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Estimating the Determinants of Child
Health When Fertility and Mortality
Are Selective

Mark M. Pitt

ABSTRACT

This paper estimates the determinants of child mortality and child health
allowing for the possibility that samples of children are choice-based,
reflecting prior selective fertility and mortality behavior. Parameter
identification is the most serious practical problem in controlling for fer-
tility and mortality selection. Identification is achieved by imposing a
random-effects structure on the error correlation matrix for the set of fer-
tility, mortality, and health behaviors. Fertility selection is found to be
statistically significant in the estimation of the determinants of mortality
in all 14 Sub-Saharan DHS data sets studied, and fertility and mortality
selection is found to be significant in the determination of child height in
Zambia. Nevertheless, most parameters are little changed when selec-
tion is accounted for.

1. Introduction

In recent years, a large literature has arisen which estimates the
effect of household and community characteristics on the health and mortality of
children in the developing world.! From these reduced-form estimates inferences
are drawn concerning the efficacy of a variety of interventions, including invest-
ments in health infrastructure, on measures of child health, such as weight and
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height, and on survival probabilities. This literature has consistently found that
mothers’ schooling is an important determinant of improved health status and
survival of children.? Another literature has examined the determinants of fertility
and has consistently found that women’s schooling is negatively associated with
fertility.> Some studies have independently estimated both the determinants of
fertility and child health from the same data. Education, and many other of the
covariates used in these reduced forms, including measures of health infrastruc-
ture, have an effect on child health at least at three points: (a) in the decision to
have children; (b) conditional on the decision to have children, on child survival;
and (c) conditional on birth and survival, health as measured at the time of the
survey.* Most studies of the effects of education and health infrastructure on
child health have not taken fertility decisions into account—they assume that the
composition of the population of children classified by health is unrelated to prior
fertility decisions. If fertility reflects the choices of women and the households
in which they reside, how can the results of that choice, children, be considered
as randomly drawn from the population of potential births? If births are not
randomly drawn from the population of potential births, what are the implications
for the measurement of the effects of women’s schooling and program interven-
tions on child mortality and health? If parents care about the health outcomes of
potential births, then any variable, measured in the data or not, that affects the
healthiness of children born will influence fertility decisions. It is the unmeasured
determinants of health which are the potential source of bias in the estimation of
the effects of education on child health using samples of children. Failure to
account for the possibility that these unmeasured determinants of health affect
the fertility decision, and thus the composition of those born classified by health
status, will result in biased estimates of the determinants of child health.

There is substantial evidence that parents are indeed attentive to the (unmea-
sured) inherent healthiness (the ‘‘health endowment’’) and survival probabilities
of potential births (Olsen and Wolpin 1983; Rosenzweig 1986; Rosenzweig and
Schultz 1983). Variation in inherent healthiness of children may result from the

2. For example, T. Paul Schultz (1989) reviews some of the social science literature relating mother’s
schooling to decreases in the incidence of mortality, suggesting that ‘‘[the] universality of the relationship
is reminiscent of the discovery in the 1960s of relative (logarithmic) wage differential associated with
years of schooling’” (p. 63). He suggests that an added year of maternal education is associated with a
5 to 10 percent reduction in child mortality. Cochrane, Leslie, and O’Hara (1982) review 16 studies and
find a strong relationship between child mortality and mother’s education. They suggest that an additional
year of maternal education results in a reduction of 9/1000 in the mortality of her children. A review of
the Sub-Saharan African literature is provided in Tabutin and Akoto (1992).

3. Surveys of the effects of education on fertility include Cochrane (1987), Cochrane (1983), and Cleland
and Rodriguez (1987).

4. Induced and spontaneous abortion, and child fostering, could be added to the list of selective events
affecting the composition of a sample of children whose health is measured at the time of a survey. In
addition, if children enter a sample only if their mother resides in a sampled household, mortality of
mothers may also be selective in the determination of child health and mortality. This issue may be of
some consequence in the Demographic and Health Surveys of Sub-Saharan Africa used in this paper,
in which high rates of maternal death, due in part to high rates of HIV infection, systematically select
out many of the children of deceased mothers. This issue has recently been addressed in Bicego et al.
(1995).
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genetic endowments of parents as well as the health characteristics of the house-
hold and its spatial location which are not well measured in the data, including
water purity, disease prevalence, and access to health facilities. Inherent healthi-
ness and other unmeasured determinants of health will influence the fertility deci-
sion of parents who consider the health and survival outcomes of potential births
in making fertility decisions. If parents are less likely to have a child when its
inherent healthiness is perceived as low, we have positive birth selection. If
parents are more likely to have a child when its inherent healthiness is perceived
as low, we have negative birth selection. In either case, estimates of the determi-
nants of child health or mortality based on samples of births are likely to suffer
from classical sample selection bias—the distribution of the errors (which include
inherent healthiness and other unobserved factors) in the child health equation is
likely to be truncated by the fertility choices of parents and the nonsurvival of
children to the survey date.

Consider the implication for analyzing the effect of women’s schooling on the
health or survival of their children. It might be that the measured effect of
women’s schooling on these outcomes represents nothing more than its effect on
the composition of those born by inherent (unobserved) healthiness. This would
result if reductions in fertility brought about by an increase in education dispro-
portionately reduced the births of infants with low inherent healthiness. Con-
versely, the effect of women’s schooling in enhancing child health and survival
may be seriously underestimated if the reductions in fertility resulting from an
increase in women’s schooling disproportionately reduce the births of children
with high inherent healthiness. Knowledge of the total effect on health and sur-
vival of an intervention, such as women’s schooling, that affects both fertility
decisions and the health of those who are born, requires estimating the parameters
of both the birth selection process and the effect of the intervention on health
conditional on being born.

Just as fertility selection may bias estimates of the determinants of child mortal-
ity and health, so too will mortality selection bias estimates of the determinants
of child health. Many recent studies have used anthropometric measures of nutri-
tional status, such as weight and height, in the analysis of child health behavior.
In order to be anthropometrically measured, a child must both have been born
and have survived to the survey date. Those who were born and failed to survive
to the survey date are unlikely to be random draws from the population of ever-
born children. It seems likely that those who are least healthy, such as those of
low weight and height for their age, are most likely not to survive.

The most serious practical problem in controlling for fertility and mortality
selection has been that of parameter identification. If parents care about the health
outcomes of potential births, then any exogenous variable that affects health also
affects the fertility decision. The sequential nature of the decision process means
that there is not likely to be an exclusion restriction of the usual sort—a variable
or variables that influence the endogenous regressors, birth and survival, that
do not otherwise influence child health conditional on this regressor. Pitt and
Rosenzweig (1989) rely on the nonlinearity of the choice of the bivariate normal
error distribution to identify fertility-selection-corrected reduced-form models of
birth weight, relying on underidentified semiparametric estimates as the basis for
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a test of the validity of this error distribution. Grossman and Joyce (1990), control-
ling for self-selection into the resolution of pregnancies, recognize that identifica-
tion is not on firm ground if based solely on distributional assumptions and iden-
tify their model with exclusion restrictions not based on any explicit model of
behavior. Pitt (1995) assumes that first-births are exogenous in order to identify
the determinants of child mortality conditional on fertility selection in high-
fertility Sub-Saharan Africa. The idea is that if each woman in a sample of women
had at least one child, one could construct a sample of children that would not
be self-selected because it reflects the full distribution of women. Lee, Rosen-
zweig, and Pitt (forthcoming) circumvent the problem entirely by estimating struc-
tural models in which the set of instrumental variables that identify health inputs
in a health production function also serve to identify the selection correction.

This paper takes an entirely new direction to disentangling the parameters of
the reduced-form determinants of fertility from the parameters of the reduced-
form determinants of child mortality, and the reduced-form determinants of both
fertility and mortality from the determinants of health, in the joint estimation of
the determinants of all three behaviors. The method requires the specification and
estimation of joint multiperiod models of fertility, mortality, and health, achieving
identification by an intuitive set of restrictions on the intertemporal error correla-
tions. The data required, pregnancy histories of women and health outcomes for
more than one child of some of the sampled women, are now commonly found
in micro surveys with a health emphasis such as the Demographic and Health
Surveys, the Malaysian and Indonesian Family Life Surveys, and the National
Longitudinal Survey of Youth. Identification via covariance restrictions does not
rely on difficult-to-justify exclusion restrictions or the nonlinearity of error distri-
butions for identification, is flexible in many directions, and is applicable to the
estimation of both reduced forms and structural equations.

These methods are illustrated with the estimation of reduced-form determinants
of child health and mortality in a set of Sub-Saharan countries for which a Demo-
graphic and Health Survey (DHS) exists. Although these data sets do not provide
a rich set of exogenous covariates, they are the most important sources of infor-
mation on demographic behavior in Africa and in many other developing coun-
tries. One intent is to obtain a measure of the effect of mother’s schooling on
child health and mortality allowing for the potentially selective nature of fertility
and mortality. The discrete (binary) nature of mortality make parameter identifi-
cation based solely on the choice of an error distribution particularly difficult.
The results reported below provide evidence of the statistical significance of
selective fertility, although the magnitude of the bias on the estimated effect of
women’s schooling and age on the probability of child death prior to age two
years is not large. Evidence of the statistical significance of selective fertility and
mortality in the determination of child anthropometrically measured nutritional
status is also presented, although, once again, the magnitude of the bias in the
regression parameters is not large.

The next section of this paper sets out the problem of estimating the determi-
nants of child health and mortality when fertility and mortality are selective in a
more formal framework. The third part of the paper discusses the difficulties of
statistically identifying the empirical model. Section IV presents a method of
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identification based upon covariance restrictions that have intuitive appeal along
with empirical results from Sub-Saharan Africa. Section V summarizes the re-
sults.

II. Selective Fertility and the Health of Children

To examine the potentially selective nature of fertility in the esti-
mation of the determinants of child health, consider the linear reduced-form de-
mand equations for latent fertility, /¥, and health, 4:

1) h=XBp+ B+ vy =X,By + &
@) f*=X;Bs+ Bmmy + ve= X;Br t+ &g,

where X, and X, are vectors of exogenous regressors, the compound error in
each equation (¢, and ¢,) contains a heterogeneous component of health known
to parents but unmeasured in the data (inherent healthiness), u,, as well as non-
systematic shocks v,and v;, and the B’s are parameters to be estimated represent-
ing parental responses to exogenous variables, including unmeasured heterogene-
ity.’ Latent fertility f* represents the unobserved intensity of reproductive effort
including fecundity. If this intensity exceeds some threshold, then a birth resuits;
otherwise it does not.

If the error terms have zero means, and the nonsystematic errors v,and v, are
uncorrelated, then the covariance between the compound errors &, and g, is

(3) covies ) = By, var(uy).

The compound errors of the fertility and health equations are correlated, and
selection bias results if parents take unobserved health heterogeneity into account
when making fertility decisions, that is, B, # 0, and if such unmeasured health
heterogeneity actually exists in the sampled population (var(w,) > 0).

Bias in estimating the reduced-form health equation (Equation (2)) arises be-
cause births are more likely to occur when B, v, takes large values than when it
takes small values, conditional on X. In the case in which all errors are distrib-
uted as joint normal, the regression function for the ‘‘population’ of births (that
is, the health of children conditioned on their birth) is

(4) E(hIXh,f* >O) = XhBh + E(Shl€f> —Xfo) = XhBh + COV(S;,, Ef))\,

where X\ is the inverse Mill’s ratio, the ratio of the density and distribution func-
tions of the standard normal variable X3, normalized by the standard deviation

5. These are fertility and health demand questions derived, in principle, from the standard framework
of a household maximizing a utility function that includes the number and health ‘‘quality’’ of children,
where quality is produced by the household. These ‘‘solved out’ (reduced-form) demand equations are
functions of only the exogenous variables of the household’s optimization problem, ignoring dynamic
considerations such as replacement effects. If, for example, fertility responded to the number of surviving
children, then the reduced-form would have to include all past exogenous determinants, not just contem-
poraneous determinants. The only time-varying covariates in the data used below are calendar time and
mother’s age. The specification used here is meant to be representative of the fertility and health demand
equations most often estimated in the literature.
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of &;. Estimating (4) based on the sample of births without taking into account
birth selection is equivalent to omitting the A term in (4). As in Pitt and Rosen-
zweig (1989), the effect of a change in a common exogenous regressor (X =
X ) such as women’s schooling on health in a fertility-choice-based sample of
births is

dE(h|X),, f* > 0)

Since var(w,) > 0, A > 0, and X/B, is also likely to be positive if a birth has
occurred, the sign of the expression after the minus sign in (5) depends only on
the signs of By, and By, If women with lower health endowments are more likely
to have children, B, < 0 (negative birth selection), and if fertility is decreasing
in women’s schooling (B < 0), then, if fertility selection is not taken into ac-
count, the effect of women’s schooling on health will be underestimated (the sign
of the expression after the minus sign in (5) is positive).

®) = B — B2 + X BN By var(y).

III. The Problem of Identification

Jointly estimating the determinants of fertility and the resulting
health of those born is complicated by the difficulty in disentangling the parame-
ters of the reduced-form determinants of fertility from the parameters of the
reduced-form determinants of child mortality and health. If parents care about
the health outcomes of potential births, then any exogenous variable that affects
health also affects the fertility decision. Even if there were uncertainty about
inherent healthiness and decisions were sequential and myopic, because the birth
decision precedes the health behaviors resulting from that decision, there cannot
be fewer observed or known exogenous variables influencing health than influ-
encing the fertility decision. Conditioning on birth is required, in the case of the
mortality reduced form, or on birth and survival, in the case of the weight and
height reduced form, if the children whose births were averted have differing
inherent healthiness or survival probabilities than those whose births were not
averted. This might be the case, for example, if low-fertility women tend to
have children with higher survival probabilities than higher-fertility women. The
sequential nature of the decision process means that there is not likely to be an
exclusion restriction of the usual sort—a variable or variables that influence the
endogenous regressor, birth, that do not otherwise influence child health condi-
tional on this regressor.

The discrete nature of mortality makes identification based exclusively on the
choice of an error distribution problematic. The identification problem arises
because all the regressors contained in X are also contained in X,.® The general
form of the regression equation (Equation (4)) is

(6) E(h|X), f*>0) = X,B) + pg(X;B)),

6. The set of regressors X, also includes variables that affect health outcomes but are not known to
parents until after the fertility decision is made. Among them are the sex of the child and whether the
pregnancy resulted in multiple births (twins).



Pitt

where the function g(XB;) adjusts the regression function for choice-based sam-
pling (it is the mean of the truncated error distribution) and p is the correlation
between the errors &, and ¢,. If the joint distribution of &, and ¢, is bivariate
normal, then the function g(-) is proportional to the inverse Mill’s ratio \, and
the choice-based regression function is (4) above. For all distributions except the
uniform distribution, the function g(-) is nonlinear, and it is solely this nonlinearity
that identifies the model.’

The fertility selection problem is more complex when the health outcome is
not measured as a continuous variable. An important case of a discrete health
outcome is infant or child mortality. The joint probability of observing both a
birth (F = 1) and a death (D = 1) prior to some age is

(7) Prob(F = 1,D = 1) = ®,(X;B;, X,,B4, p),

where &, represents the standard bivariate normal cumulative distribution with
correlation p. In the discrete case, the analog to the regression function condi-
tional on a birth (4) is the conditional probability of the mortality event, condi-
tional on the birth event:

D, (XsBs, X815 P)
O(X(B)) ’

where @ is the standard univariate normal cumulative distribution. The binary
probit model for mortality applied to a sample of children that ignores fertility
selection maintains that p = 0 so that ®,(X/B,, X;,B,, 0) = ®(X;By) X ®(X,B,).

The likelihood for the bivariate discrete choice problem (with time subscripts
omitted) is

© L=[]o-X8) [] ®:aXiBp X1
F=0

F=1,D=1

() Prob( =1|F=1)=

X n D,(X5Bys, —XuiBis — 0,
F=1,D=0

which has been referred to as the bivariate probit model with partial observability.
The ‘“‘partial observability’’ is the lack of information on the survival/mortality
outcomes of those never born.

7. The identification problem is somewhat different when estimating the structural determinants of health
(the health ‘“‘production function’’) when fertility or mortality is selective. Lee, Rosenzweig, and Pitt
(forthcoming) examine the effects of mortality selection on estimating the effects of health interventions
that improve the health infrastructure, using data from India, Bangladesh, and the Philippines. They
employ semi-parametric estimators to estimate (i) the effects of water and sanitation facilities on child
survival and (ii) the effects of increased calorie consumption and improvements in health infrastructure
on measures of children’s nutritional status. The estimated health production function has child-specific
calorie intake as an endogenous health input. In the estimation of a health production function, the
prices of health inputs are valid instruments both for the inputs and for the survival function that controls
for mortality selection. They find very little evidence of mortality selection with these data, and could
not reject the hypothesis of bivariate normality. This identification strategy is only available for the
estimation of structural models and not for reduced-form models of the kind most commonly applied
in the literature on child health behavior. Moreover, health production function estimation requires
difficult-to-obtain data on individual specific health inputs, such as food intake, which are not commonly
available.
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Estimating likelihood (9) with 14 DHS data sets from Sub-Saharan Africa, we
were unable to identify the parameters B, and p with sufficient confidence. The
likelihoods plotted against p were almost flat over wide portions of p’s permissible
range of {—1, 1}, although at the maximum of most likelihoods, p was quite
distant from 0. We are not alone in finding that it is difficult to identify this
bivariate probit model. Keane (1992) reports both Monte Carlo evidence and
evidence using the National Longitudinal Survey of Young Men on how very
difficult it is to identify multivariate probit models without exclusion or covariance
restrictions. He refers to identification of multinomial probit models without re-
strictions as being ‘‘tenuous’’ or ‘‘fragile’’ in that the likelihood function exhibits
very little variation from its maximum over a wide range of parameter values.
The discrete case thus differs from the continuous case reported in Pitt and
Rosenzweig (1989), in which the nonlinearity derived from assuming normally
distributed errors was sufficient to identify the joint determinants of fertility and
a continuously measured health indicator (birth weight).

IV. Indentification with Covariance Restrictions

A. Random Effects Probit and the Exchangeability Property

The proposed approach to identification does not rely on arbitrary exclusion or
functional form restrictions, or on the exogeneity of first-births, but rather on
restrictions on error covariances that follow directly from the illustrative Model
(1)-(2) set out above. The simplest form of the model is relatively easy to esti-
mate. However, it imposes some strong restrictions on behavior. As a result, we
will examine a number of related approaches that are less restrictive and extend
the informational content of results in a number of interesting directions.

The restrictions on the error terms attached to the fertility and health reduced
forms (Equations (1) and (2) above) at the time these equations were introduced
are sufficient for identification as long as fertility and health outcomes are ob-
served for more than one time period in the life of each woman in the sample.
To elaborate, Equations (1) and (2) are rewritten below with time subscripts:

(11) D = XpieBp + Wpi + Viars

where the observed A of Equation 2 is replaced by D}, latent mortality, corre-
sponding to a binary realization D; = 1 if the infant died and D, = 0 if it
survived.® Under the assumptions that E(vg,, vj,) = 0, E(vg, vg) = 0and E(vy,
Vi) = 0, we can write the joint likelihood of births and deaths for T periods in
the reproductive life of a woman as

8. The ¢ subscript here refers to the date of the child’s birth when attached to mortality, so that D, is
a binary indicator of whether the child of woman i born in period ¢ is still alive at some fixed time since
birth.
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(12) Prob(Fil’Fiz,v-.,FiT’Dil’Diz,v-.,DiT)

T X, NG
=j_w j_w [n [( fvff ((1 _fp})> ’*ﬁ>1ﬁ’]

t=

T 2 172 F,
Xi p it
X H CI>[< B + ( : > ) llhi)lhn]
1 Oy, 1- Ph)

t=

X b(fgs Py PYFi X ¢1(ﬁﬁ)l_F"‘] diigdiy

where ’1hi = “‘ht/ouh’ '.Lﬁ [Lﬁ/(fuf, Iﬁt =1 lfF" = l, Iﬁ, = —1if Fit = 0, Ihit
=1ifD, = 1,1I,, = —1if D;, = 0, and where

2 2

( ch )1/2 . Oll‘«h 172
Pr=\7>"—"7% and pp =\|\—75—5 ] -
! oif + 03f o + 0

Koy

The simplification of the 2T-variate probability to the form on the right-hand side
of (12) results from integrating out the women-specific effects w; and wy;, the
only sources of correlation between the sequences of birth and death/survival
events. Numerically evaluating the integrals in (12) is accomplished with fast and
highly accurate Gauss-Hermite integration.’

The likelihood (12) is referred to as the random-effects bivariate probit model.
The random-effects probit model was introduced into the economics literature by
Heckman (1980), and the use of Gauss-Hermite quadrature to evaluate the likeli-
hood was popularized by Butler and Moffitt (1982). The use of this model below
differs from other uses in economics. (Moffitt 1984) in that here the covariance
restrictions of the model are used to identify an otherwise numerically unidentified
model.

What restrictions on error correlations are imposed by this model and how
realistic are they? Associating all correlation with a single factor (p) is sufficient
to yield an error correlation matrix with equicorrelation, a special case of the
exchangeability property. In the case of a single set of random variables F;;,
F,, . .., Fy, equicorrelation restricts the correlation between any pair of the
sequence to be equal. The sequence can be shuffled or exchanged in any way,
and the T X T correlation matrix will consist of 1’s on the diagonal and p; in the
off-diagonal. If F, is fertility in time ¢, . represents unobserved fecundity, health,
and other factors that are specific to the ith woman and time invariant. Life-cycle
changes in fecundity (and other factors) can be captured by introducing age ef-
fects.

In the case of the sequences of two random variables F;;, F,, . . . , Fi7, and
D;, Dy, ..., D;, the model imposes exchangeability within each sequence and,
since the shocks vg, and v, are assumed to be uncorrelated, the only source of

9. The assumption of normality for the woman-specific effects p. in the random effects probit model (12)
is not necessary for identification. This model is identified with a nonparametric distribution.
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correlation between the sequences arises from the constant correlation p between
the fertility factor w; and the mortality factor w,;. The restrictions on the error
are not unlike those of the standard fixed effects model with woman-specific
effects. The equicorrelated model is substantially over-identified in that there
are 2T2T — 1)/2 — 1 restrictions imposed, leaving room for less restrictive
specifications, some of which are suggested below.

The source of the error correlation between the fertility and mortality errors,
the term pj; and ,;, may represent other effects, of which inherent healthiness
is only one. All omitted time invariant variables will affect both fertility and
subsequent mortality and health, and thus indicate selection. These might include
variables related to permanent income, which is unobserved in the data used in
the estimation reported below. It is likely that the richer the data set used in the
estimation of the econometric model described by (12), the less important any
selection bias will be.!

B. The Data

The data used in the estimation come from 14 Sub-Saharan Demographic and
Health Survey (DHS) data sets.!! The fertility and mortality observations for each
woman consist of whether she had a birth in each 12-month period beginning
with her 13th birthday, and if there was a birth, whether the child survived to its
24th month. Very few women had two pregnancies that resulted in live births
within these 12-month periods. When more than one birth occurred it was most
often the result of a single multiple-birth pregnancy, an exogenous event.

Table 1 presents summary statistics for the sample of births used in the empiri-
cal analysis. It provides numbers of children, variable definitions, means, and
standard deviations for the children born to the women in the sample. These data
are used in the child mortality portion of the various likelihoods. The likelihoods
also use ‘‘woman-years’’ in which there was no birth as data in computing the
probability of a birth in every year subsequent to each woman’s 13th birthday.
The number of women, woman-years, and births used in the estimation for each
country is presented in Table 2.

C. Estimates of the Determinants of Mortality Corrected for Selective Fertility

Table 2 presents three sets of estimates for the determinants of death before age
two years for 14 Sub-Saharan African nations using data from the Demographic
and Health Surveys (DHS). The first set, labeled ‘fertility selected binary
probit,”’ contains standard probits in which a time-invariant woman-specific ran-

10. In addition, the p factors can be interpreted as subsuming a hoarding effect, that is, having more
births in anticipation of a positive probability of subsequent death resulting, in part, from unobserved
inherent healthiness or other omitted variables.

11. There is a substantial literature describing the collection of Demographic and Health Survey data
and evaluating their quality. The most useful summary is Arnold (1991). One finding of this literature is
that the timing of births is often misstated, even more so for children who subsequently died. While this
raises some concern about measurement error in general, it has no clear implication for assessing the
impact of fertility selection in our framework.
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dom effect is not included in the likelihood; these probits are estimated from the
sample of all children born to the sampled women and are thus uncorrected for
the potential choice-based nature of fertility. These parameters can be compared
to the results of most studies that use samples of children to study the determi-
nants of child mortality. The reported ¢-statistics are corrected for the non-
independence of the errors associated with woman-specific random effects.!? The
middle set of estimates, labeled *‘fertility-selected random effects binary probit,”’
use these same data to estimate a random effects (univariate) probit model of
mortality, still uncorrected for the potential choice-based nature of fertility. The
last set of estimates, labeled ‘‘selection-corrected random effects bivariate
probit,”’ are obtained by maximizing the bivariate random effects with partial
observability likelihood (12). The parameter estimates are comparable since the
(composite) error is normalized to unit variance in all models.

In all possible cases, the hypothesis that the woman-specific effects w; and p,
are not correlated (p = 0), that is, that there is no birth selection in the determina-
tion of mortality, is rejected. In two cases (Botswana and Togo), estimates of p
exceeded 0.99 and point estimates could not reliably be obtained. For these two
countries, the estimated model imposes p = 0.99. All of the estimated p’s are
positive, indicating negative birth selection (‘‘high fertility’’ women are also ‘high
mortality’’ women). The range in correlation between the woman-specific effects
is quite large—the largest value for p is 0.95 in Zimbabwe and the smallest is
0.19 in Sudan—but most of them are large—all but two are greater than or equal
to 0.39. In addition, all of the p/’s and p,’s, which are the square root of the share
of the woman-specific effect in the regression error (see Equation (12)), are all
significantly different from 0. The importance of woman-specific effects in the
determination of child mortality was typically larger than in the determination of
fertility (p, > py).

Although the selection-corrected estimates demonstrate that the fertility and
mortality woman-specific effects, u; and p;, are highly correlated, the magnitude
of the error correlation seems much less when expressed as the correlation be-
tween the entire fertility error (e, = v4 + p4) and the entire mortality regression
error (g4, = vy, + My). If the woman-specific effects are small compared to the
nonsystematic shocks vg and v, the correlation of the total (composite) errors
will be small. In this model the remaining sources of error are maintained to be
uncorrelated, an assumption that is relaxed below. Since the composite errors
are normalized to have unit variance, pyand p, are the standard deviations of the
errors pg; and p, respectively, and the correlation between €4, and g, is p =
ppsP- Thus, although the p’s are highly correlated in Zimbabwe (p = 0.96), for
example, the €’s are not nearly as correlated (p = 0.05) because of the relative
importance of the nonsystematic errors.

Although the statistical tests of no fertility selection (p = 0) are all strongly
rejected, fertility selection does not seem to importantly bias estimates of the

12. The parameter covariance matrix is essentially White’s heteroskedasticity-consistent covariance
matrix in which the Berndt-Hall-Hall-Hausman (BHHH) component of White’s formula is altered to be
the cross-product of the first derivatives of the log likelihood function defined over all the births that
each woman contributes to the sample.
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Table 2

Determinants of Death before Age Two Years: Fertility-Selected Binary Probit,
Binary Random Effects Probit, and Selection-Corrected Bivariate Random
Effects Probit Estimates

Fertility-Selected Selection-Corrected
Fertility-Selected Random Effects Random Effects
Binary Probit® Binary Probit Bivariate Probit

Parameter t-statistic Parameter  r-statistic = Parameter  f-statistic

Botswana
Age in years —0.01711 (—-0.771) —0.04070  (—1.409) —0.03152  (—1.098)
Age squared /100 0.02906 (0.704) 0.07702 (1.410) 0.05872 (1.083)
Years of education ~ —0.01642 (—2.860) —0.01643  (—2.408) —0.01694  (—2.490)
Rural —0.00191 (—0.045) -0.01513  (-0.297) —0.01572  (—0.309)
Year —0.01782 (—6.068) —-0.01731  (—4.166) -0.01721  (—4.136)
Male 0.13605 (3.394) 0.09789 (2.202) 0.09830 (2.221)
Multiple birth 0.70666 (4.797) 0.63122 (3.754) 0.62683 3.773)
Constant 0.02329 (0.065) 0.28866 0.623) 0.12226 (0.265)
p — — — — 0.99000 —_
p (fertility) — — 0.09671 (4.992) 0.10153 (6.655)
p (mortality) — — 0.41656 (10.955) 0.42905 (11.439)
Burundi
Age in years —0.02469 (—1.367) —-0.01636  (—0.753) 0.00944 (0.430)
Age squared /100 0.02737 (0.850) 0.01612 (0.404) —0.02148  (—0.537)
Years of education ~ —0.00828 (=2.177) —0.00574  (—2.261) —0.00669  (—2.689)
Rural 0.02420 (0.532) 0.07503 (1.311) 0.06633 (1.165)
Year —0.00941 (—4.258) 0.00122 (0.382) —0.00205  (—0.626)
Male 0.08436 (2.769) 0.10287 (3.031) 0.10237 (3.043)
Multiple birth 0.88133 (6.871) 0.93375 (6.576) 0.93052 (6.677)
Constant —0.08891 (—0.339) -1.05264  (—2.947) —1.25824  (-3.551)
p — — — — 0.73904 (7.523)
p (fertility) — — 0.18153 (13.884) 0.18332 (14.184)
p (mortality) — — 0.43209 (16.374) 0.44785 (16.437)
Cameroon
Age in years —0.06934 (—4.363) -0.07772  (—4.341) —0.07143  (—3.995)
Age squared /100 0.10408 (3.357) 0.12518 (3.637) 0.11414 (3.328)
Years of education  —0.05715  (—10.602) —-0.05106  (—7.970) —0.05362  (—8.398)
Rural 0.04824 (1.443) 0.08469 (1.954) 0.08681 (2.004)
Year —0.00353 (—1.596) —0.00241 (—-0.787) —0.00326  (—1.055)
Male 0.08838 (2.802) 0.05818 (1.700) 0.05879 (1.719)
Multiple birth 0.70815 (7.394) 0.80103 (7.413) 0.79496 (7.394)
Constant 0.15269 0.617) 0.14582 (0.472) 0.09288 (0.301)
p —_ — — —_ 0.32501 (3.730)
p (fertility) — — 0.27887 (25.037) 0.27842 (24.982)
p (mortality) — — 0.41674 (14.905) 0.41953 (14.728)
Ghana
Age in years —0.07079 (—5.001) —0.09600  (—5.657) —0.08448  (—4.953)
Age squared /100 0.12397 (4.778) 0.16224 (5.176) 0.14393 (4.587)
Years of education ~ —0.01676 (—4.815) —0.01951 (—4.016) —-0.01938  (—3.997)
Rural 0.08629 (2.631) 0.07742 (1.913) 0.08850 (2.182)
Year —0.00613 (—3.053) 0.00042 0.151) —0.00072  (—-0.253)
Male 0.07034 (2.467) 0.05578 (1.751) 0.05720 (1.796)
Multiple birth 0.73716 (8.655) 0.83507 (8.817) 0.82812 (8.781)

Constant 0.11343 (0.533) 0.03258 0.113) —-0.09107  (—0.316)
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Table 2 (continued)
Fertility-Selected Selection-Corrected
Fertility-Selected Random Effects Random Effects
Binary Probit? Binary Probit Bivariate Probit
Parameter t-statistic Parameter  #-statistic ~ Parameter  r-statistic
p — — — — 0.89771 (4.283)
p (fertility) — — 0.09445 (5.764) 0.09644 (6.011)
p (mortality) —_ — 0.34651 (11.977) 0.35277 (12.078)
Kenya
Age in years —-0.07921 (—6.767) —0.08510  (—5.915) -0.07478  (—5.177)
Age squared /100 0.13386 (5.975) 0.15003 (5.520) 0.13434 (4.933)
Years of education —0.02118 (—3.193) —0.01645 (—6.301) -0.01772 (—6.813)
Rural 0.03310 (0.955) 0.06600 (1.531) 0.08463 (1.957)
Year —0.00352 (-1.717) —0.00508  (—2.052) -0.00711  (—2.834)
Male 0.05145 (2.188) 0.05698 (2.106) 0.05846 (2.173)
Multiple birth 0.84538 (10.455) 0.89127 (9.533) 0.88981 (9.486)
Constant —0.06406 (-0.332) 0.04109 (0.168) —0.00552  (—0.023)
p —_ —_ — —_ 0.50946 (6.679)
p (fertility) — — 0.16515 (19.343) 0.16486 (19.420)
p (mortality) — —_ 0.47546 (23.734) 0.48429 (23.775)
Mali
Age in years —0.11889 (—=9.071) —0.14045  (—9.004) —0.13155  (—8.335)
Age squared /100 0.19517 (7.855) 0.23326 (7.862) 0.21940 (7.333)
Years of education  —0.03219 (—4.225) —0.03122  (—3.058) —-0.03320 (—3.270)
Rural 0.23317 (7.918) 0.22728 (5.903) 0.23481 (6.096)
Year —0.01428 (—7.590) ~0.00572  (—2.068) —-0.00672  (—2.405)
Male 0.06274 (2.323) 0.05718 (1.906) 0.05745 (1.920)
Multiple birth 0.88450 (7.993) 0.88785 (6.802) 0.88671 (6.828)
Constant 1.64974 (8.170) 1.33130 (4.969) 1.23398 (4.596)
p — — — — 0.38635 (4.541)
p (fertility) — — 0.24234 (21.184) 0.24182 (21.248)
p (mortality) —_ — 0.40421 (18.297) 0.40978 (18.321)
Nigeria
Age in years —0.02937 (—3.165) -0.02599  (—2.338) —0.00697  (—0.630)
Age squared /100 0.04351 (2.450) 0.03399 (1.589) 0.00915 (0.434)
Years of education ~ —0.03023 (—8.940) -0.03277  (—6.791) —0.04376  (—9.044)
Rural 0.19476 (8.453) 0.21134 (6.471) 0.19358 (5.919)
Year -0.01172 (—8.172) —0.00840 (—4.153) -0.01152  (—5.629)
Male 0.09184 4.717) 0.08727 (4.098) 0.08553 (4.082)
Multiple birth 0.80897 (13.448) 0.82875 (12.272) 0.80247 (12.056)
Constant 0.09682 (0.649) —0.20941  (—1.034) -0.31919  (-1.603)
rho — — — — 0.64625 (14.764)
p (fertility) — — 0.26641 (35.564) 0.26632 (35.970)
p (mortality) — — 0.50835 (34.819) 0.53467 (35.657)
Senegal
Age in years —0.04533 (—3.241) —0.04893  (-2.922) —0.04104  (—2.448)
Age squared /100 0.06886 (2.629) 0.07360 (2.302) 0.06187 (1.932)
Years of education  —0.02982 (—4.650) —0.03646  (—4.278) —0.03705  (—4.326)
Rural 0.23469 (7.551) 0.25463 (6.476) 0.27181 (6.928)
Year —0.01592 (—8.568) —-0.01037 . (—3.954) —0.01170  (—4.384)
Male 0.06414 (2.432) 0.04903 (1.648) 0.04977 (1.675)
Multiple birth 0.96692 9.611) 0.87369 (7.143) 0.87846 (7.170)
Constant 0.61796 (2.919) 0.28365 (1.029) 0.21779 (0.795)
p — — — — 0.40621 (4.351)
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Table 2 (continued)

Fertility-Selected Selection-Corrected
Fertility-Selected Random Effects Random Effects
Binary Probit® Binary Probit Bivariate Probit

Parameter t-statistic Parameter  t-statistic = Parameter  f-statistic

p (fertility) — — 0.21400 (19.533) 0.21453 (19.667)
p (mortality) — — 0.37034 (15.500) 0.37330 (15.375)
Sudan
Age in years —0.04589 (—4.064) -0.04774  (—3.567) —0.04128  (—-3.029)
Age squared /100 0.07458 (3.428) 0.07406 (2.873) 0.06440 (2.471)
Years of education ~ —0.02082 (—3.193) —0.02700  (—4.780) —0.02687 (—4.761)
Rural 0.05188 (2.012) 0.05019 (1.648) 0.05492 (1.802)
Year —0.00318 (-1.900) - 0.00517 (2.289) 0.00422 (1.837)
Male 0.05568 (2.565) 0.05137 (2.114) 0.05192 (2.138)
Multiple birth 0.75121 (10.352) 0.71496 (9.151) 0.71591 (9.164)
Constant -0.44679 (—2.644) -1.01189  (—4.627) -1.05992 (—4.845)
p — — — — 0.18961 (2.877)
p (fertility) — — 0.28223 (36.650) 0.28202 (36.712)
p (mortality) — — 0.39229 (21.438) 0.39376 (21.377)
Tanzania
Age in years —0.05477 (—5.806) —0.05770  (—4.839) —0.05122 —(4.269)
Age squared /100 0.07538 (4.282) 0.08663 (3.835) 0.07613 (3.357)
Years of education ~ —0.02335 (—6.834) —0.01917  (—4.263) —0.02102  (—4.664)
Rural ) 0.03696 (1.327) 0.07568 (2.174) 0.08228 (2.368)
Year —0.00247 (—1.759) —0.00255  (—1.345) —-0.00377  (—1.950)
Male 0.05080 (2.623) 0.05442 (2.536) 0.05428 (2.536)
Multiple birth 0.88996 (14.484) 0.89583 (12.984) 0.88995 (12.873)
Constant —0.14694 (—0.991) -0.16072  (—0.828) —0.18870  (—0.973)
p — —_ — — 0.41081 (5.738)
p (fertility) — — 0.17795 (23.635) 0.17847 (23.855)
p (mortality) — — 0.38594 (21.135) 0.38749 (21.038)
Togo
Age in years —0.01650 (—1.006) —-0.02432  (—1.156) —-0.01182  (-0.560)
Age squared /100 0.01108 (0.366) 0.02221 (0.563) 0.00201 (0.051)
Years of education ~ —0.03326 (—4.283) —0.03725  (-3.834) —-0.03760  (—3.889)
Rural 0.17395 (4.250) 0.21125 (4.145) 0.22716 (4.472)
Year -0.01214 (—5.217) -0.01013  (—3.092) —0.01094  (—3.296)
Male 0.05635 (1.721) 0.06111 (1.654) 0.06309 (1.709)
Multiple birth 1.01595 (12.290) 0.94904 (10.101) 0.95004 (10.131)
Constant —-0.09592 (—0.366) —0.15329  (—0.445) -0.31412 (-0.912)
p - — —_ — 0.99000 —
p (fertility) — —_ 0.07200 (2.943) 0.08476 (5.306)
p (mortality) — — 0.33965 (10.642) 0.34506 (10.926)
Uganda
Age in years —0.08671 (—6.467) —0.10041 (—6.420) —0.09541  (—6.036)
Age squared /100 0.13662 (5.406) 0.15979 (5.287) 0.15159 4.972)
Years of education ~ —0.02513 (—5.354) —0.03077  (—4.898) -0.03236 (—5.118)
Rural 0.03454 (0.865) 0.05618 (1.068) 0.05674 (1.077)
Year 0.00065 (0.363) 0.00791 (3.285) 0.00704 (2.907)
Male 0.08245 (3.198) 0.07139 (2.454) 0.07196 (2.476)
Multiple birth 0.90106 (10.442) 0.95649 (8.563) 0.96383 (8.643)
Constant 0.00791 (0.038) —0.34157 (—=1.362) -0.36715  (—1.467)

0 — — — — 0.24223 (2.879)
p (fertility) — — 024397  (24.896) 0.24380  (24.869)
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Table 2 (continued)

Fertility-Selected
Binary Probit?*

Fertility-Selected
Random Effects
Binary Probit

Selection-Corrected
Random Effects
Bivariate Probit

Parameter t-statistic Parameter  r-statistic =~ Parameter  t-statistic
p (mortality) — — 0.39632 (17.867) 0.39795 (17.638)
Zambia
Age in years —0.07410 (—6.579) —0.08514  (—6.205) -0.08000 (—5.796)
Age squared /100 0.10635 (5.008) 0.12481 (4.787) 0.11689 (4.466)
Years of education ~ —0.03092 (—8.763) —0.03459  (—7.396) —0.03588  (—7.666)
Rural 0.11436 (4.699) 0.12420 (3.956) 0.12491 (3.974)
Year 0.00693 (4.515) 0.01109 (5.271) 0.00992 (4.684)
Male 0.03599 (1.653) 0.02704 (1.092) 0.02756 (1.114)
Multiple birth 0.81212 (12.189) 0.81747 (10.469) 0.81626 (10.429)
Constant —0.57540 (—3.248) —0.73570  (—3.295) -0.73770  (—3.316)
p —_ — — — 0.42162 (4.166)
p (fertility) — — 0.14080 (13.861) 0.14052 (13.864)
p (mortality) — — 0.39650 (20.281) 0.40062 (20.299)
Zimbabwe
Age in years —0.05568 (—3.244) —0.03528  (—1.570) —0.01981  (—0.885)
Age squared /100 0.09069 (2.852) 0.04759 (1.129) 0.02111 (0.503)
Years of education ~ —0.02664 (—4.553) —-0.02245  (—3.074) -0.02423  (—3.318)
Rural 0.25594 (5.565) 0.29756 (5.447) 0.29615 (5.476)
Year —0.00791 (—3.311) —0.00345  (—1.150) —0.00449  (—1.499)
Male 0.13743 (3.967) 0.14557 (3.888) 0.14650 (3.936)
Multiple birth 0.50110 (4.903) 0.40949 (3.493) 0.41757 (3.544)
Constant —-0.23818 (—0.931) —0.84820  (—2.433) —1.02788  (—2.981)
p — — — —_ 0.95582 (5.107)
p (fertility) — — 0.17420 (14.562) 0.17462 (14.737)
p (mortality) — — 0.28506 (6.642) 0.28655 (6.506)
Sample sizes: Number of
Women Births Woman-Years
Botswana 4,359 10,564 54,537
Burundi 3,958 11,783 53,418
Cameroon 3,862 11,404 48,525
Ghana 4,477 13,965 61,379
Kenya 7,124 24,876 94,858
Mali 3,196 12,113 46,078
Nigeria 8,741 27,621 116,179
Senegal 4,406 14,225 56,267
Sudan 5,858 25,454 94,447
Tanzania 9,201 28,691 119,479
Togo 3,348 10,523 44,162
Uganda 4,716 15,853 57,811
Zambia 7,254 22,320 87,317
Zimbabwe 4,186 12,169 54,196

a. Asymptotic bootstrap covariance matrix with woman-specific effects.
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effect of women’s schooling on the probability of child mortality prior to age 24
months in most of the countries studied. Table 3 provides estimates of the deriva-
tive of the conditional probability of infant death with respect to education for
the 14 countries examined. The underestimate of this derivative is largest for
Nigeria. For women with no education, the selection-corrected estimates are
one-third larger than the fertility-selected estimates. Overall, the effect of educa-
tion on mortality is underestimated in 11 of 14 cases. It is overestimated only in
Botswana, Ghana, and Sudan.?

D. Estimating the Determinants of a Continuous Measure of Health from
Fertility- and Mortality-Selected Samples: Random Effects Trivariate Probit

The most common dependent variable in the literature on the reduced-form deter-
minants of the health of children is some continuously measured anthropometric
measure of nutritional status—weight and height possibly adjusted for age or
scaled into weight-for-height or body mass index (BMI). For a child to enter into
a sample of anthropometrically measured children requires that that child be born
and survive to the date of the survey, both possibly selective events. If the
reduced-form equation for child health W, takes on a factor structure like fertility
and mortality where p.,,; is the woman-specific factor associated with W;,, and v,,;,
is a nonsystematic shock,™

13) Wy = XyiuByw + Boi + Viirs

the random effects probit likelihood corresponding to this problem is

(14) Prob(F;,Fy,...,Fy,D;,Dyy...,Digp, Wi, Win, ..., Wip)
T 2 12
© o o Xlef pf ~
T o] (2 () )
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13. In addition, in 11 of 14 countries the age effect is overestimated when fertility selection is ignored,
and some of the relative magnitudes are quite large. The differences are particularly striking for Burundi
and Nigeria.

14. Measures of health W, can be observed at more than one point in time for the same child. The time
subscript ¢ in what follows represents the anthropometric status at the date of a survey of the child of
woman i born in period ¢. It could alternatively represent the health status of a single child of woman i
as measured at more than one point in time, indexed by ¢. For multiple children subject to multiple
measurements, an additional subscript is required.
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Table 3
Derivative of the Conditional Probability of Infant Death with
Respect to Education

Proportion of Infants
Born to Mothers
with Two or Fewer
Years of Schooling
Who Do Not
Fertility-Selected Selection-Corrected Survive Two Years

Botswana -0.00203 —0.00202 6.78
Burundi —0.00119 —0.00139 11.99
Cameroon —-0.01169 —-0.01224 15.15
Ghana —0.00402 —0.00396 12.08
Kenya —0.00253 —0.00274 9.95
Mali —0.00861 —0.00908 19.27
Nigeria —-0.00715 —0.00958 14.77
Senegal —0.00856 -0.00866 15.34
Sudan —0.00506 —0.00498 10.65
Tanzania -0.00411 —0.00444 13.13
Togo —0.00731 —0.00734 12.23
Uganda —0.00706 —0.00744 13.43
Zambia —0.00829 —0.00860 14.89
Zimbabwe —0.00348 -0.00370 9.40

where ¢() is the normal trivariate density function. Estimation of the likelihood
(14) involves numerical evalution of three integrals which is computationally bur-
densome even on high-speed workstations.

The determinants of child weight and height corrected for the possibly selective
effects of fertility and mortality were estimated with data from the Zambian DHS
data set. The Zambian DHS data set provides measures of the weight and height
of all children born to surveyed women in the five years prior to the survey date.
Note that identification of the variance of ., (p?) requires that there be at least
two ‘‘periods’’ of observations for every woman. With partial observability (se-
lection), we must have anthropometric measures for at least two surviving chil-
dren for some of the sampled women and not just two years (potential birth
cohorts) of fertility and mortality outcomes. In a high-fertility environment such
as Zambia, there are many women with more than two surviving children born
in a five-year period.

Table 4 provides estimates of the determinants of both log weight (in 100 grams)
and log height (in centimeters) estimated by ordinary least squares, as is typical
in most studies, and, alternatively, selection-corrected estimates obtained by
maximizing the trivariate random effects probit likelihood (14). The former esti-
mates, which ignore both fertility and mortality selection, are labeled *‘selected”’
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Table 4

Determinants of Child Anthropometrics in Zambia (asymptotic t-statistics

in parentheses)

Log Weight Log Height
Selection- Selection-
Selected® Corrected Selected®  Corrected

Age in years 0.00298 0.00297 0.00069 0.00076
(1.064) (1.013) (0.495) (0.611)

Age squared /100 —0.00296 —0.00282 0.00006 —0.00006
(—0.608) (—0.553) (0.024) (-0.027)

Years of education 0.00413 0.00406 0.00309 0.00317
(5.062) (4.640) (7.208) (7.309)

Rural —0.01825 -0.01774 —0.00920 —0.00923
(—-3.170)0 (-2.907) (-3.319) (—3.298)

Child age (months) 0.02453 0.02449 0.00897 0.00918
(12.100) (12.503) (8.532) (10.420)

Male 0.02973 0.02964 0.00381 0.00301
(5.743) (5.838) (1.483) (1.191)

Multiple birth —0.07029 —-0.07075 —0.03077 —0.03203
(—3.437) (—-3.431) (-3.164) (—3.4635)

Child age squared /100 —0.01556 —0.01533 —0.00271 —0.00296
(—-6.314) (—6.453) (—2.160) (—2.811)

Constant 4.03621 4.03363 6.44170 6.43595
(75.242) (75.444)  (228.262) (326.743)

p (fertility, weight/height) —0.12881 —0.12359
(—0.084) (—4.490)

p (morality, weight/height) —0.00953 —-0.39175
(—0.100) (—14.337)

p (fertility) 0.15628 0.15615
(4.875) (18.368)

p (mortality) 0.42272 0.42281
(21.004) (26.312)

p (weight/height) 0.59340 0.31803
(16.938) (12.237)

o (weight/height) 0.13728 0.11024 0.06594 0.06265
(91.838) (32.927)  (176.954) (104.485)

Note: Number of children weighed and measured: 4,202.

a. Fertility- and mortality-selected asymptotic bootstrap covariance matrix with woman-specific

effects.
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in the table and the latter estimates are labeled ‘‘selection-corrected.”” Notable
in Table 4 is the lack of evidence of fertility or mortality selection in the determi-
nants of log child weight. Both py, and p,,, are not significantly different from 0.
However, there is evidence of fertility and mortality selection in the determinants
of log child height, as both p, and p,,, are both negative and statistically different
from 0. The implication is that there is negative birth selection (‘‘high-fertility
women have low-height children’’) and negative mortality selection with respect
to child height (‘‘women whose children are more likely to die prior to age two
years are more likely to have low-height children’’). The estimated p,,, which
measures the relative importance of woman-specific effects in the residual of the
log height equation, is larger than p, but smaller than p,. Nonetheless, there
does not seem to be much difference between the fertility- and mortality-selected
parameters for height and the selection-corrected parameters. The bias imparted
by fertility and mortality selection on anthropometric measures of child nutritional
status is apparently small in this case.

E. Variable Correlations of Woman-Specific Effects

Itis possible to eliminate the equicorrelation restriction and still specify structures
for the error correlation matrix which preserve the relative computational simplic-
ity of likelihoods such as (12). In particular, a 7-fold joint probability can be
represented by an expression with a single integral if the correlation between
periods ¢ and t’, p(¢, t') can be written as (Tong 1990)

(15) p(t,t") = AN, 0<\, <1 forallt.

This formulation permits the share of variances (p; and p}) of the (composite)
error (g4 and e,,) that is time-persistent to vary across periods. This flexibility
is desirable if the importance of women’s endowments p. change over their repro-
ductive life-cycles. The parameters A or p can be made parametric or nonparamet-
ric functions of any observed exogenous attribute—calendar time, woman'’s age,
schooling, race or ethnicity, and season.

To implement this relaxation of equicorrelation, the parameters p} and p? are
replaced with )\ff and A%, respectively, in likelihood (12). In allowing the correla-
tion between w; and ., to vary with ““time”” we adopt two time-based orderings
of the data. One ordering is by calendar time. The number of A parameters can
be quite large if there are different values for each time or age period. Two A
parameters, A, and A, need to be estimated for each period. In order to have a
sufficient number of observations in each calendar year (and to save on computa-
tion), calendar time is grouped into eight categories for fertility and four categories
for mortality. The latter time disaggregation is less fine because only actual births
contribute to the mortality part of the likelihood while every year contributes to the
fertility part of the likelihood (partial observability). The second time ordering is by
woman’s age. Again, eight age categories for fertility and four age categories for
mortality were chosen. Although it seems sensible to suppose that, at least in the
case of woman’s age, the \ coefficients would exhibit smoothness, no restrictions
were placed on the distribution of the \’s over ‘‘time’’ in the results reported.

Table 5 reports parameter estimates obtained by maximizing likelihood (12)
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with time-varying woman-specific effects for both calendar time and women’s
age groupings, as well as the basic selection-corrected random effects bivariate
probit model as a basis of comparison. The restrictions Ay, = N and N\, = N,
are rejected for age and calendar time ordered effects in both countries. For the
case of age-varying \’s, the likelihood ratio test statistic for Cameroon is x2(10)
= 56.92 and for Uganda x2(10) = 30.14. For the case of calendar-time-varying
\’s, the test statistic for Cameroon is x2(10) = 89.92 and for Uganda x2(10) =
142.76. In both countries, \’s varying with calendar time improves the log likeli-
hood more than having \’s varying with woman’s age.

Not surprisingly, the parameters on the age, age squared, and time trend
(‘“‘year’’) regressor are substantially altered when the correlation of woman-
specific effects is allowed to vary with age or calendar time compared to when
the correlation is fixed. For example, when \’s vary by calendar time, the time
trend parameter is nearly triple its magnitude than when \’s vary with woman’s
age, but are almost identical to the random effects bivariate probit (equicorrela-
tion) estimate. The estimated correlation between w; and w, falls in both runs,
particularly with calendar-time-varying \’s. The derivatives of the conditional
probability of child death with respect to woman’s schooling attainment do not
differ much between equicorrelation and varying correlation.

F. Relaxing Exchangeability: Cohort-Specific Effects

The restriction E(v4, vy,) = 0 in the bivariate model given by Equations (10)
and (11) and the likelihood (12) can be relaxed while still leaving intact a variant
of exchangeability. The exchangeability property in (12) is that the T X T error
correlation matrix for fertility outcomes is invariant to the ordering of time pe-
riods, as is the T X T error correlation matrix for mortality. Define bivariate
exchangeability as the restriction that both error correlation matrices are invariant
to the order of time periods when the two errors have a fixed structure, pairing
elements of the two error vectors. This property allows for cohort-specific shocks
vg, and vy, as well as other possible pairings of shocks, to be correlated; that is,
E@Wg, Vi) # 0 or E(vg, Vi) # 0. In the context of our problem, cohort-specific
shocks aillow for fertility shocks to affect the subsequent mortality probability or
health of any child born in the period of the shock. Consider a fertility shock
resulting from a negative (idiosyncratic) income shock, perhaps resulting from
the loss of the household’s crop or livestock in a way that lowers consumption
(nutritional status) to a level at which fecundity temporarily falls and the parents
are aware that any child born while the mother is so poorly nourished is less
likely to be healthy. This shock reduces the probability of a birth in the period
of the shock but might also increase the probability that any child born in that
period will more likely suffer mortality in infancy as a result of the poor nutritional
status of the mother and the reduced level of all resources available to the house-
hold. This scenario suggests that E(v,, v,;) < 0; that is, negative cohort-specific
correlation. As it seems likely that the (permanent) woman-specific effects
and p.,; are positively correlated, that is, ‘‘high fertility’” women are also ‘‘high
mortality’> women, the error correlations for the two error components may be
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of opposite sign and perhaps selection bias resulting from woman-specific effects
is ameliorated or eliminated by the correlation of cohort-specific effects.

There is an alternative scenario that is perhaps more appropriate for developed
nations such as the United States. In this scenario, the shock vy, represents an
unexpected failure of fertility planning, such as contraceptive failure. The result
is an ‘‘unwanted’’ birth. If parents provide less care to unwanted children, then
we might expect E(vg,, v;,) > 0; that is, the child is more likely to not survive
or more likely to have low birth weight or other measure of health status.

The likelihood for the bivariate fertility-mortality problem with the less restric-
tive bivariate exchangeability property is

(16) Prob(F;,Fy,...,Fi7,D;1,Dpy,...,Dyp)

- o T 2 12
- j_w[HCDZ[(ngf + (2 )) )
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The model of a continuous (anthropometric) measure of health W, selected by
prior fertility and mortality outcomes given by Equations (10), (11), and (13) can
also be generalized by assuming the less restrictive trivariate exchangeability
property, analogous to the bivariate exchangeability property described above.
The bivariate and trivariate exchangeability properties hold not just when v,
and v, are allowed to be correlated, but for any ordered pairing v4, and v,
t'" =t + j. Forj = 1, we have last period’s fertility shock affecting the health
outcomes of the next period’s birth cohort. If j = —1, health shocks to children
born in year # — 1 affect fertility behavior in year ¢. Note that exchangeability
requires that if vg, is correlated with vy, ., no other correlation among the vy,
Vs Vs and vy, is allowed. Modeling the transmission of shocks in order to
maintain the exchangeability property is obviously quite limiting. Computational
ease is its great appeal.’® Shocks to fertility, mortality, and health may be trans-
mitted across behavior and time periods. In that case, the individual birth and
mortality events are functions of all previous shocks to the system, and the
integration over the iid shocks no longer takes the form of products of normal

15. Essentially, the likelihood of the bivariate probit model with partial observability lies within the
integrals of likelihood (16). It is only the nonlinearity of the normal distribution that identifies the
cohort-specific correlations. However, unlike the case of the bivariate probit with partial observability,
these likelihoods are not flat with respect to the cohort-specific correlation coefficients. They seem to
be well identified.
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distribution functions but requires numerical integration over the 27 random vari-
ables. For T larger than 2 or 3, numerical integration of this type becomes difficult.
In addition, the random effects need to be integrated out as well.

Table 6 provides estimates of the joint fertility-mortality model for three coun-
tries (Mali, Sudan, and Zambia) which permit cohort-specific errors to be corre-
lated (bivariate exchangeability), adding an additional source of selection to the
woman-specific effects already modeled. Table 6 provides a comparison of both
the random effects bivariate probit model estimates presented in Table 2 with the
bivariate model allowing for both woman-specific and cohort-specific effects and
given by likelihood (16).

Cohort-specific effects are statistically significant and negative in both Mali and
Sudan, and statistically significant and positive in Zambia. The positive correla-
tion coefficient suggests that births arising in high-fertility periods have lower
mortality probabilities than births arising in low-fertility periods. As noted above,
this is consistent with positive income shocks (or maternal health shocks) induc-
ing both greater fertility and a higher probability of infant survival. Obviously,
this is not the case in Zambia, where the contraceptive-failure/unwanted birth
scenario may underlie the negative cohort-specific correlation.

The parameters associated with regressors do not change much with the intro-
duction of cohort correlation. Notably, the magnitude of the positive correlation
between woman-specific fertility effects p, and woman-specific mortality effects
., falls when cohort correlation is introduced.

V. Concluding Remarks

This paper has estimated the determinants of child mortality cor-
rected for the selectivity of fertility, and the determinants of anthropometrically
measured child health corrected for the selectivity of both fertility and mortality,
in 14 Sub-Saharan countries for which Demographic and Health Survey (DHS)
data are available. It differs from the usual approach of estimating reduced-form
equations of child mortality from samples of children by allowing for the possibil-
ity that such samples are choice-based, reflecting prior selective fertility and
mortality behavior. If parents care about the health outcomes of potential births,
then any unobserved factors (heterogeneity) that affect those outcomes will influ-
ence fertility decisions. Changes in exogenous variables, including household
attributes such as women’s schooling and program interventions, may thus affect
the survival outcomes of those born by (1) altering the composition of households,
classified by inherent healthiness, who bear a child in any time period, and
(2) directly altering the survival probabilities of those selected to be born. Further-
more, these exogenous variables affect the observed health of those born and
surviving to the survey by altering the composition of those who survive. Fertility
selection was found in all 14 data sets studied, and resulted in the underestimation
of the effect of women’s schooling in reducing child mortality in 11 of the 14
countries. However, this misestimation was not found to be large. Perhaps this
is not surprising in a high-fertility environment like Sub-Saharan Africa.

The issue of identification of the empirical model complicates estimation that
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Table 6

Determinants of Death before Age Two Years: Selection-Corrected Bivariate
Random Effects Probit Estimates with and without Correlated Cohort-Specific
Effects

Selection-Corrected
Random Effects

Selection-Corrected Bivariate Probit
Random Effects with Correlated
Bivariate Probit Cohort-Specific Effects
Mali
Age in years —0.13155 (—8.335) —0.13197 (—8.452)
Age squared /100 0.21940 (7.333) 0.21589 (7.248)
Years of education —0.03320 (—3.270) —0.03021 (—2.995)
Rural 0.23481 (6.096) 0.23730 6.277)
Year —0.00672 (—2.405) —0.00402 (—1.383)
Male 0.05745 (1.920) 0.05844 (1.979)
Multiple birth 0.88671 (6.828) 0.86465 (6.740)
Constant 1.23398 (4.596) 1.37438 (5.204)
p 0.38635 (4.541) 0.31353 (3.241)
p (fertility) 0.24182 (21.248) 0.24186 (21.248)
p (mortality) 0.40978 (18.321) 0.38847 (15.718)
p (cohort) —0.24373 (—3.193)
Sudan
Age in years —0.04128 (—3.029) —0.04348 (—3.822)
Age squared /100 0.06440 (2.471) 0.06489 (3.044)
Years of education —0.02687 (—4.761) —0.02476 (—4.356)
Rural 0.05492 (1.802) 0.04949 (1.653)
Year 0.00422 (1.837) 0.00631 (2.924)
Male 0.05192 (2.138) 0.05244 (2.187)
Multiple birth 0.71591 (9.164) 0.71677 (10.035)
Constant —1.05992 (—4.845) —0.99918 (=7.177)
p 0.18961 2.877) 0.13542 (2.049)
p (fertility) 0.28202 (36.712) 0.28199 (36.745)
p (mortality) 0.39376 (21.377) 0.38669 (20.569)
p (cohort) —0.13870 (—2.418)
Zambia
Age in years —0.08000 (—5.796) —0.07606 (—8.558)
Age squared /100 0.11689 (4.466) 0.11329 (7.151)
Years of education —0.03588 (—7.666) —0.03624 (—8.100)
Rural 0.12491 (3.974) 0.12384 (4.645)
Year 0.00992 (4.684) 0.00823 (4.669)
Male 0.02756 (1.114) 0.02705 (1.221)
Multiple birth 0.81626 (10.429) 0.81364 (19.088)
Constant —0.73770 (—3.316) —0.79663 (—16.117)
p 0.42162 (4.166) 0.43387 (9.589)
p (fertility) 0.14052 (13.864) 0.14056 (14.441)
p (mortality) 0.40062 (20.299) 0.40307 (22.058)

p (cohort) 0.10691 (2.654)
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incorporates selective fertility and mortality. With these data, choice of a para-
metric distribution for the errors was insufficient to identify a bivariate probit
model of fertility and mortality. In this paper, identification was achieved by
tightly parameterizing the error correlation matrix for the set of fertility, mortal-
ity, and health behaviors over all discrete time periods in the reproductive lives
of sampled women. In the univariate random effects probit model with exchange-
ability, at least two potential-birth cohorts are required to identify the share of
the fertility error variance attributable to the woman-specific random effects, a
measure of the serial correlation in the fertility errors. Similarly, for any measure
of child human capital, including mortality, human capital measurements at more
than one point in time are required. Measurements at more than one period can
take the form of (i) multiple observations on the human capital of one child,
(ii) one observation on each of more than one child, or (iii) both of these. There
do not need to be anthropometric data on every child who was born and survived,
nor does the survival outcome need to be observed for all children who were
born to women so long as there is survival data on at least two children for some
women in the sample. In the DHS and other data sets with a fertility and health
focus, there typically are complete pregnancy histories of all women and informa-
tion on the mortality/survival outcomes of all births, but anthropometric measure-
ments are usually taken only for children born (and surviving) in the five (or
fewer) years prior to the survey date. Panel data on the health outcome of chil-
dren, as opposed to single dated observations on the health outcomes of a multiple
number of children per woman, can equally be used in the models specified. In
this case the variable W;,, the health measure of the child of woman i born in
period ¢, should be re-indexed as W;,,, the health measure as of period 7 of the
child of woman i born in period ¢ (v = ). If there are panel data of health measures
for multiple children of the mother, one can specify and identify child-specific
random effects as well as mother-specific random effects.

The exchangeable trivariate random effects model of fertility, mortality, and
health tightly parameterizes a 3T(3T + 1)/2 error covariance matrix. The number
of restrictions can be relaxed in a number of directions in a way that still leaves
many degrees of freedom. Two such directions are specified and estimated in this
paper. One allows the error correlations to vary with the age of the mother or
calendar time. The other allows for a cohort-specific effect; that is, for ‘‘shocks”’
to the iid component of the fertility error to affect the subsequent mortality proba-
bility of any child born in that period. Both methods significantly improved the
likelihoods of the models but did not alter the regression parameters in an impor-
tant way. It is difficult to find less restrictive parameterizations of the error corre-
lation matrix that still yield the computational convenience afforded by some
form of a random effects model with exchangeability. For example, if mothers
learn about the innate healthiness of their children gradually, this will lead to
serial correlation in the time-varying error. Allowing for general forms of serial
correlation in the time-varying error requires numerical integration over the 37
random variables, which becomes intractable even for small 7. Future work will
use simulation methods to estimate models with autoregressive error structures.

One important benefit of the identification strategy set out above is that it does
not rely on arbitrary exclusion restrictions or the arbitrary choice of an error
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distribution. Although the random effects models specified above assume normal
distributions for the random effects and the nonsystematic errors, the distribu-
tions for these random variables need not be restricted to normal, nor do they
even need to be symmetric. The covariance restrictions implied by the imposition
of exchangeability (and other covariance restrictions) are alone sufficient to non-
parametrically identify the model of fertility and mortality selection. Future work
will estimate models such as these using semi-parametric techniques.
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