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Abstract

A framework is set out for estimating the effects of interventions on child health that
considers changes in the allocation of family resources, who among children survive (sur-
vival selectivity), and changes in the health of surviving children net of family resources.
Estimates based on structural-equations semi-parametric models applied to data describ-
ing households from rural areas of two low-income countries indicate that conventional
reduced-form estimates understate the effectiveness of improving sanitation facilities. This
is due to the reduced allocation of household resources to children in households with
better facilities but not to mortality selection, which is negligible.
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1. Introduction

Considerable attention has been paid in recent years to the influence of public
programs, the socioeconomic status of parents, and parental behaviors on both
the health and mortality of children (Behrman and Deolalikar, 1988a). Studies
by Behrman and Deolalikar (1988b), Strauss and Mehra (1988), Thomas et al.
(1988), Pitt, Rosenzweig, and Hassan (1990a, 1990b) are recent examples of
studies of child health in low-income countries in which the health outcomes
of children in the sampled populations are related to the availability of health
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programs and facilities in the area in which they reside, the prices of food and
other goods, and observed exogenous characteristics of the individual and his or
her parents. From these reduced-form equations, inferences are commonly drawn
about the relative effectiveness of a variety of interventions, including invest-
ments in health infrastructure, in influencing measured health outcomes, such as
frequency of illness or height and weight. Many studies have also been carried
out that examine the impact of similar variables on the survival of children (e.g.,
DaVanzo, 1988; Olsen and Wolpin, 1983). These latter studies as well as those
concerned with health status indicate the importance of mother’s schooling, but
few general conclusions can be made about the effects of particular interventions
on health. However, studies of the determinants of health generally do not con-
sider mortality; they are based on samples of surviving children. To the extent
that children who survive differ systematically from those who do not, as sug-
gested by the literature on child survival, inferences about the effects of raising
adult schooling levels or of particular program interventions based on samples
of surviving children, as is conventionally done, may be misleading, particularly
in high-mortality populations. Indeed, it is likely that such estimates will lead to
understatements of the effectiveness of health-augmenting interventions.

The average health of a surviving population may change in response to an
intervention that improves health facilities for two distinct reasons: (i) the inter-
vention may alter the investments made by parents in children and (ii) changes
in mortality induced by the intervention may alter the average health of the sur-
viving population by allowing those individuals with higher inherent probabilities
of illness (those more frail or less healthy) to survive. Reduced-form estimates of
the determinants of health from samples of surviving children provide the effects
of interventions on the average health of surviving children inclusive of both
of these effects. To assess the effectiveness of an intervention thus requires that
both responses, of parents and of survival, be taken into account. It is recog-
nized that individuals have different levels of inherent healthiness or frailty (see
Vaupel, 1988). Such endowments of health, which include individual-specific in-
herent healthiness and also environmental influences that affect health regionally
but cannot be influenced by households, might be expected to be importantly
related to the likelihood of infant death.

In this paper, we set out a framework for estimating the effects of health
interventions that improve the health infrastructure that takes into account three
responses: a) changes in the allocation of family resources (i.e., nutrition) to chil-
dren, b) changes in who among children survive, and c) changes in the health
of the children who survive net of family resource allocation. We pay particular
attention to the endogenous allocation of household resources to children and to
the selectivity effects of alterations in the health infrastructure via their effects on
child survival. We obtain estimates of the effects of improved nutrition and of
water sources and waste disposal facilities on anthropometric measures of child
health using data sets from two countries — Bangladesh and the Philippines — that
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provide the requisite detailed fertility, mortality, nutrition, and health information
necessary to implement the full model. Changes in water and waste facilities can
potentially affect the spread of disease, and thus improvements in such facilities
can potentially reduce illness and mortality and lead to better health among sur-
vivors. Yet most studies, based on reduced-form estimates applied to surviving
children, do not yield significant health effects.

Econometric techniques for obtaining estimates corrected for nonrandom sam-
ple censoring have been applied to a variety of topics in the economics and
sociological literatures in the last decade, but have never been applied com-
prehensively to child health, where problems of selectivity would appear to be
potentially severe, particularly in populations with high rates of child mortal-
ity. Moreover, the results obtained may be sensitive to the assumptions made
about error distributions, which do not come from economic (or any other) the-
ory. Standard models of selectivity have considered only a limited number of
distributions (e.g., normal (Heckman, 1979)). Recently, however, methods of es-
timation for selectivity models have been developed (Robinson, 1988; Powell,
1987; Ichimura and Lee, 1991) that yield consistent estimates of the behavioral
parameters and permit classical hypothesis tests without imposing any distribu-
tional assumptions on disturbances. Moreover, such procedures allow tests of the
distributional assumptions commonly employed in selection models. We employ
newly-developed semi-parametric estimators in the context of a structural equa-
tions system to estimate (i) the effects of water and sanitation facilities on child
survival and (ii) the effects of increased calorie consumption and improvements
in the health infrastructure on measures of children’s nutritional status net and
gross of the effects of these interventions on child survival.

2. Theory

To fix ideas about the roles of heterogeneity in health, health investments,
and mortality selectivity in assessing the effects of improvements in the health
infrastructure, it is useful to examine a simple model of health determination.
The central feature is the health technology, given by h; = h(z;, y,v;), in which
vj = p+ e, hj is the health of a person in period j of his/her life, z; re-
presents the resources or inputs (nutrition) allocated to health in that period, y
represents the health infrastructure (water quality, sanitation), y represents the
health endowment, that component of an individual’s health that is not subject to
intervention and is not observable to the data analyst, and e, represents a random
health shock (illness) at period j.

The ‘effectiveness’ of a change in y is given by 04/0y when no other changes
in the health inputs occur. The observed or ‘reduced-form’ effect of a change in
y on an individual’s health is obtained by dh}/dy (= 0h/0y +(0h/0z;)(dz;/dy)).
This indicates that the reduced-form relationship between y and h} depends not
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only on the effectiveness of y but also on the response of the allocated in-
puts z; to the change in the health infrastructure. If, for example, dz/dy <0,
less resources are allocated to health where the infrastructure is more favorable
to health, then the ‘reduced-form’ relationship between y and A* will under-
state the effectiveness of the intervention. Inferences about the effectiveness of
an intervention on the health of any individual, given by direct estimates of
the health technology, are also affected by the possibility of selective censor-
ing due to mortality. Mortality censoring is nonrandom if survival depends on
health, which in part depends therefore on u. It can be shown as long as the
intervention positively affects first-period health, survival censoring will always
lead to a reduction in the average health endowment of the surviving population,
as the marginal survivor’s health endowment will always be lower. Thus the
reduced-form association between the average health of survivors and any health-
improving intervention depends on both how the intervention affects resource allo-
cations to health and on the association between health endowments and resource
allocations.

To understand the potential biases in commonly-used regression estimates of
the determinant of child health, it is necessary to embed the health technology
and survival in a behavioral model. Consider a simple two-period dynamic model
in which health is by the production function and children may die when 43 < 0.
Parents have only one child and choose the amount of z to allocate to the child’s
health. Maximal expected ‘lifetime’ utility in the first period is

V' = max E{U(A(z1, y,v1), 1) + 0[0(A)V* + (1 = 6(h)U(0, )]}, (2.1)

where V*® = max;, U(ha(z2, y,12),¢2), ¢; = I; — p;z;, and ¢; = period-j parental
consumption, I; = period-j income, d = discount rate, and 0 = probability of
survival. In this model, first-period allocations are made to the child who is
born based on survival expectations, given all available information, including
the health endowment, the price of z and the levels of y and of income in
both periods. In the second period, however, uncertainty is resolved, and the
allocation problem is static. Consider linear representations of the reduced-form
health equation in the first period determining survival, of the health production
technology for period-2 health, and of the demand equation for the z inputs in
the second period:

hi; = xufl + yip + ey = xuf + &, (2.2)
By = z2iPr + x2:Pa + i + €2 = 221 + x2:f2 + viy (2.3)
2 = X3+ Opti + Wi = X370 + wi, (24)

where i indexes any individual who is born, xj; is a vector of all the observed
exogenous variables in the model (y, p1, ps, f1, and b)), xp; = y, x3; is a
vector including y, p;, and I, and we have written the health endowment in
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terms of second(final)-period health. The first equation is obtained by solving
for the optimal z;; from (2.1) in terms of the exogenous variables known to
the family and replacing zj; in the production technology with the optimal zj;
decision rule. The B, correspond to the effectiveness of the health intervention
variables, the f; measure the effect of the endogenous health input z, and
77 reflects the effects of xj; on first-period health and thus survival into the
second period. Eq. (2.4) is the second-period decision rule for z, to which we
have added an error term w that reflects the possibility of measurement or other
errors.

This model suggests that the health input z;; will be correlated with v; (6 # 0
in (2.4)), given parents’ knowledge or anticipation of y;, so that estimation of
(2.3) by least squares provides biased estimates of the . The censoring associated
with health being observed (by the researcher) only when a child who is born
survives also induces a bias. It is easiest to show this assuming all stochastic
terms are jointly normally distributed. If z,; is replaced by the fitted value of zy;
(2 = xym) from (2.4). The reduced-form health regression function (Heckman,
1979) for the surviving population in the second period is

E(h3;|22i, %15, hY; > 0) = 221 + x2if2 + cov(yapy + wiPy + ex, &)k, (2.5)

where y; = 88+ 1 and 4; is the inverse Mills ratio evaluated at x,;7 with var(e;)
normalized to unity. Estimating (2.5) based on the surviving population without
taking into account mortality selection is equivalent to omitting the A-term. The
effect of a change in an x; on 43 in the survivors sample is given by

OE(h3;|22i, %15, B3; > 0)
0x2;

= Pa — M Ailyry2var(p)], (2.6)

where 4; = 7} +x;7/; and i1, is the coefficient of xy; in # in (2.2), and we have
assumed that w, e, and u are mutually independent. The second term in (2.6)
is the bias arising from mortality selection (in the normal case). Because 4; > 0
and 4; > 0, the bias in the effectiveness parameter is, as expected, negative as
long as the intervention represented by x,; both increases survival and augments
health, i.e., 77, > O (under the assumption that y; and y, have the same sign). The
magnitude of the bias depends positively on i) the amount of endowment hetero-
geneity (var(u)), ii) the effect of xp; in augmenting the probability of survival,
and iii) the fraction of births that do not survive, which affects the magnitude
of the A-term and thus the size of the A4-term in (2.6). Thus, the bias will be
potentially more serious in high-mortality populations, where health interventions
are most likely to be thought efficacious. These general features of the bias due
to selection will pertain also in cases in which errors are not normally distributed,
but the precise conditions will be different.
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3. Econometric procedures

Eqgs. (2.2)+(2.4) describe a simultaneous equation model with selectivity. The
individual i is a survivor if A}; > 0; otherwise, the individual is deceased. Let
dy; be the surviving indicator and d2; = 1 — dy;. The disturbances ¢;, u;, and
v; are assumed to be independent of x;;, While the values of 4; and z can
be observed only for the survivors, x; is observed for both the survivors and
the deceased. Neither economic theory nor the medical literature provides any
guidance on the population distribution of the disturbances (inclusive of health
endowments). Yet the results obtained may be quite sensitive to arbitrary distri-
butional assumptions although there are few examples of tests of robustness to
distributional assumptions (see, e.g., Mroz, 1987). We thus estimate the model
using a semiparametric method, without imposing parametric distributional as-
sumptions. We take into account that the data that we use will contain multiple
children from the same households so that the error terms will not necessarily be
independent.

3.1. Estimation

The identification of the latent survival equation (2.2) without imposing a
parametric assumption on its disturbance requires the presence of a relevant con-
tinuous exogenous variables in x; for which the coefficient is nonzero and has a
known sign (Ichimura, 1993; Klein and Spady, 1993). We adopt the convention
that 7 = (1,n’), where the first variable in x; corresponds to the variable for
normalization and # is the remaining coefficients (Ichimura, 1993). The identi-
fication of the simultaneous equations (2.3) and (2.4) requires in general more
stringent conditions than the usual rank identification condition of the classi-
cal simultaneous equation model (Lee, 1994). The identification conditions can
be simplified under some circumstances. When there exists a relevant exogenous
variable which appears only in the survival equation (2.2) but not in the outcome
equations (2.3), the identification of the outcome equations requires a similar rank
identification condition of the classical linear simultaneous equations model. In
the model constraints such as income or wealth do not appear in (2.3), so (2.3)
is identified under the classical rank condition.

The survival equation (2.2) can be estimated by the semiparametric maximum
likelihood (SML) method originated by Klein and Spady (1993). Choice prob-
abilities E(d|xy;7j), where d = d; or d,, given any possible value of # and the
‘index’ x;7 can be estimated nonparametrically by the nonparametric regression:

n 7 — 1 n 4 — 1

B (d | xufl) = S d K (M) Sk <M> , G.1)
J#i n J#i n

where # is the sample size, K(-) is a kernel function, and a, is a bandwidth

parameter. The logarithmic semiparametric likelihood function for a binary
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response model is
n
In Ln(ﬂ) = Z Ix(x,'){dli In E,,(dl |x1iﬁ) + d2i In En(dz |X1iﬁ)}, (32)
i=1

where Iy is the set indicator of a set X of x;. The set X is a subset contained in
the support of the regressors in x; which is used to trim the tails of the distribution
of continuous variables in x;. The trimming of regressors is a mathematical trick
to overcome some theoretical difficulties in estimating the tails of nonparametric
regression functions in (3.1). The proportion of trimming can be arbitrarily small
for samples with large size. However, because of the trimming of the regressors,
the asymptotic variance of the estimator becomes relatively complicated and there
are difficulties in constructing an estimate of the variance. Such difficulties can
be eliminated if trimming is applied to the index x;7. For this reason, we use a
two-step estimation procedure to derive an estimator for #. A consistent estimator
#j can first be derived from (3.2). With 7, we trim the tails of the distribution of
the estimated index x4 and then use a Newton one-step procedure:
n 2 e
=i+ DS S L) 3 dy D) (32)
n =y I= on
where IT(xliﬁ) is an indicator which is zero if xl,ﬁ is less than some small lower
quantile or greater than some upper quantile of the estimated index, and
3InEy(di|xi0) InE,(difx1i)

i n . 2
Dy = =) Ir(xuf))_ di
p L rCum Y on onf

In our empirical study, we have arbitrarily trimmed an upper 4-percentile and
a lower 4-percentile of the distribution of x;7.! Details on the computation of
asymptotic variances of semiparametric estimates are contained in the appendices.

Each of the input equations in (2.4) for survivors forms a sample selection
model. As a convention, sample observations are arranged such that the first
ny observations, where n; < n, correspond to sample observations of survivors.
These equations can be estimated by a semiparametric least squares (SLS) method
(Robinson, 1988; Powell, 1987; Ichimura and Lee, 1991):

3] N a
m;n S Ir(i )z — x3im — En(z — x37 | x9,m))
i=1

x(z; — x3m — Bz — x37 | x131)), (3.3)
where
np ] — n 1y 7 73
En(z — xameus) = 35 — xymK (M) Sk (x_w_x_lﬁ) ‘
J# an J#i Gn

'In a Monte Carlo study in Lee (1995), estimates are not sensitive to trimming. Justification for
trimming can be found in Lee (1990,1995).
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The SLS estimator from (3.3) has a closed-form expression:

ny n n n -1
n= [Z I (1 )(x3; — En(xs)xiit) Y (x3; — En(x3)x1:77))

i=1

X 5 Tr(eu)cas — Bnrsraf)Y (21 — Enzbi)). (G4)

i=1

The health equation (2.3) differs from the input equations (2.4) in that the
vector z of endogenous variables appears on the right-hand side of (2.3). Let
w = (z,x2). Define the following matrices:

IrGen)(xa1 — En(xsx119))
X} - ' ’
I7(x1n, 1) (X3n, — En(x3]x1,7))
Ir(Gen ) (wi — En(wy |x1117))

~

W= : ,
IT(-xlnlrl:)(Wn] - En(wrn |x1n| ﬁ))
and
IrGen)(hgy — Ea(B3, [x1i)
A = -

Ir(Geim M35, — B(B3, 1, 1))
The f = (f1,B5) can be estimated by

A Al Ak

als oAl s qal A Al Al Al s
f =W XXX X W W R (X)X A (3.5)

This estimator can be interpreted as being derived from a two-stage semipara-
metric least squares (TSLS) procedure. The reduced-form equations z in (2.4)
are first estimated by SLS in (3.3). Predicted values of z — E,,(z|xlr?) are used as
instrumental variables for z — E,,(z|x1ﬁ) to derive the estimator /3 in (3.5) (Lee,
1994). ‘

The semiparametric estimators in (3.2’), (3.4), and (3.5) are \/n-consistent
and asymptotically normal under some requirements on the bandwidth parameter
a, and the order of bias of the kernel function. The kernel function used in
our estimation procedure is Ky(¢) where K4(t) = 2K(t) — K(t/v/2)/v/2 with
K(t1)=35(1 — ) for |t| < 1, and K(t) = 0, elsewhere. This kernel function is
computationally simple and its design has the effect of eliminating the undesirable
biases of nonparametric regression functions (Bierens, 1985). The bandwidth is
chosen as a, = c/n'>> where ¢ is a constant factor independent of ». This
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bandwidth sequence satisfies rate requirements of convergence for semiparametric
estimators. 2

3.2. Tests for the normality of errors in the survival equation, simultaneity,
and selectivity

If the disturbance ¢ of (2.1) is assumed to be normally distributed, the survival
equation is a probit model and can be estimated by the classical probit maximum
likelihood (probit ML) method. The normality assumption of the survival equation
can be tested by comparing the SML estimate with the probit ML estimate in a
Hausman-type testing procedure. The test statistic, taking into account the family
correlation structure, is derived in Appendix B. To set up this Hausman-type test
statistic, one has to be careful about different normalization rules. Estimates are
renormalized as ratios for compatibility.® It is also possible to derive generalized
Hausman-type statistics to test (i) whether the z variables in (2.3) are endogenous
and (ii) whether there is sample selection based on the semiparametric estimator
(3.5). These are also derived in Appendix B.

4. Data

The preceding framework suggests that to appropriately estimate the effective-
ness of health interventions based on nonexperimental data in environments in
which child survival is not assured, it may be necessary to have or collect infor-
mation on i) the household resources allocated to children that may affect their
health and ii) a complete fertility roster indicating the date of birth of all chil-
dren and their current survival status. The latter is important because if mortality
censoring is significant, it is necessary to construct the ‘population’ of children
inclusive of those who have died. We have identified two data sets that have
the requisite information — the 1981-82 Nutrition Survey of Rural Bangladesh

2We have tried different values of ¢ in a grid search and used the value which provides the largest
log-likelihood value (for the survival equation) or the smallest sum of squared residuals (for the
outcome equations). Monte Carlo studies in Lee (1990, 1995) provide numerical evidence that this
cross-validation procedure is reasonably good. For the estimation of variances of semiparametric
estimators, it is desirable to use wider bandwidth. Motivated by Monte Carlo results in Lee (1995),
as a rule of thumb, a five times larger bandwidth is used for variance estimation.

3Misspecification of the parametric distribution may, in general, cause maximum likelihood parameter
estimators of ratios of coefficients in « to be inconsistent (see the Appendix B for the definition of
«). Exceptions can occur in special cases where the joint multivariate distribution of the explanatory
variables has the property that the expectation of each explanatory variable in x; conditional on x;a
is a linear function of ¥jo (Ruud, 1983). These cases include the multivariate normal distribution
and distributions in the family of spherical symmetricals. For those special cases, this test statistic
may have no power. These special cases are unlikely to be relevant for our data as many explanatory
variables are discrete.
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(Ahmad and Hassan, 1986) and the 1984-85 IFPRI Bukidnon, Philippines
Survey.

The 1981-82 Nutrition Survey of Rural Bangladesh is a national probability
sample of 25 households in each of 12 randomly-selected villages plus two vil-
lages chosen for their seasonal characteristics and one selected for its proximity
to an industrial area (in which 35 households were surveyed). There is thus in-
formation on all individuals in 385 households located in 15 villages. Information
was obtained by standard survey methods on socioeconomic characteristics, in-
cluding demographic information, a roster of births and deaths, and activities,
educational levels and literacy, landholding, wealth, and wage rates. Information
on a time-series of village food prices is also provided. Anthropometric mea-
surements were obtained for all household members, including height, weight,
skinfold thickness, and mid-arm circumference. There is also detailed informa-
tion on the individual distribution of foods obtained over a 24-hour period, based
on weight, under the supervision of (female) survey investigators. The Bukidnon
survey is a stratified random panel of 448 households in Bukidnon in northern Mi-
danao, Philippines, who were interviewed in four rounds at four-month intervals
in 198485 as part of a study by Bouis and Haddad (1990). This data set also pro-
vides information on births and deaths, anthropometric measures, and individual-
specific food intakes, based on 24-hour recall of recipes prepared and proportions
eaten, along with detailed socioeconomic and farm production data, prices, and
wages.

An important feature of both the Bangladesh and Bukidnon surveys is that
there is detailed information on each household’s source of drinking water and
on waste disposal. The Bangladesh survey provides information on five categories
of water sources — tubewell, well, pond, river or canal, and other — and indicates
whether the household has a specific place for wastes disposal. Among the sample
households with children aged 1 through 14, approximately 63 percent obtain
their drinking water from a tubewell, while 20 percent use a pond, river, or
canal. Less than 20 percent also have a specific place for the disposal of waste.
The Bukidnon data provides six categories of drinking water sources — piped,
artesian well (covered), open dry well, improved spring, unimproved spring, and
rainwater. Just over 10 percent of households have access to piped water, while
approximately 40 percent obtain their drinking water from a spring. There are
also four classifications for methods of waste disposal — none (16 percent of
households), open pit (37 percent), antipolo (28 percent), and water sealed (21
percent).

Because of the different age structures of death by cause and of activities
by children (Pitt et al., 1990), for each data set, we constructed subsamples
of all births in each household occurring in the last one to six years and in
the last seven to fourteen years, including in each the current anthropometric
measures and the individual calorie consumption for each surviving child aged
1 through 6 and 7 through 14, respectively. Age at death information, available
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Table 1
Sample characteristics (standard deviations in parentheses)
Nutrition survey of IFPRI Bukidnon,
rural Bangladesh, Philippines survey,
Variable 1975-76 1984-85
Children aged 1-6
Proportion surviving to survey 0.594 0.924
Mean age of survivors (yrs) 3.67 (1.58) 3.97 (1.61)
Mean caloric intake, survivors 888 (469) 1229 (650)
Mean weight, survivors (kg) 11.2 (2.78) 12.8 (3.00)
Mean head schooling level (yrs) 2.25 (1.51) 6.26 (2.74)
Number of children born 611 837
Number of households 291 423
Children aged 7-14
Proportion surviving to survey 0.550 0.907
Mean age of survivors (yrs) 10.3 (2.29) 10.5 (2.28)
Mean caloric intake, survivors 1666 (552) 1714 (737)
Mean weight, survivors (kg) 22.5 (68.3) 24.5 (6.78)
Mean head schooling level (yrs) 222 (141) 592 (2.59)
Number of children 693 789
Number of households 331 305

only in the Bangladesh data set, indicates that 55 percent of all deaths among
children less than age 15 (312 deaths) occurred in the first year of life, with 25
percent of all deaths occurring between the ages of 1 and 6.* Table 1 provides
descriptive statistics for all four samples from the two data sets. The potential
for selectivity bias is quite strong in the Bangladesh survey area, as less than 60
percent of children born one through six years prior to the survey survived to
the survey date. Mortality rates are considerably lower in the Bukidnon survey
area. Average calorie intake within each age group of children in Bangladesh
is considerably lower than in the other sample. Table 1 also indicates that the
number of households represented in each sample is considerably less than the
number of births or survivors, so that the effective sample sizes are less than the
totals. The estimation procedures that we use take into account this source of
nonindependence. *

“Bangladesh experienced severe flooding and famine in the 1974-75 crop year, which led to elevated
levels of mortality in that year and the subsequent year. In the Bangladesh data set, those children
aged 6 at the time of the survey in the 1-6 year old group were born in the famine year, while those
children in the 7-14 group who were aged 7 at the time of the survey were conceived during the
famine year. Razzaque et al. (1990) report that both of these groups had lower survival rates prior
to age 1 than other children born or conceived prior to or after the famine. Rates of mortality for
older children in the famine year were not significantly higher compared to other years.

Only one observation is taken (the first) for each surviving child, although children were surveyed
as many as four times in the Bukidnon survey.
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5. Results

Table 2 provides reduced-form least squares estimates of the determinants of
weight for the (surviving) children. These specifications correspond to what would
typically be used in evaluating the effects of the health infrastructure or health
interventions on health. We have also estimated the same specifications and the
complete model for other measures of health, including weight-for-height and
skinfold thickness with similar results. The estimates in Table 2 indicate that
in Bangladesh, although there are significant positive effects of the schooling
of the household head and, for the older children, landholding size on children’s
weight, there are no significant effects of the water sources or of having a specific
area for waste disposal. For the Philippines sample, only household wealth has
a significant positive effect on the younger children’s weight.® Among the older
children in the Bukidnon sample, however, while neither wealth nor parental
schooling affects children’s weight significantly, there is a positive effect of access
to a modern, water-sealed toilet.

The lack of significant effects of water sources or, for the most part, for the
waste disposal mechanisms on children’s weight is not inconsistent with prior
evidence in the literature. Because, as discussed, household allocative behavior
and mortality selectivity may tend to bias downward the health effects of better
water and sanitation facilities, we cannot yet conclude whether or not such in-
terventions are effective in improving children’s body weight. To assess whether
better water and sanitation facilities affect child survival, and as the first step
in implementing the full simultaneous equations selectivity model, we estimated
probit functions and also obtained semi-parametric estimates of the determinants
of survival based on the sample of all births in the relevant years. Tables 3
and 4 present both sets of estimates for the Bangladesh and Bukidnon samples,
respectively. As noted, the semi-parametric estimates require a normalization us-
ing a continuous variable and we have used household landholdings and wealth;
i.e., the coefficients on these variables in their respective samples were set to
unity. To compare the probit and semi-parametric estimates we also present the
probit estimates similarly normalized. All coefficient standard errors are corrected
for the presence of multiple children within households as described in the appen-
dices. Standard errors are not corrected for village clustering effects. The probit
results for all samples indicate that neither water sources nor sanitation facilities
significantly affect child survival. However, greater landholdings and increased
parental schooling levels in the Bangladesh sample significantly improve survival

6 We use the schooling of the household head in the specification estimated from the Bangladesh
samples because there is almost no variation in the schooling of adult women. The schooling of the
mother is used in the specification estimated from the Bukidnon samples as that is the schooling
variable commonly used. Replacement of the mother’s schooling by the head’s schooling does not
affect the results.
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Table 2

Reduced-form determinants of the weight of surviving children in Bangladesh and Bukidnon, Philip-
pines, by age group (asymptotic standard error in parentheses corrected for nonindependence of errors
within households)

Age group 1-6 Age group 7-14
Variable " Mean Coefficient Mean Coefficient
Bangladesh?®
Land size (x 10™%) 0.181 0.0945 (0.392) 0.180 375 (7.94)**
Head’s schooling 2.25 0.219 (0.0047)** 222 0.402 (0.179)**
Male 0.524 0.752 (0.167)** 0.534 0.299 (0.366)
Drinking water source
{omitted=tubewell)
Well 0.173 —0.287 (0.329) 0.144 1.38 (0.924)
Pond 0.102 —0.238 (0.579) 0.101 —0.195 (1.23)
River/canal 0.037 0.429 (0.783) 0.031 —1.62 (2.31)
Other 0.062 0.614 (0.492) 0.062 1.77 (0.956)*
Place for refuse disposal 0.196 —0.115 (0.270) 0.178 0.892 (0.655)
Bukidnon, Philippines®
Wealth (x 107%) 2.18 0.0277 (0.0129)** 2.69 0.0438 (0.0303)
Mother’s schooling 6.32 0.0201 (0.0294) 5.97 0.0445 (0.0744)
Male 0.532 0.425 (0.113)** 0.506 1.10  (0.203)**
Drinking water source
(omitted=piped)
Artesian well 0.136 —-0.169 (0.277) 0.130 0.0540 (0.870)
Dry well, open 0.340 —0.0210 (0.214) 0.325 —0.115 (0.748)
Spring, improved 0.229 —-0.277 (0.251) 0.253 —0.214 (0.785)
Spring, unimproved 0.189 0377 (2.44) 0.187 —0.0702 (0.746)
Rainwater — — 0.021 208 (1.43)
Disposal
(omitted=none)
Open pit 0.364 —0.199 (0.219) 0.378 0.0726 (0.461)
Antipolo 0.269 —0.0342 (0.249) 0.297 0.316 (0.488)
Water sealed 0.208 0.216 (0.262) 0.211 1.13 (0.534)*

@ Specification also includes head’s age, child’s age and its square and village dummies (15).
b Specification also includes mother’s age, child’s age and its square,

* Significant at 0.10 level.  **Significant at 0.05 level.
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Table 3

Determinants of survival in Bangladesh, by age group and estimation procedure; all specifications
also include the head’s age and its square and village dummy variables (15) (asymptotic standard
errors in parentheses corrected for nonindependence of errors within households)

Children ages 1-6 Children ages 7-14
Normalized Semi-p Normalized Semi-p
Variable ML probit probit ML ~ML? ML probit probit ML ML
Owned land (x1073)  0.588 — — 0.365 — —
(0.294)** (0.215)*
Schooling of head 0.0887 0.151 0.165 0.124 0.340 1.17

(0.0493)*  (0.0878)*  (0.0887)* (0.0443)** (0.144)**  (0.483)**

Male child 00125  0.0213 0.0318  —00612  —0.168 —0.0472
(0.117)  (0.198) (0.142)  (0.0986)  (0.290) (0.308)

Drinking water source
(left out=tubewell)
Well —0.0585  —0.0995 —0.0407 —0.355 —0.973 —1.19
(0.203) (0.593) (0.494) (0.189)* (0.547) (1.06)

Pond —0.119  —0.0203 0317  —0280  —0.792 ~1.30
(0.349)  (1.16) (0.780)  (0.225)  (0.624) (1.74)

River/canal 0.283 0.481 0.983 —0.323 —0.885 —0.909
(0.683)  (0.741) (0.882) (0.584) (1.60) (2.14)
Other 0.734 1.25 0.753 0.886 243 2.54
(0.544)  (0.926) (1.77) (0.548) (1.51) (1.91)
Place for waste 0.233 0.396 0.367 0.144 0.395 0.539
disposal (0.168) (0.284) (0.250) (0.154) (0.426) (0.687)
Hp: Accept normal, x3; — — 17.9 — — 98.4
n, sample size 611 611 611 693 693 693

2 Bandwidth factor=0.5.
b Bandwidth factor=3.0.

*Significant at 0.10 level. **Significant at 0.05 level.

probabilities. In the Philippines samples, increases in maternal schooling, but not
wealth, improve survival. Tests of the normal parameterization versus the un-
known alternative fail to reject normality in all but one of the four subsamples,
that for the children aged 7-14 in Bangladesh. In that subsample, comparison of
the rejected normalized probit coefficients with the comparable semi-parametric
estimates suggests that the survival-enhancing effects of maternal schooling and
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Table 4
Determinants of Survival in Bukidnon, Philippines, by age group and estimation procedure
Children ages 1-6 Children ages 7-14
Normalized  Semi-p Normalized = Semi-p
Variable ML probit probit ML ~ ML? ML probit probit ML ML)
Wealth (x10~4) 0.145 — — 0.0185 — —
(0.262) (0.0142)
Mother’s schooling 0.0571 3.92 3.84 0.0463 2.50 2.92
0.0309)*  (24.7) (2.57)  (0.0304)*  (10.7) (3.36)
Drinking water source
(left out=piped water)
Artesian well (deep)  0.130 8.97 9.05 —0.558 -30.2 —28.9
(0.259) (29.9) (16.2) (0.292)* (20.8) (29.3)
Dug well, open 0.180 12.4 111 —0.179 —9.69 —10.5
(0.231) (28.8) (10.8) (0.283) (20.0) (19.4)
Spring, improved 0.136 9.35 7.79 0.0225 1.22 1.25
(0.242) (28.3) (13.1)  (0.285) (20.5) (21.2)
Spring, unimproved 0.119 8.22 7.01 0.112 6.06 5.45
(0.262) (29.5) (19.1)  (0.318) (21.3) (24.1)
Rainwater — — — —0.831 —-44.9 —453
(0.542) (34.3) (41.6)
Waste disposal
(left out=none)
Open pit 0.128 8.15 5.43 0.0361 1.95 2.32
(0.191) (28.6) (132)  (0.235) (17.3) (12.5)
Antipolo 0.288 19.8 18.2 0.257 13.9 14.0
(0.203) (30.0) (114)  (0.239) (16.8) (18.2)
Water sealed flush 0.239 16.4 15.6 0.349 18.9 19.1
(0.271) (34.2) (15.0)  (0.267) (17.6) (25.9)
Hp: Accept normal, xfl e —_ 0.364 — — 0.122
n, sample size 837 837 837 789 789 789

2 Bandwidth factor=7.50.
b Bandwidth factor=9.00.

*Significant at 0.10 level. **Significant at 0.05 level.



224 L.-f Lee et al. | Journal of Econometrics 77 (1997) 209-235

Table 5

TSLS weight production function estimates for Bangladesh, by age group and type of survival se-
lection correction; all specifications also include the age of the child and its square and for children
aged above 6 two indicators of activities stratified by their energy intensity, treated as endogenous
(asymptotic standard errors in parentheses corrected for nonindependence of errors within households)

Children ages 1-6 Children ages 7-14

No Bivariate  Semi- No Bivariate Semi-
Variable correction  normal parametric  correction normal parametric
Calories® 0.474 0.482 0.549 0.365 0.326 0.281

(0.176)**  (0.184)**  (0.184)**  (0.161)** (0.178)*  (0.169)*

Male child 1.23 1.23 0.833 2.17 227 2.99
(0.461)**  (0.462)**  (0.496)*  (2.20) (2.78)  (2.60)

Drinking water source
(left out=tubewell)
Well —0.492 —-0.519 —0.797 —0.229 0.471 0.675
(0.459) (0.470) (0.607) (0.772)  (1.02) (0.882)

Pond —0433  —0442  —0.320 1.03 1.35 1.06
(0.342)  (0.349)  (0.415)  (L.14) (1L14)  (1.12)

River/canal 0.655 0.631 0.593 0.295 0.852 0.444
(0.885)  (0.900)  (0.927) (3.25) (328)  (321)

Other 0.700 0.796 1.10 0.772 —0.119 —136
(0.604)  (0.634)  (0.782)  (0.943) (123)  (1.53)

Place for waste disposal 0.371 0.382 0.293 1.35 1.39 1.61

(0.313) (0.321) (0.391) (0.815)*  (0.883)* (0.852)"
Hp: No selectivity — t=0.42 xfl=8.38 — t=1.17 xf3=8.70
n, sample size 363 363 363 381 381 381

2 Endogenous variable; instruments include food prices, landholdings, head’s age and schooling.

* Significant at 0.10 level. ** Significant at 0.05 level.

of tubewells relative to ponds may be understated based on probit survival es-
timates. The normalized semi-parametric coefficient estimate for schooling is al-
most four times its normalized probit counterpart; the semi-parametric coefficient
for pond water is 64 percent greater than the probit estimate in absolute value.
Other coefficients are similar across the two procedures, suggesting that these
specific differences in the normalized coefficients do not arise merely because the
normalizing landholding variable coeflicient is upward biased.

Tables 5 and 6 report the estimates of the health (weight) production func-
tions for the Bangladesh and Bukidnon samples, respectively. For each subsample,
there are three sets of estimates reported. The first is from the standard simul-
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Table 6
TSLS weight production function estimates for Bukidnon, Philippines, by age group and type of
survival selection correction; all specifications also include the mother’s age (asymptotic standard
errors in parentheses corrected for nonindependence of errors within households)

Children ages 1-6 Children ages 7-14

No Bivariate  Semi- No Bivariate  Semi-
Variable correction  normal parametric  correction normal parametric
Caloriesd 0.107 0.102 0.108 0.190 0.136 0.143

(0.0469)** (0.0574)* (0.0786)  (0.124) (0.124) (0.161)

Male 0.322 0.326 0.280 1.08 1.10 1.15
(0.123)**  (0.124)*  (0.134)**  (0.272)** (0.266)** (0.305)**

Drinking water source
(left out=piped water)

Artesian well (deep) 0.0957 0.0347 0310 —0313 0506 0.980
(0.285) (0326)  (0.417) (0.948) (1.04)  (1.04)

Dug well, open 0.0714 0.0277 0225 —0486  —0.190 0453
(0.234) 0.265)  (0.339) (0771)  (0.855)  (0.760)

Spring, improved —0.189 —0.244 —0.0810 —0.706 —0.702 0.077
(0.262) (0.297) (0.359) (0.851) (0.958) (0.820)

Spring, unimproved  0.443 0.433 0.668 —0.478 —0.600 0.310
(0.257)**  (0.287)  (0.361)* (0.793) (0.901) (0.764)

Rainwater — — — 0.846 235 459
(1.96) (2.09) (2.33)**

Waste disposal
(left out=none)

Open pit —0.0412 —0.147 —0.255 0.128 0.0104 0.00835
(0.225) (0.264) (0.267)  (0477) (0.591) (0.446)
Antipolo 0.185 0.0831 —0.157 0.554 0.138 0.176
(0.278) (0.347) (0.336)  (0.509) (0.632) (0.517)
Water sealed flush 0.395 0.181 —-0.010 1.48 0.787 0.892
(0.258) (0.342) (0.325)  (0.590)** (0.750) (0.719)
Ho: No selectivity — =107  p,=128 — =169 13, =810
n, sample size 773 773 773 716 716 716

2 Bandwidth factor=7.50.
b Bandwidth factor=9.00.

*Significant at 0.10 level. **Significant at 0.05 level.
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taneous equations model and thus ignores survival selectivity. The second set of
estimates is obtained from the simultaneous equations selection model in which
errors are assumed to be jointly normally distributed (Lee et al., 1980). The third
set of estimates is from the semi-parametric selectivity-corrected simultaneous
equations model outlined in the previous sections. In all models the coefficient
standard errors are corrected for the nonindependence of the errors because of the
household-based sample clustering of children. We report the selectivity model
estimates based on the parametric assumption of bivariate normality for compari-
son with the estimates that correct for selectivity without imposing any parametric
distributional assumption because the bivariate normal selectivity model is often
used when sample selection is taken into account (although it has never been
applied to mortality). It is important to note, however, that the acceptance of the
normality assumption for the latent survival function, as was the case for some of
the subsamples, does not necessarily imply that the assumption of joint normality,
inclusive of the health equation, that is the basis of the bivariate normal selec-
tion model, is correct. The semi-parametric estimates of the full model impose no
parametric distributional assumptions at all, as is true for the standard (two-stage
least squares) simultaneous equations model without selectivity correction.

The sets of estimates do not appear sensitive to selectivity correction or to the
parametric assumption of normality. The test statistics for selectivity based on the
semi-parametric model indeed indicate that there is no death selection, that the
probability of survival is random with respect to health, at least as measured by
the standard anthropometric measures. The bivariate normal model does however
yield a test statistic rejecting the nonselectivity of mortality for the older-children
subsample of the Bukidnon data. We have seen that the assumption of the nor-
mality of the survival function was not rejected for this subsample. If the joint
normality assumption is correct, then the bivariate-normal model yields more ef-
ficient estimates than the semi-parametric model; however, its estimates are not
very different from those of the uncorrected model. The test results based on the
semi-parametric model which is robust to assumptions about error distributions
thus indicate that the standard simultaneous equations estimates of the effects
of calorie intakes, the water sources and the sanitation facilities are preferred.’
Tests of whether the calorie intake variable is correlated with the error in the
health production function, containing the health endowment, also indicated re-
jection of the hypothesis of orthogonality for the two Bangladesh subsamples
but nonrejection for both of the Bukidnon subsamples.® Thus, calorie allocation

"The test statistics yield identical conclusions for weight-for-height and skinfold thickness.

8The relevant test statistics for the Bangladesh subsamples of younger and older children are
F(2,349) = 10.0 and F(4,363) = 3.85, respectively. Both specifications include in addition to calories
a variable indicating how many family members consumed meals outside the household that is also
treated as an endogenous variable. In addition, for the older children, there are two endogenous vari-
ables measuring type of work activity. The relevant ¢-statistics for the test of endogeneity of the calorie
variable in the Philippines sample are 1.29 and 1.13 for the older and younger children, respectively.
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appears to be sensitive to endowments in the former environment but not the lat-
ter. This may be due to the substantially higher average level of consumption (and
income) in the Bukidnon area compared to Bangladesh (Table 1). Indeed, the
estimated effects of variation in calorie intake on weight are substantially higher
for the Bangladesh subsamples than for the Bukidnon subsamples, suggesting that
there may not only be nonlinearities in the sensitivity of the allocation of calories
among children differentiated by health endowments but also nonlinearities in the
health technology with respect to calorie effects.

The preferred estimates that do not correct for mortality selectivity also in-
dicate that in all but one of the subsamples there are no effects of different
water sources for the weight of children. The exception is that water from unim-
proved springs appears to significantly positively affect the weight of the younger
children in the Bukidnon subsample compared to all other water sources. Com-
parison with the reduced-form estimate of Table 2 from that subsample suggests
that that specification understates the ‘cffectiveness’ of this water source by 18
percent presumably due to household calorie allocations differing by water source.
The uncorrected simultaneous equations estimates also indicate that the method of
waste disposal matters among the older children, although not among the younger
children. In Bangladesh older-children residing in households having a specific
area for waste disposal appear to be over a kilogram heavier than similarly-aged
children in households having no specified area, controlling for calorie intake.
The estimates from the Bukidnon subsample indicate that children aged 7-14
are almost 1.5 kilograms heavier in households having a modern toilet facility
compared to children in households with other waste disposal methods and re-
ceiving the same calorie allocation. Again, the reduced-form estimates, which
do not take into account that household calorie allocations are not orthogonal to
waste disposal facilities, underestimate the effectiveness of altering waste disposal
methods, by 56 percent for the Bangladesh subsample and by 31 percent in the
Bukidnon subsample.

6. Conclusion

In this paper, we have set out a framework for estimating the effects of health
interventions that takes into account the three principal mechanisms by which
improvements in the health infrastructure augment children’s health: by affecting
the magnitude of parental resources allocated to the health of children, by influ-
encing who among children born survive, and by directly affecting the health of
survivors given parental resource allocations. We devoted particular attention to
the nonrandom allocation of household resources to children and to the selectiv-
ity effects of alterations in health interventions via their effects on child survival.
Estimates were obtained using data sets describing child health and survival,
drinking water sources, sanitation facilities, and child-specific nutritional intake
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from two countries — Bangladesh and the Philippines. Semi-parametric estimators
were used in the context of a structural equations system to estimate the effects of
the health infrastructural variables on child survival and the effects of increased
calorie consumption and of improvements in the water and sanitation on measures
of children’s nutritional status net and gross of the effects of these interventions
on child survival. The results indicated that the reduced-form estimates obtained
in most studies evaluating health interventions understate the effectiveness of im-
proving sanitation facilities in augmenting health as measured by anthropometric
indicators, particularly among older children. However, this appeared to be due to
the reduced allocation of household resources to children’s health in households
with better facilities and not to survival selectivity. The test statistics did not
reject the hypothesis of random mortality in all but one of the subsamples (older
children in Bangladesh); deaths among children in these low-income countries
thus do not appear for the most part to be more likely among children with
lower health endowments. Moreover, neither variation in water sources nor im-
provements in sanitation facilities appeared to significantly affect child survival,
although wealth and parental schooling levels were significantly and positively
associated with higher survival.

Appendix A: Asymptotic variances

The asymptotic distribution of the SML estimate of (3.2’) can be derived as in
Klein and Spady (1993) (see also Lee, 1995). It can be shown that, by a Taylor
expansion,

. 12 - 2 OInE,(d;|x1:7
vn(ii —n) =D, l—n_Z%IT(xli'I){Iz:I dy _n__é;7M} +op(1),

where op(1) refers to terms which converge to zero in probability. The estimator
is 4/n-consistent and is asymptotically normally distributed. If sample observa-

tions are ii.d., +/n(H — ) A N(0,Q.) where the variance matrix €. can be
consistently estimated by D, ! evaluated at 7. For our empirical study, sample
observations of children within each family unit are likely correlated. The # is
consistent but its asymptotic covariance matrix needs to take into account the
interfamily correlation. Let m denote the number of families, and let iy denote
the number of children in the family f. If the number of children of each family
is exogenous, the members of a family can be grouped together such that

" 2 0InE,(d|x#%)
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In this case,

2 dInE(d|x] 7
V(i —n) = D! \/—Z{er(xun)zd -n—%nllx—“ﬂ—)}ﬂp(l)-

n 7=
(A1)

Under the assumption that all the families in the sample are unrelated, the terms
within the bracket in (A.1) are independent for different f and the summation is
effectively summing over m independent samples. The limiting variance matrix
of \/n(j — ) can be consistently estimated by Q. , = D;'H,D;!, where

m (i 2 3InE(d)\x 7
H =1 z{zh(xl,')Zd " gnﬂx‘ﬂ)}
&

neo

i 2 dInEydx/ )
x {er(xlf,-n) > dfj i
j=1 =1 n

evaluated at 7j. For the estimates in our empirical study, the corrected asymptotic
variances are reported.

The f in (3.5) is a two-stage estimator. We first discuss the asymptotic dis-
tribution of § under the assumption that sample observations are i.i.d., and then
discuss necessary modifications to take into account the family correlation struc-
ture. Eq. (3.5) implies that

BB =W XY~ R Ry (R X3) 7 R P,
where ¥, = (841, -+, Byn, ) With 6,; = v; — E,(v|x1;#)). As shown in Lee (1994),
1 .74 1 2 - _ -
WX; Vo= —n; d il (1 )3 — En(s |x0if7)) (0 — En(v]x1577))
L _ _. OB, (v|x
_;zldliIT(xliﬂ)(xSi"En(x3|x1in)) —n(—l—lﬁ—) Vn(ii — 1)

+op(1) — N(0, 4),

where 4 = E[Ir(x17)(x3 — E(x3 i)Y 0(i ) (x3 — ECesxi7))]+ C2:C', w(xi7f) is
the variance matrix of dyv, C = E(d Ir(x17)(x3 — E(x3}x17)) (OE(v|x17)/01")),
and B(-jx17) stands for E(prifi,dy = 1). Let 4 = plim(¥3X3)"'X,# and
B = plim(1/n)( WX, WX ;)? 3 LX ;W The f is +/n-consistent and v/n(f — §) 2
N(0, ), where Q) = B~'4'44B~ 1,

With correlation across members of a family, in addition to the correction of
the variance matrix of the first-stage estimator 7, a correction is needed for the
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first term in A. With m families in the sample,

n
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As samples are independent across families, the limiting variance matrix of (A.2)
can be estimated by Q. ,, where

Qen = ié {Z d IT(x1/77)(x3j En(x3 lxlj’?)) (Uf - En(”l-"u’?))}
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It follows that
\/E(B -8 ZB;IA; {\/_ le jz_: d IT(xljn)(x3j E,(x; |xlfjﬁ))/
X (U]f - En(v|x1jﬁ)) - Cn\/ﬁ(ﬁ - ’7)} + op(1). (A.3)

The limiting variance matrix of v/a(f — B) can be estimated by B 'AL(Oc.. +
CoQonCIAB.

Appendix B: Test statistics

Let x; = (1,x;) be the extended vector of x; which incorporates a constant
term. With the normalization that ¢ has zero mean and a unit variance, let o be the
coefficient vector of x| in (2.2). Let & denote the standard normal distribution.
If ¢ were normally distributed, the probit log-likelihood function for (2.2) would
be

InL, =3 {di;In &(x;0) + do; In[1 — D(%1;2)]}.
i=1
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Let 4, be the probit MLE. Taking into account the family correlation structure,

1 m b ¢ (] 2) f
VG, —a)=Dp,—= 3 3 - %
! PR 25 o1 - o)
X(du“@(x_lj“))'i‘()}’(l)’ (B.1)
where ¢(-) is the standard normal density function, and

n 2(5..
Dp,n — l _ 4) (xlla) _ fl],'x-lzﬁ
n 5 P(xa)(l — P(xy0))
Let a = (ap, 0, %), where o is the intercept coefficient and o, is the coefficient
of the continuous regressor in x; which coefficient is normalized to be unity in
the semi-parametric estimation. Thus # = o/, and the probit MLE of 5 is
ﬁp = dy p/d1,p. By the Delta method of C.R. Rao,
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where P = (0n/dxq, 0n/day, 0n/desy) = (0, —a 2az, o' I). Under the probit hy-
pothesis, (A.1) and (B.2) imply that
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which is asymptotically normal with zero mean and the variance matrix of its
limiting distribution can be consistently estimated by
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evaluated at & and 4 (or 7). The statistic n(fi—1,)2} (1 p) s asymptotically
chi-square with the degree of freedom equal to the rank of the limiting matrix
of Q,,. This statistic is a generalized Hausman-type test statistic.

It is also possible to derive a test of simultaneity by a generalized Hausman-
type statistic. If z were exogenous, the § in (2.3) could be semi-parametrically

estimated by Bx = (W,W)“ll/f/lﬁ ; Taking into account the family correlation,

-1
Vilho =)= (W) SV,

n

where

1
=177, = \/_le Zd{,IT(xljn)(wf En(wlx] 1))

X (v] = Eu(olx],1)) — Cupu/n(A — 1) + 0p(1),

3I

with
12 - vy OB (v]x1:7
Cow = = 2 dulr(x1:7)(w; — En(Wlxlin))’_”(—|,hQ .
=1 on
Let
| PN
By = -W'W.
n

With (A.3), it follows that

o (<}, — EnCoalx], 1))’
T Px)= Bn ]A:n nulz I ( ¥ lj- )
V(B - B) =1 flejg r(xfi) W] — Ba(wlx[)Y

X (0] = En(vlx] /1)) —(By ' 4,Co— By Cu V(i —17) + 0p(1),

which is asymptotically normal with zero mean under the exogeneity hypothesis
for z. The variance matrix of the limiting distribution of +/n (ﬁ Bx) can be
estimated by

Q.. =[B,'4,,-B,}]

f__E Y
w2 Z [z LG )o] - E,,(u|x1,n))(§fj} 5311, 7)) )J
j

— Bu(wix], )Y
iy s s (cf; — En(x3 Ix{,-ﬁ))’) ]
X [jz::ldljlr(xf (v En(lelj'l)) <(Wf _ En(Wlx{jﬁ)),

X[B, Ay, =By Y + By ' 4,C — By C)2e,n(By ' 4,C, — B, L C Y,
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evaluated at 7§ and f. A test statistic for simultaneity is n(f — ﬁx)’ Q;cf,,(l? - 3x),
where Qf, is the generalized inverse of €, ,. Under the null hypothesis, this
statistic is asymptotically chi-square distributed with the degree of freedom equal
to the rank of the limiting matrix of £, ,.

Under the hypothesis that ¢ and v are uncorrelated, i.e., no selection bias
in observed A3, (2.3) can be estimated by the classical Theil-Basmann two-
stage least squares (TSL) procedure. For the classical simultaneous equations
model, v is assumed to have zero mean and the intercept term is identified. To
incorporate an intercept term for estimation, let w = (1,z,x;), ¥3 = (l,x3) and

B = (Bo, B}, B5). The classical TSL estimator is
~1 -1
S ny e LA o - ny o -
B = {Zwix3f (szix&') ZXSiWi}
i=1 i=1 i=1

m n| -1 n
S (Sm) S ®23)
i=1 i=1 i=1
Let J =[0,]] be the selection matrix such that § = J B. The TSL estimate of 8
is B, = JB,. Let

It follows from (A.3) and (B.3) that

\/;(B - Bs)
=B, '4,, —JB; ;4]
(LS (d{,zr<x{}-ﬁ>(x3fj = (], )' (o] - E,,(v|x{jﬁ>)>
Vi i | (my] —wlB)
—B, ' 4,Cu/nii — 1),

which is asymptotically normal with zero mean under the hypothesis of no se-
lectivity. The variance of its limiting distribution can be consistently estimated

by
Qs,n = [Bn—lA;p _JBn—,slA::,s]

[ is (d{}fr(x{jﬁ)(x{, ~ B3] 1)) (0] — En(olx] 1)) )]

Z -1 * - D
= # (05 —w[B)

lm
X;E

=
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!

& (d{,zr(x{,ﬁ)(x{, — En(xs ¥, 71)) (v] — E,,(le{‘,-ﬁ)))
= (5] = B
x[B, ' 4}, ~JB; (A, I + By 4,ChQe nCrdnBy ',

evaluated at § and fB. A test statistic of no selectivity is n(f — BS)’ Q;’:,,(/} - ,BS)
which is asymptotically chi-square distributed with the degree of freedom equal
to the rank of the limiting matrix of Q.
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