test situation. 
In all sessions where chimpanzees switched after sampling 5 or less 
items (and the amount of the low-valued samples during the test could 
be reliably counted, 13 sessions), they also refused to eat any of the 
items (only in one session a single food item was eaten (3% of uncovered 
items)). However, when switching late from the first container, after 
sampling 6 or more items, the chimpanzees had consumed 39% of the 
uncovered items (in 21 of 40 sessions). Thus, when chimpanzees 
consumed more low-valued items, they also sampled more before 
switching to the next container in search of potentially higher-valued 
items. In contrast, capuchin monkeys never consumed any of the low- 
valued test items but still switched relatively late. 

In humans, the literature usually shows an improvement in abstract 
reasoning abilities across the preschool ages from 3 to 5 (e.g. Christie & 
Gentner, 2010; Christie & Gentner, 2014; Hochmann et al., 2017). 
However, our study did not confirm this pattern and instead pointed 
towards a negative developmental trend. This age effect was dependent 
on the version and primarily based on older children switching later in 
the uniform condition than younger children, making the condition 
difference less pronounced in older preschoolers. A study by Ruggeri, 
Swaboda, Sim, and Gopnik (2019) showed an age effect similar to that in 
our study. In contrast to 3- and 4-year-olds, 5-year-olds in that study did 
not connect the knowledge they gained in an evidence phase to a sub
sequent search situation unless it was made explicit by reminding the 
children of the events seen in the evidence right before the test phase. 
One possible explanation for both sets of findings is that older children 
and adults have stronger prior assumptions about general rules (e.g. that 
individual items or properties have causal power) and thus might be less 
flexible in learning or generating new and unusual task-specific patterns 
based on limited evidence (e.g. that relational features are causally 
effective; Bramley & Xu, 2023; Gopnik, Griffiths, & Lucas, 2015; Lucas, 
Bridgers, et al., 2014;). For instance, older children may have a strong 
prior belief that items tend to be sorted by type rather than mixed 
together (or vice versa), which the evidence in our study is insufficient to 
overcome. A more practical explanation could be that older children 
were less motivated than younger children to repeatedly obtain balls for 
the marble run, a tendency reflected in the preference testing results (see 
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Felsche et al., 2023). Thus, they might have been more invested in 
exploring the containers rather than obtaining high-value rewards as 
efficiently as possible. Older children might have also formed a stronger 
normative motivation to adhere to an unintended “game rule” first to 
empty a container or explore it for a while before being “allowed” to 
move on to the next container. We tried not to induce such a normative 
motivation by allowing variation in the number of sampled items per 
evidence container while avoiding complete emptying. The experi
menter also left the immediate test situation to reduce possible social 
normative pressure. However, these measures cannot entirely exclude 
the possibility that especially older children have formed a normative 
motivation in this game-like experimental setting. 

Our study showed that the a priori predictions of a hierarchical 
Bayesian model provide a useful normative model of processes at play 
early in human ontogeny when extracting abstract patterns and making 
predictions in new situations). Children, and to a lesser extent chim
panzees, showed a significant difference between conditions in switch
ing rates, a pattern predicted only by the Level 2 model, and not by any 
of the lesioned alternative models, and the relative difference in switch 
rate across trials showed a high correlation between the model pre
dictions and children’s performance and moderate (but non-significant) 
correlation to chimpanzee performance. 

However, when comparing the absolute model predictions of how 
many participants should switch after each item to the data, the best 
overall prediction for children’s and chimpanzees’ performance was 
achieved by Chance and Level 1 models that ignore the condition- 
specific evidence, despite these models predicting no condition differ
ence in switch rates. A likely explanation for this counterintuitive 
finding is that all species were much more reluctant to switch than 
predicted by the model. The phenomenon of more conservative 
switching rates in the empirical data as compared to ideal learner model 
predictions has previously appeared in computerized search tasks with 
humans (Cain et al., 2012; Hutchinson et al., 2008) and optimal foraging 
theory assessments in multiple other animal species (Nonacs, 2001). 
Hutchinson et al. (2008) argued that optimal models do not consider 
other factors that influence individuals’ behavior like additional in
tentions (e.g. mate search), risks, and uncertainties (e.g., predator 
behavior, nutritional state; Nonacs, 2001), as well as a possible alter
native motivation to learn more about the environment, which might 
favor ‘stickiness’ at the first foraging location. 

Consistent with this interpretation, we conducted an exploratory 
analysis to investigate potential switching costs that may have impacted 
participants’ decision to switch. Here, we found that when including a 
moderate switching cost in the model, children’s absolute rate of 
switching (and that of capuchin monkeys in experiment 2) was best 
explained by a Level 2 learner. While the chimpanzees’ behavior was 
still best explained by the Level 1 model, both models matched the apes’ 
and the capuchin monkey’s behavior better when including the switch 
cost parameter. This parameter could represent the loss in time or en
ergy to physically move to the second container. Although the spatial 
distance between the test containers in our study was minimal, previous 
studies have also shown that primates engage in spatial and temporal 
discounting, which might reduce the relative value of the second 
container (Hopper, Kurtycz, Ross, & Bonnie, 2015; Kralik & Sampson, 
2012). Further, anecdotally, we observed that, given that sampling from 
a container was fast and took little effort, the time needed to switch 
containers could instead be sufficient to sample at least one more item 
from the first container. Further switching costs could include the 
cognitive effort needed to inhibit sampling from the current reward 
source and shift attentional focus to the next container. 

In addition to the switch cost analysis, we also explored other likely 
factors that the normative model missed but which might still influenced 
the participants’ switching behavior, like the motivation to adhere to an 
implicit game rule of wanting to empty a container before switching (see 
SM). It is also possible that the participants acted based on a different 
prior, for instance, initially assuming that items within containers are 

more likely to be somewhat mixed. Other possible causes of the 
comparatively slower switching rate relative to the optimal model across 
all species include a possible motivation to increase the quantity rather 
than the quality of acquired items, combined with a learned pattern that 
once they abandon a container, it becomes unavailable. Thus, searching 
exhaustively before switching maximizes the overall reward quantity. 
Further, studies on the endowment effect show that both humans and 
non-human primates value items more highly once they are in their 
possession and thus do not always follow the predictions of rational 
choice models (e.g. Brosnan et al., 2007; Lakshminaryanan, Keith Chen, 
& Santos, 2008). 

Another possibility is that sampling behavior was influenced not only 
by the expected reward value but also by the informational value of the 
next sample from each container. Especially given the absence of time 
pressure and direct observation during the test phase, participants might 
have sampled longer from the first container to gather more information 
about its contents and the general item distribution pattern. However, at 
least for children, it was emphasized that these were the last two con
tainers, eliminating the utility of such information for future searches. 
While mere curiosity about the first container’s contents is a possibility 
that could have led to later switching, the first item from the second 
container with completely unknown content holds even higher infor
mational value, which should have motivated overall faster switching 
rates. 

Importantly, once an overhypothesis is established, the information 
value of the sampled items differs by condition: the first item out of the 
uniform containers provides all of the information about its contents, 
diminishing the informative value of subsequent items; in mixed con
tainers items are generally less informative. Although participants may 
have considered informational value, its impact on sampling behavior 
can be expected to be low, given the overall low empirical switch rates 
and the non-human primates’ strong motivation to obtain high-value 
items with comparatively lower curiosity rates (Sánchez-Amaro & 
Rossano, 2023; Forss & Willems, 2022; but see Wang & Hayden, 2019). 
Future research could include more of these factors (e.g. varying priors, 
switch costs, normative expectations, informational value) a priori in 
the model and then generate predictions to manipulate them experi
mentally to see which role they play in the participants’ decision-making 
alongside overhypothesis formation. 

We used multiple versions of our experimental paradigm to examine 
how generalizable the participants’ performance was across different 
contexts and to maximize each species’ opportunities to show evidence 
of abstract learning if versions were not equally accessible to each spe
cies. Our aim was for the different modes of presentation to vary in their 
optic and haptic properties but not in the presented amount or type of 
evidence or other factors that could influence the switching rates (e.g. 
cost of switching). However, one interesting difference between the 
foraging and cup versions on one side and the machine version on the 
other is that in the first two conditions, participants could anticipate the 
total amount of items inside the containers (either by seeing the total 
number of cups or by successively removing filling material from the 
foraging containers). When operating the machines, participants never 
knew how many items were left in the apparatus due to the opacity of 
the material. 

When learners assume small, finite amounts of items in containers, 
they may anticipate that removing low-valued items from mixed con
tainers increases the chance of retrieving high-valued items later. 
Consequently, they might remain longer with the first test container in 
the mixed condition. For the uniform condition, it matters much less 
whether some low-valued items are removed or replaced after sampling, 
as the remaining items are highly likely to be low-value either way. 
Thus, the relative prediction for switching in the conditions (switching 
later in the mixed condition) stays the same. However, our participants 
switched later than the model predicted in both conditions, which would 
not be predicted by assuming finite rewards. Nevertheless, it would be 
interesting to explore the effects of the assumed size of the item 
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populations in containers and, thus, their level of depletion on the search 
behavior and the speed of forming abstract concepts. Expanding the 
model with such a variable would help to explain performance differ
ences between versions. The multi-version design reveals the context- 
dependency of participants’ spontaneous ability to form abstract con
cepts, which is also evident in children’s variability in RMTS perfor
mance (e.g. Christie & Gentner, 2014; Goddu et al., 2020; Walker et al., 
2020). Thus, our study shows that it is crucial for the interpretation of 
results to implement designs in varying contexts, as only using one 
version might have led to overly simplistic or even drastically different 
conclusions. The importance of the testing context is also highlighted by 
the capuchin monkeys’ performance in the second experiment, in which 
the observed condition difference resembled the predictions of the 
computational model more closely than their performance in Experi
ment 1. The change in reward types from high- vs. low-value in exper
iment 1 to edible vs. non-edible in experiment two has potentially 
helped this species to differentiate between conditions. However, given 
the missing statistical significance of the result in this relatively small 
sample, it is still unclear whether capuchin monkeys can spontaneously 
form abstract concepts. Nevertheless, these results should inspire future 
research investigating abstract reasoning abilities in monkeys to move 
away from highly arbitrary computerized tasks, like the RMTS proced
ure in which capuchins have only showed success after lengthy training 
(e.g. Truppa et al., 2011) as well as other procedures with high demands 
on memory and inhibition (e.g. Felsche et al., 2023) towards more 
ecologically valid and simplified situations like the patch switching 
scenario in our study. Further, our study shows that the replication of 
task paradigms in varying contexts and with multiple materials or 
reward types seems to be crucial if we want to understand the robustness 
and nature of different species’ abstract reasoning abilities. 

In conclusion, our study strengthens the view that the ability for 
abstract reasoning is present early on in human development and can be 
characterized by probabilistic hierarchical Bayesian models. Variability 
in children’s performance across tasks and age groups seems to be 
caused by contextual factors that appeal to learned biases and additional 
task demands rather than differences in their capacity for abstraction 
(Hoyos et al., 2016; Kroupin & Carey, 2021). In contrast to previous 
views arguing for a stark divide between humans and other animals 
(Gentner, 2003; Penn et al., 2008), or apes and monkeys (Thompson & 
Oden, 2000) in abstract reasoning, our study supports a perspective of 
more gradual differences of this ability between species (Carstensen & 
Frank, 2021; Gentner et al., 2021; Katz, Wright, & Bodily, 2007; Seed, 
Hanus, & Call, 2011). The study highlights the importance of a multi- 
version experimental design, especially in a comparative setting, as 
different species might have different requirements to reveal optimal 
performance. Further, it shows that applying probabilistic hierarchical 
Bayesian models produces a more informative species comparison as it 

allows to incorporate group-specific factors like the received amount of 
evidence or reward preferences. In addition, the models provide a more 
comprehensive and testable formalization of the assumed underlying 
cognitive structure assumed to play a role in different groups of par
ticipants. Future studies could extend the approach of using computa
tional models and more variable paradigms to study abstract relational 
reasoning, perhaps using a wider variety of probabilities between fully 
mixed and fully uniform. The method used here could be applied across 
a wide range of species, age groups, and cultures and we suggest it is a 
promising direction for future work on the origins of abstract thinking. 

CRediT authorship contribution statement 

Elisa Felsche: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Visualization, Writing – original draft. 
Christoph J. Völter: Data curation, Formal analysis, Investigation, 
Writing – review & editing. Esther Herrmann: Project administration, 
Resources, Writing – review & editing. Amanda M. Seed: Conceptual
ization, Formal analysis, Funding acquisition, Methodology, Resources, 
Software, Supervision, Writing – review & editing. Daphna Buchs
baum: Conceptualization, Formal analysis, Funding acquisition, Meth
odology, Resources, Supervision, Writing – review & editing. 

Data availability 

The data, WebPPL and R scripts associated with this paper are 
available on OSF (https://osf.io/u9vbp/). 

Acknowledgments 

We thank Jessica Da Cunha, Nishat Kazi, Katrina Palad, Mrinal 
Anagal, Justine Biado, Kiah Caneira, and Kay Otsubo for help with the 
children’s data collection. We also thank the Royal Ontario Museum and 
Ontario Science Centre for hosting this research. We are grateful to the 
Royal Zoological Society of Scotland (RZSS) and the University of St 
Andrews for core financial support to the RZSS Edinburgh Zoo’s Living 
Links Research Centre, where this project was carried out. We thank the 
RZSS keeping and veterinary staff for their care of animals and technical 
support during data collection. We are thankful to Richard Vigne, 
Samuel Mutisya, Stephen Ngulu, the board members, and the Sweet
waters Chimpanzee Sanctuary staff in Kenya for their support. This 
project has received funding from the European Research Council (ERC) 
under the European Union’s Horizon 2020 research and innovation 
program (grant agreement No. [639072]). We acknowledge the support 
of the Natural Sciences and Engineering Research Council of Canada 
(NSERC) [funding reference number 2016-05552]. 

Author Note. We have no conflicts of interest to disclose.  

Appendix A. Appendix 

Following the model of Kemp et al., 2007 we use a Dirichlet-multinomial model (Gelman, Carlin, Stern, & Rubin, 2014), which describes the 
relationships between the data and parameters at different levels of abstraction. 

Formally, the model is described as: 

α ∼ Exponential(λ).

β ∼ Dirichlet(1).

θi ∼ Dirichlet(α, β).

yi ∼ Multinomial
(
θi).

With yi
j representing the type (e.g., a high-value item) of the jth item sampled from the ith container, and θi representing the distribution of items 

types within that container, with θi
k indicating the probability of sampling item type k (e.g., a low-value item) from container i. Throughout the main 
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analyses in this article λ = 0.5, which corresponds to a fairly uniform distribution across the probabilities for different item compositions in con
tainers. Before seeing any evidence, it slightly favours skewed and uniform distributions over equal mixes of high- and low-valued items but it is 
sensitive to the evidence presented in both conditions. See the supplementary material for a more detailed analysis of the effect of different values of λ 
on the model predictions. 

The two parameters forming the overhypothesis at the second level of abstraction are α, describing the extent to which item types within each 
container tend to be uniform and β, which describes the overall composition of item types across all containers. To model overhypothesis formation, 
we infer p(α, β | Y), the posterior distribution over (α, β), given the observed items Y, drawn from the N evidence containers, 

p(α, β |Y)∝
∫ ∏N

i=1
p
(
yi|θi)p

(
θi|α, β

)
p(α)p(β)dθ (1)  

estimated using the Metropolis-Hastings Algorithm. Here we used 1 chain with 500,000 samples, a lag of 10 and a burn in of 1000. 
To predict the participants’ behavior in the test situation, the model estimates the expected distribution over item types for the next sampled item j 

from the first test container by marginalizing p
(

yi+1
j | yi+1

− j , α, β
)

the predicted probability of the next sample from the first test container i + 1 being of a 

specific type, given the already known samples from this container, yi+1
− j (everything not j), and a specific overhypothesis, represented as the expected 

value of α and β, estimated from the evidence containers, 

p
(

yi+1
j | yi+1

− j

)
=

∫ ∫

p
(

yi+1
j | yi+1

− j ,α, β
)

p(α, β|Y)dα, dβ (2) 

Which we approximate by averaging p
(

yi+1
j | yi+1

− j ,α, β
)

across sampled values of p(α, β|Y). For a Dirichlet-Multinomial distribution, 

p
(

yi+1
j | yi+1

− j ,α, β
)

, the posterior predictive distribution for the type of the next item in the container, given a fixed set of hyperparameter values, has a 

simple known closed form solution. 

p
(

yi+1
j = k | yi+1

− j ,α, β
)
=

Nk + αβk
∑K

m=1Nm + αβm 

The predictions for the type distribution in the second, yet untouched, test container and thus also the predictions for the next sample from this 
container are inferred in this same manner. However, as there are no observed items from this container, N = 0, so the inference is based solely on the 
updated overhypotheses. 

Finally, the choice of whether to continue sampling from the first test container or to switch to the second one is determined based on the expected 
utility of this container. The expected utility of a container is calculated by summing the utilities of each item type (see below), weighted by its 
probability of being the next sampled type. Assuming that learners prefer a container proportional to its relative utility (the bigger the difference 
between containers, the more the expected higher value container is preferred; Luce-Shepard choice rule, Luce, 1959; Shepard, 1957; Swait & Marley, 
2013), the probability to switch is calculated: 

P(c = i|u) = 1 − Min
(

1,
eu1

eu2

)

(3) 

The relative utilities u of the high and low-valued rewards are inferred from the preference testing choices c using the preference inference model 
described in Lucas, Bridgers, et al. (2014). Again, it is assumed that a learner becomes increasingly likely to choose an option as its expected utility 
increases. However, this choice is treated as a simultaneous choice between multiple items (rather than a choice to switch from the current item to 
another): 

P(c = i|u) =
eui

∑
jeuj

(4) 

Following Lucas, Bridgers, et al. (2014), we infer item type utilities u from learner’s choices c, by computing the posterior probability 
p(c|u)∝p(u|c)p(u), estimated using the Metropolis-Hastings algorithm. We assume a priori that the type preferences (utilities) are normally distributed, 
with μ = 0, and variance σ2 = 2. Here we used one chain with 10,000 samples and a burn in of 500. We separately inferred type preferences for 
children and capuchin monkeys, and used the capuchin’s preferences as a stand in for those of the chimpanzees, as discussed in the paper. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cognition.2024.105721. 
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