A simple model of chaotic advection and scattering
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In this work, we study a blinking vortex-uniform stream map. This map arises as an idealized, but
essential, model of time-dependent convection past concentrated vorticity in a number of fluid
systems. The map exhibits a rich variety of phenomena, yet it is simple enough so as to yield to
extensive analytical investigation. The map’s dynamics is dominated by the chaotic scattering of
fluid particles near the vortex core. Studying the paths of fluid particles, it is seen that quantities
such as residence time distributions and exit-vs-entry positions scale in self-similar fashions. A
bifurcation is identified in which a saddle fixed point is created upstream at infinity. The homoclinic
tangle formed by the transversely intersecting stable and unstable manifolds of this saddle is
principally responsible for the observed self-similarity. Also, since the model is simple enough,
various other properties are quantified analytically in terms of the circulation strength, stream
velocity, and blinking period. These properties include: entire hierarchies of fixed points and
periodic points, the parameter values at which these points undergo conservative period-doubling
bifurcations, the structure of the unstable manifolds of the saddle fixed and periodic points, and the
detailed structure of the resonance zones inside the vortex core region. A connection is made
between a weakly dissipative version of our map and the Ikeda map from nonlinear optics. Finally,
we discuss the essential ingredients that our model contains for studying how chaotic scattering
induced by time-dependent flow past vortical structures produces enhanced diffusivitiE8950
American Institute of Physics.

I. INTRODUCTION by allowing for randomness in the velocity, vortex strength
and the time dependence in the duty cycle, and by examining

Recent simulations of high Reynolds numibe turbu-  more complicated types of vortices such as patches or vorti-
lence indicate the presence of linear structures of intensees with finite cores; however, these additions would come at
vorticity, see Siggid1981], Sheet al.[1990], and Zabusky the expense of the simplicity of the model. Also, as in cha-
et al. [1993. Inviscid models of such structures are pointotic dynamics in general, one must be cautious in interpret-
vortices. Further, in any turbulent flow, physical or numeri-ing the results within the framework of turbulence, see for
cal, such intense vortical motion exists in the presence oihstance the discussion in Argt199(Q]. At each instant one
irregularly occurring large scale eddy motions that sweefsees the generated flow as being laminar. Only the particle
past, as well as convect, the filaments of vorticity. In anpaths themselves exhibit chaotic behavior. While this may
attempt to model particle paths in these types of fluid flowsshed light on the mixing process inherent in turbulent flows,
we consider the highly idealized situation of a single pointthe dynamics lacks essential features of turbulence, princi-
vortex in the presence of a uniform stream that undergoepally vortex stretching. Nevertheless, Pierrehumbz@92]
unidirectional oscillation under a square wave duty cycle, afias employed model problems with chaotic convection to
does the vortex strength. This model exhibits a wealth oinvestigate scalar spread in the turbulent atmosphere.
interesting phenomena and simultaneously yields to exten- The model considered here exhibits chaotic scattering
sive analytical investigation. Furthermore, it may be the sim-behavior for a wide range of uniform stream velocities, cir-
plest fluid mechanical model in which chaotic dynamics ap-culation strengths, and blinking periods. This behavior is
pears. manifested by the presence of fluid particles initially ap-

The model that we consider is related to the blinkingproaching the point vortex that scatter off of it in a chaotic
vortex model introduced by Ardfl984] and further studied fashion. Measurements are made of both the positions of
by Doherty and Ottind1988| (see also Chap. 7 in Ottino these particles as they exit the vortex region and the lengths
[1989). In the Aref model, co-rotating vortices of equal of the time intervals these particles spend in the core region,
strength are alternately turned on and off under a squarthe so-called residence times. Our measurements show that
wave duty cycle. The effect of one vortex on the other is, tothese quantities depend sensitively on the initial position of
a first approximation, that of a locally uniform flow, and our the incoming particle and that they scale in self-similar fash-
model is thus related to that of the blinking vortices. ions.

The model considered here may be made more realistic The main geometrical structures responsible for the ob-
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served chaotic scattering are the principal saddle fixed poirttands formed by the principah:1 (and m:n) subharmonic
of the map along with the homoclinic tangle attached to it.periodic points. In contrast, the inner core region is that re-
The principal saddle fixed point is created by a bifurcation agion containing the In (andm:n for m<n) superharmonic
infinity that results when the velocity of the uniform stream points. Each of these regions may also contain KAM tori,
changes from being zero to being positive. An analysis ofind higher order island chains, but the important result is that
this bifurcation, as well as of the dynamics near infinity, isthey are well-defined regions in the fluid domain. Moreover,
carried out using the technique of Poincatenpactification. the width of these resonances is obtained analytically in as-
For the positive interval of control parameters in which ymptotic form, and the Chirikov resonance overlap criterion
this principal saddle fixed point exists, one branch of each ofChirikov [1979)) is applied to determine the threshold pa-
its stable and unstable manifolds asymptote to infinity. Theameter values for which some pairs of resonances overlap.
other branches intersect each other transversely and, thuBhese overlap thresholds determine the extent to which par-
form a homoclinic tangle. For a theoretical treatment of thesdicles can penetrate close to the center of vorticity.
concepts from the global theory of dynamical systems, see For examples of other works in which the dynamics gov-
Guckenheimer and Holmé4983], and for one of the earli- €rned by oscillators are subject to delta function kicking, we
est applications of these concepts to fluid mechanical probefer the reader to Zaslavskg991] where the formation of
lems see Rom-Kedaat al.[1990). If the blinking period and ~ Stochastic webs is presented, and to Cecthal. [1993]
the circulation strength are held constant, then one observaghere the oscillators under study are hard relaxation oscilla-
that: (i) the distance from the fixed point to the center of thetors.
vortex scales inversely with the velocity of the uniform  Finally, we examine the change in behavior fluid par-
stream; and(ii) the width of the homoclinic tangle grows ticles undergo when the vortex changes from being a pure
with increasing uniform stream velocity, and this dependenc®oint vortex to a weakly entraining point vortex. These vor-
is highly nonlinear. This detailed scaling information abouttices weakly entrain fluid particles into the core region. Nu-

the geometrical structure reveals the reason for the observégerically it is found that strange attractors appear in the fluid
sensitive dependence and se]f-sim”arity in the chaotic ScafﬂOW. These attractors seem to be the closures of the unstable

tering measurements. manifolds of the saddle fixed points. ‘i al. [1990, 1991
For other studies of chaotic scattering in physicalstudy the fractal properties of the attractors that arise in a

systems—both classical and quantum—see for example tf@ndom map modeling particles floating on surfaces. Their
special issue o€haos[Vol. 3, No. 4,(1993] devoted to this Map is derived from an incompressible three-dimensional
subject(in particular the introduction by Ott and TE1993)) fluid in which the third veIociFy component contains a peri-
and the references cited in those works. Also see Blehe?dic sequence of delta functions and makes a nonzero con-
et al.[1990. Finally, the problem studied in Kadke and No- tribution to the divergence of the full velocity field, so that
vikov [1993, although very different in scope from that of the flow restricted to the surface is compressible. Moreover,
the present paper, has several similar features. Yu et al. [199Q] point to other fluid mechanical problems in

A noteworthy feature of the model is that the location of Which weakly-compressible flows can occur. Also, Za_slavkii
all fixed points and many periodic points can be determine@nd Rachko[1979 and Zaslavsky1978 study equations
analytically. We take advantage of this to show that the mapy'ith a periodic sequence of delta functions and they also find
exhibits many conservative period-doubling cascades. As th&€ formation of strange attractors. However, their model is
velocity of the uniform stream is decreased from certaind€Signed to analyze the onset of turbulence and it consists of
critical values, stable periodic points become unstdbje & single mode with a_stable limit cycle in which the kicks
perbolic with reflection, and in so doing, they shed pairs of represent the c_umulatl\_/e effect of all of the other modes.
new stable periodic points of twice the period. An estimate of  11€ Paper is organized as follows. In Sec. II, we formu-

the Feigenbaum universal constant for this model, based on/gt€ theé map and present the time-continuous version of it.

limited number of period-doubling events, is near the con-1"€ Period-doubling cascades, emanating from the fixed

servative Feigenbaum numbek~8.72. This conservative points, are found in Sec. lll. The global dynamics of the map

version of universality has been studied in many area®'® studied in Sec. IV. These global properties are then used

preserving maps, most notably in the quadratic De Vogelear@ Sec. V tq angly;e the chaotic scattering phenomena asso-
map, see for example Hellem#ahosa, Collet et al. [1981], ciated tp this blinking flow. In Sec. V.I, we study the super-
Greeneet al. [1981], and the exposition of Fermi accelera- harmonic resonances in the core region. Further, in Sec. VII,
tion in Section 3.4 of Lichtenberg and Liebermi983 we present the analysis of the bifurcation of the principal

A further feature of the model is that the map may beﬁxeOI point at infinity. _In Seq. vill, we brie_:fly an_alyze the
reformulated as a Hamiltonian system consisting of thesase of weakly attracting point vortices. Finally, in Sec. IX,

stream function for a pure point vortex subject to a periodicWe discuss the physical relevance of our model and summa-

series of delta function kicks. The periodic delta functionrize our_main results. The appendices contain various useful
kicks are equivalent to the action of the uniform stream thaFaICUlat'onS'

transports particles unidirectionally for half of the duty cycle.

This reformulation enables us to determine the resonant dyll' FORMULATION OF THE MAP
namics inside the principal homoclinic tangle in a fairly We consider the flow generated by a point vortex of
complete way. There are both inner and outer core regionstrength x located at the origin and turned on for a time
The outer core region is that region containing the resonancgurationT/2. At t=T/2 the vortex is turned off and a uni-
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form stream of velocityV in the positive x-direction is T
turned on for a duratiorT/2. This cycle is then repeated - 1
indefinitely. i i
With the complex variable used to define a coordinate - .
system in the two-dimensional fluid domain, the complex 05— a2 ]
potential of the vortex motion is given by - Zy 4
ik S r T
=—— | 2.1 =~ 00— Tz —
wi(2)=—5— In z, 2.1 E ! ]
and that of the uniform flow by L ]
Wa(2)=Vz. 2.2 “0s ]
Therefore, if a fluid particle is initially at,, then it is lo- - i
Cated at _10 i | | | 1 1 1 1 H ‘ 11 L ] i ‘ L 1 1 1 ]
; -1.0 -0.5 0.0 0.5 1.0
ik T
215=2y eXP|ls—-T13 5 Re(Z)
27T|Zo| 2

at the end of a half cycle, and at FIG. 1. Motion of a fluid particle under the m&p.7).

3 N VT
21=2Zyy7 >

€
at the end of a full cycle. This area-preserving, conformal z=2Z+ 2" (2.6

mapping is invariant undef——T, V— -V, k——«k.
We nondimensionalize the position variakléy setting
z' =z/L, where the length scale = 3\« T/ is the radius of

In terms of £, the map becomes:

€ | €
that circle on which a particle rotates through one radian in a Znr1=MZn=| Znt 2) &P | Z,+el2]? " 2 @1
time interval of lengthT/2. When primes are dropped, the i .
map is and the inverse map is
i M-12 E<z _f) expl——t—| %
z,=2, exp Tzl +e€. 2.3 Tl ~ntl 5 Zni1—€l2)?] 2°
0 2.9

Here the single dimensionless control paramétee Appen-

. . o : This new format, which is the form of the map we shall use
dix A for an alternative parametrizatipin the problem is

throughout this work, represents a quarter wavelength shift
T2 L, in the duty cycle compared to that (1.5 see Fig. 1. A fluid
e=1\/ PR (2.9 particle is advanced first by a shift to the right«2, then by
an appropriate counterclockwise rotation and finally by an-
wherelL,=(1/2)VT is the distance a particle is carried by other translation to the right ofé/2, completing the cycle.
the uniform stream in timd/2. Sincex carries the same Even though the formulatio(2.7) looks more cumbersome
units as diffusivity,e” can loosely be thought of as a “Rey- than the original mag2.5), it has the important advantage

nolds” number. that the symmetry line is now conveniently ®&)=0. Also,
Formally the map is as a consequence of the symmetry, reflection i6ZRe=0 of
i the inverse map on the similarly reflected point is the same
2y 1=2, €Xp P e (2.5  as the action oM on the point itself:
n

MZ=—[M (= 29T,

where * denotes complex conjugate. Moreover, iteration
yields: MX(Z)=[— MX(—Z*)]*. Thus, if we follow the seed
point Z, forward in time and the seed- Zf backward in
time we obtain trajectories that are reflections of one another
' in ReZ=0.

Finally, for several purposes, it is convenient to have a
time-continuous version of the map:

Clearly, the particle can be returned to its initial position by
a translation of-¢, followed by a clockwise rotation. Hence,
the inverse map is given by:

Z,=(Zy41—€) exp E +1_5|2
n

It follows from (2.5) that

|Zn+1_6|:|zn|a ) 9 “
ok — | — z az —
and that, therefore, the line RBE €/2 is a line of symmetry =~ 0z bn ’2+€°zk§_w a(t=k)
of the map. Exploiting this symmetry and simultaneously
. . . . . _ (9
sumphfymg the analysis of the map, we introduce the trans - F2). 2.9
formation: 0z
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Under the dynamics of2.9), a fluid particle initially ¢=0)

at Z, gets convected to the point,+e/2 in between times 1o ?_ - h‘yperbo‘hc? 04— "l -
t=0 andt=0" by the uniform stream, then it is swept lo L hyp wrefl 4 g5
through an angle [lZ,+ €/2? on a circle of radiu$Z+ €/2| s i elliptic 3
in a unit time, and finally in between timés 1~ andt=1 it 2 5 :_\\ 1=0 (a)— 0.0
gets translated to the right by an amouf, yielding pre- o 1 -02¢
cisely the mappindM in (2.7). 0 e ] o4l b) |
The system(2.9) is a time-periodic, one-degree-of- ST R N T R
freedom systenfoften referred to as a one-and-a-half degree 00 05 1.0 0.0 02 04 06
of freedom systemin which the Hamiltonian for a point ¢ €
vortex receives periodic kicks of magnitudeThe imaginary T T T T
. N . 2.50 — — T ]
part of the complex potentid (Z), i.e. the streamfunction, L (c.1) -] 05 He.2) ]
is the Hamiltonian for the flow 0f2.9): . i Q ] - .
o ) - 1 00— -
HZH=— In|2l+em(2) S st-k. @10 = 0 - ]
(= ke ' ' r Unstable 1=0 1-05 [~ Stable =0 —|
With this formulation, we regard the periodigcking as a 2'48% ‘ Iﬁ‘X‘e.d. O‘H.lt. i F | fred point | ]
perturbation to the otherwise periodic circular motion engen- —02 00 02 05 00 05
dered by purely vortical motion, although the control param-
etere in (2.7) should not necessarily be regarded as small.
e N D E e S R B B
lll. HIERARCHIES OF FIXED POINTS AND PERIODIC - (e3) 7 pled ]
ORBITS S ool 1 oof =
As explained above, fixed points of the m&h7) must & B ] r ]
lie on the line RéZ)=0. This may be seen directly from the ~0.5 Unstable 1=1 —-0.5 |- Stable 1=1 —
symmetry of the map or by observing the®.7) implies C |fi>§e<1| IOyir‘lt‘ 1] C if‘i>‘<e‘d oir}t [ 3
|Z— el2|=|Z¢+ €/2|, where Z; denotes the fixed point. 10I5 ' 0o 05 05 ’ool ' 05
Thus, whene>0 and a fixed point exists, we may set: Re(7) Re(Z)
7 .o=i 6
<=l 2 3.1 FIG. 2. (a) Thel=0 branch of fixed points, given by formu(&.2). (b) the
. . I=1,...,5 branches of fixed points, given by formy&?2); the value ofl
whered is a real number, and it follows fror2.7) that increases going inwardgc) Four panels showing the trajectories executed
4i during one itergtion of the map wite=0.4 by thel=0 upper and lower
i6=(i6+¢) exp T te E;z;r&cgofilr:(;c(ici.);g;%c.C]?a.and c.2 and by thel =1 upper and lower branch

Finally, taking moduli and simplifying using trigonometric

identities, we arrive at an implicit transcendental equation fothe duty cycle. Then it is transported around on the arc of a

o as a function ofe : large circle of radiugi(8/2)+ (e/2)| to the pointi(5/2)

2 —(€e/2) by the blinking vortex. Finally, it is returned to its

5 tan 22 T (3.2 starting position during the last quarter of the duty cycle by
the uniform flow, and is therefore, a fixed point of the map

wherel is a non-negative integer and where the conventior(2.7). Due to its central role in the dynamics of the mdp

we adopt is that the argument of the tangent function must lisve refer to this point as the principal fixed point, and

in between 0 andr. denote it by Z,;. That it is a saddle, and hence un-

Plots of these fixed points are shown in Figg)Zor | =0 stable, follows sinc&?>1 there.

and in Fig. Zb) for I=1,...,5. Stable branches are indicated By contrast, the lower brandhk=0 fixed point follows a

by continuous lines and unstable branches by dashed linesircle of much smaller radius, and makes almost one com-

At any fixed pointZ;=i(6/2), thelinearized map has ei- plete revolution before returning to its starting point with

€
l

genvalues 6<0. Next, the upper brandh=1 fixed point makes slightly
B = more than one complete revolution around a circle during the
M =B VES-1, @3 middle of the duty cyclétraversing the upper arc in between
whereE=cosB+ g sin B, and B=4/(5*+ €. the pointsi (8/2)+ (e/2) andi(8/2)— (e/2) twice], and the

Next, we turn to the location of these fixed points, andradius of this circle is slightly smaller than that of the stable
the trajectories they execute during one iteration of the magd.=0 fixed point. It is also unstable ané>0. Finally, the
The paths for the upper and lower branchO andl=1 lower branchl =1 fixed point(for which §<0) executes al-
fixed points are shown in Fig.(®. The upper branch=0 most two complete revolutions about an even smaller circle;
fixed point gets mapped to the poir(td/2)+ (e/2) by the  see the fourth panel. In fact, it traverses all but the bottom arc
action of the blinking uniform flow during the first quarter of of that circle twice.
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For a general =L, the trajectory of the upper branch not observe any further bifurcation of the elliptic period-2
(regular hyperbolitfixed point executes slightly more than points, although we have not been able to prove this.
L complete revolutions around a circle, and the trajectory of  Interestingly, we observed the first four steps in what
the lower branch fixed point makes almdst-1 complete appears to be a conservative period-doubling cascadésas
revolutions around a smaller circle. decreased from the values. From above, we recall that at
Furthermore, the locations of the fixed points in the limit ¢, a stable and unstable fixed point coalesce in a saddle—
of e—0 are clear from the pictures of their trajectories duringnode bifurcation. Their location &t isi(6,/2), wheres,>0.
one duty cycle, as shown in Fig(@. The e=0 asymptotic ~When ¢ is decreased frong,, the stable fixed points ap-

location of Z; is proach the origin. When the corresponding value &f
reaches zero, the fixed points become hyperbolic with reflec-
1 tion, as is readily seen in E@.2). In effect, whens—0, Eq.
i (3.2 implies that
since we know from{3.2) that /2~ 1/e ase—0. See also Fig. 2 = ™
2(a). Zrot T2

In the limit of =0, the lower branch=0 and the upper
branchl =1 fixed points are located exactly on the intersec-Or, Using the definitiog=4/(€*+ &), we haves=m(21+1).
tion of the imaginary axis with the circldZ|?>=1/27,  Note that at6=0,
namely, at i(8/2)=—(1/\/2m)i~—0.3989, and at
i(8/2)=(1/\/2m)i~0.3989, respectively. Therefore, not- (6=0)= 2
ing that every point on the circleZ[>=1/2x is a fixed point m(l+ 3
in the e=0 version of the maf2.7), we observe that the
lower branchl=0 fixed point and the unstable=1 fixed  Moreover, from(3.3), we see thaE=—1, for all |, there.
point are precisely the two points from this entire circle of  Since the bifurcations in these cascades occur in the
fixed points which persist foe=0. This is the well-known same sequence on all branches, we analyze the cascade in
Poincare-Birkhoff picture. detail for one branch, namely the=0 branch. For an inter-
Similarly, in the limit of e=0, the stabld=1 and the val of € values with e<e¢ _y~1.2038, thelower 1=0
unstablel =2 fixed points are located exactly on the inter- branch fixed point is stable. It is elliptic since the complex-
section of the imaginary axis with the circleZ|*=1/4mr, conjugate pair of eigenvalues lie on the unit circle. However,
namely, at i(8/2)=—(1/\4m)i~—0.2821, and at asedecreasesfror_qtoe™) = J4/7 ~ 1.128, theeigen-
i(8/2)=(1//4m)i~0.2821, respectively. They are the values migrate from having Re=1 to having R&\)=—1.
only two points from the entire=0 circle of fixed points at At e~1.128 the fixed point becomes unstabieflection hy-

Z|2=1/4a that persist fore>0. In general, in the limit of perbolig, and a pair of period-2 points are created, which
€=0, we haveli(6/2)|=(1/y2xL) for both thel=L—1  correspond to th&=0 branch of case Il in Appendix B.

stable fixed point and thie=L unstable fixed point, see Fig. This process repeats itself indefinitely. The new stable
2(b). period-2 points are located symmetrically with respect to the

Moreover, for eac, there exists a value of at which  real line, say at-i(4/2). It is readily shown that the eigen-
the pair of lower and upper branch fixed points correspondvalues of these period-2 points are
ing to that value ofl coalesce and disappear in a saddle—
node bifurcation. We shall denote this value, which may be B 72 6% e . 75t 2522
found by solving tle/d8)(e)=0, by €, and we observe Ne=m—5—= 4 To<
that the correspondingfor which (3.2) holds is positive. As
discussed above, for example,.,~1.2038, ancheither of  Also, from the geometrical interpretation of the motion un-
the twol=0 fixed points exist fore>¢,_,, as is shown in dergone by a fluid particle located at the period point of the
Fig. 2(@). Furthermore, Fig. (b) shows that the range infor ~map, it is clear (see case Il of Appendix B that
which thelth fixed points exist decreases lamcreases. 4/(é+ &) =. This last relation can, in turn, be used to find
It is clear from Fig. 2a) and 4b) that ase is increased the value ofe, denotede?, for whichn.=—1, i.e., when the
from zero, stable fixed points lose their stability and becomepair of period-2 elliptic points become hyperbolic with re-
hyperbolic with reflection. In the process, a pair of stableflection. Thisyieldg® = (2/7)[1+ Jy1—1/7°]~ 1.1136.
period-2 points are created. For each of kHeranches, this  For e just belowe?, a quartet of period-4 points are born.
bifurcation occurs at a different value afAt the bifurcation, Numerically, we find that these in turn become hyperbolic
a horizontal figure-of-eight shape is bdthe separatrixand  with reflection and shed period-8 points ét'~1.1118. Al-
the new elliptic points are created inside the loops of thehough we did not pursue further bifurcations, we conjecture
figure-of-eight, such that their location &+i»n and —¢  that a full cascade of conservative period-doubling bifurca-
+i#n. The strategy for computingand » is given in Appen- tions takes place.
dix B. An interesting question is whether these bifurcations It is known, see for example Hellemari98(0 and
are the first steps in conservative period-doubling cascade&reeneet al.[1981], that a bifurcation tree the values of the
However, we found these branches of stable period-2 pointgarameters at which the bifurcation actually occur scale as-
could be continued for a wide range e¥alues, and we did ymptotically as
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for both e=0.39 ande=0.44, the tangle already has a sub-
stantial width. Finally, for bothe=0.62 ande=1.13, the un-
stable manifoldsNU(sz!pf) (and hence also the stable mani-
folds) penetrate deep into the core of the vortex, see Figs.
4(d) and 4e).

Im(Z)

B. Stochasticity threshold and core penetration

For small values ot, particles starting close to the cen-
ter of the vortex remain close to it forever. They are trapped
between invariant circles. For example, 5£0.25, there are
many, nested invariant circles inside the principal homoclinic
,1 0 1 tangle. Fig. %8 shows one invariant circle foe=0.25.

Re(Z) These circles act as barriers that prevent particles inside from

leaving the core region and particles outside from penetrat-
FIG. 3. The principal fixed pointZ,; and the principal homoclinic tangle ing it.
formed byWY(Z,,¢) andWS(Z ) for €=0.39.

_\|\I\I‘\\Illll\\|\l\\Lj

|
jY—r\ T 1T ‘ T 1 1 T | T 17 | T T T 7T ‘

However, for values 0&>0.25, there are fewer circles
and the area they occupy shrinks. Hence, particles can pen-
etrate deeper into the core region @sicreases, and this is
consistent with the observed increase in the width of the
wheresg~8.72 isFeigenbaum’s universal constant for con- principal homoclinic tangle.

M=l + adg",

servative maps. Asymptotically, for<dn, For e=0.265 there do not appear to be any more main
(n+1)_ (n) barriers. There are no closed circles that persist from the
S € € family of circles in thee=0 version of the map. As a result,

Pt it might be said thate=~0.265 is the threshold for global

Even though we are not in the asymptotic regime, we casgtochasticity, since particles can explore almost the entire

estimatedg for (2.7) from core region. For example, wite=0.265, almost the entire
2 (1) region inside of the period-7 island chain appears stochastic.
€ € _g17 See Fig. ®) with initial condition x,=—0.1325 and
e®—¢e@ yo=1.85 iterated 100 000 times. The only exception to the

entire region appearing stochastic are, of course, the many
y islands around periodic points of the map.

Although the main barriers are no longer present for
€=0.265, it is observed numerically that particles stick to
certain island chains and stay inside of the associated reso-
nance bands for many iterates. For example, €60.265,

IV. GLOBAL DYNAMICS the particle initially atZ,=2.295 sticks to a period-21 is-
In this Section7 the g|oba| geometry of the map neededand chain for more than 80 000 iterates of the map. ThUS,

for the scattering results of the next section is described. although the particular value of the control parametes
above the stochasticity thresholdnd hence there are no

complete barriers preventing core penetratidnere are still
The relative disposition of the stable and unstable manieffective barriers. This stickiness decreases whiglcreases.
folds, Ws(zpf) and W“(jg;pf), of the principal fixed point In addition, for anym:1 subharmonic periodic orbit, the
Z,¢ governs almost all of the interesting dynamics of thephase of one of the periodic points in the orbit may readily
mapM. As stated in the Introduction and as shown in Fig. 3be determined using the symmetry of the map, and the
for €=0.39, one branch of each of the manifolds asymptotephases of the othem—1 points follow from the fact that
to infinity. The other two branches, however, intersect transthey are equally spaced in the angletan Y(Im(2)/Re(2))
versely in infinitely many points, forming a homoclinic that is conjugate to the action=2%2. This may be seen
tangle. from the period-7 and period-21 elliptic orbits. However, if
The splitting distance between the stable and unstablene attempts to calculate these phases using a perturbation
manifoldsW>(Z ;) andW"(Z (), which may be taken as a series in powers of/e, then one must go to thé(e) equa-
measure of the width of the homoclinic tangle, increasesion to determine them. Observe that on average ineth€
nonlinearly withe. We show long portions of the unstable limit the fluid particle is in the negative-half-plane 50% of
manifolds WU(;pr) for €=0.32, 0.39, 0.44, 0.62, 1.13 in the time and so half of the kicks it receives direct it inward
Fig. 4, and the stable manifolds are reflections in thé4dm  onto an orbit of smaller action, while during the other 50%
axis of the unstable manifolds. In the asymptotic limit of of the m periods it is in the positive- half-plane, and hence
vanishinge, the width of the tangle is exponentially small, the other half of the kicks force it outward onto an orbit of
i.e., (e %€ for somec>0. Indeed, Fig. &) shows that larger action. Furthermore, this holds for each initial phase
the tangle is extremely narrow even fer0.32. By contrast, 6,. Thus, the/( \/E) correction to the action automatically

which is in reasonable agreement with the unive&alThis _
result supports our conjecture that a fully developed cascadd’
of bifurcations is taking place, not only for the=0 branch,
but for all of thel=0 branches.

A. The principal homoclinic tangle
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FIG. 4. The principal homoclinic tangles fer=0.32, 0.39, 0.44, 0.62, and 1.13.

returns to its initial value at the end af periods, irrespec- V. SCATTERING
tive of the initial phase, and one must use higher order equa-
tions to selectd,. This phenomena has an analog in twist ~ Most of the unbounded orbits of the mgh7) that pass
map theory. through or near the principal homoclinic tangle undergo cha-
Finally, the location of the unstable manifold of thel  otic scattering. Chaotic scattering plays an important role
saddle fixed point, which we denote WyY(1), provides when the parameteris in the rangg0.25,1.2. The measure
another indication that particles can move deeper into thef initial conditions which undergo chaotic scattering is near
core region as increases. Figures(® and Hd) show one its maximum for 0.35e<<0.8.
branch of WY(1) for e=0.35 ande=0.44, respectively, as We begin by studying the evolution of an initial condi-
well as one branch of the respective manifoldé’(@pf). tion that is far from the origin. In particular, we take the
Whereas fore=0.35, the two manifolds shown stay bounded point Z,=—X,+ib, wherex,>1 and iterate it under the
away from each other, they are very close to each other fomap (2.7) until it crosses the line R&)=x,, see Fig. 6. In
€=0.44. In fact, the inner manifoltVV(1) closely follows general, iterates of a point such.@g will never land exactly
inside the folds of the outer manifowu(%pf). on the line RéZ)=x,. However, because of the smooth
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FIG. 5. (a) Invariant circle and island chains fer=0.25;(b) 100 000 itera-
tions of the initial conditionx,=—0.1325,y,=1.85 for e=0.265. Ob- 74 T ] T T T T T '
serve the(sticky) island chains in the outer region of the plot. No invariant
circles are observed at this valueefc) The unstable manifolds of tHe=0
andl =1 saddle fixed points whe#=0.35. The latter lies deeper in the core
region, well away from the formefd) The unstable manifolds of the=0
andl =1 saddle fixed points whee=0.44. Here the latter is spread over a
much larger portion of the core region than is the case wd¥e.35, and it
practically meets the former.

. . . . . 6 . | s | ) | . i )
behavior of the trajectories far from the origiasymptoti- 7,208 7.210 7.R12 7.214 7216 7.218
cally they behave ag=y,+ (1/€)In(x/x,)], a linear inter-  (©)
polation betweenZ, and Z,., [where Z,=M"(Z,), 7.4 .
Re(Z,) <X, and R&Z,1)>X,] will allow us to assign a
unique pointZ for the passage of the orbit through the line i ik i
Re(Z)=xXy, i.e., Z=Xy+ib’. ‘
The fate of an incoming fluid particle is sensitively de-
pendent on its initial condition. This sensitive dependence is
manifested in a plot ob’ as a function ob. In Fig. 7a) we
show such a plot withe=0.39. Three regimes can be ob-

i | W
‘H \‘

) 1 L | 1 | L
7.2092 7.2094 7.2098 7.2098 7.2100
b

b FIG. 7. Successive blowups the functitr vs b for €=0.39. The self-
ffffff similarity is apparent. The magnification @), (c) and (d) with respect to
(@ is 15, 150, and 1500 respectively.
S v . o
£ served. Foh<6.95,b’ is a smooth, nonmonotonically in-

creasing function ob. For 6.95<b<7.29, theplot of b’ vs

b behaves singularlyi.e., b’ varies wildly for small varia-
tions in b). For b>b*~7.29, wehave exactlyb’(b)=h.

The richest of these regimes is the second one, of which
successive blowups are shown in Fig&h)#7(d). Note that

we chose to plob’ as a function ob to measure the scat-
tering that the trajectories undergo rather than their asymp-
totic deflection angle, since the latter is always approxi-
FIG. 6. Definition of the parametelsandb’ used in the chaotic scattering mately zero I.n this syst(_am.. . .
analysis. After several iterations under the nt2g), the point originally at Another important indicator of the chaotic scattering
Zo=—Xo+ib, crosses the line R&)=x, with an ordinate defined &s . fluid particles undergo is the number of iterations that they

Re(Z)
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oM FIG. 8. (8)—(d) Successive blowups of the residence tixieneeded for a
r 1 particle starting at-xq+ib to reachx,+ib’ at e=0.39. The sensitive de-
. | . | . | . | . i i initi ition i i
9 508 =210 T = 5Ta 5216 7218 pendence of the re5|denct_-: time on the initial _condl_tlon is show(e)ifor
© b €=0.39, where to each point a shade of gray is assigned that represents the

time needed for that point to cross the ling=10 from left to right. It is
T T T T T T T clear that the region of the space affected by the chaotic scattering is the
i zone bounded by the stable manifold of the principal fixed point.

600 T

L | L | L | L | L
792090 7.2092 7.2094 7.2096 7.2098 7.2100
(d) b

spend in a neighborhood of the origin. This time is oftenprincipal fixed point, the exit times behave smoothly,
referred to as the residence time. Figuré®-88(d) show the  whereas inside that region an interesting mixing of colors
time delayAt(b) needed for a particle starting atx,+ib to  takes place, indicating a sensitive dependence of the exit
reach x,+ib’ (more precisely, A(b)=maxn|Re[M" times on the initial condition.
X (—Xxg+ib)]=<Xxg}). This quantity also shows an irregular In both Figs. 7 and 8, we notice that &sincreases,
behavior. For the two highest resolutions shawigs. 7d) broad irregular zones and regular zones occur in alternating
and 8d)], zones of smooth behavior can be distinguishedsuccession. The width of each individual regular and irregu-
that resemble the features of the less-well resolved Figdar zone decreases bsapproaches the valug from below.
7(a)-7(c) and 8a)—8(c). This is an indication of self simi- It is also clear from Figs. 7 and 8 that each regular zone has
larity, i.e., that the system exhibits fractal properties. a well-defined minimum. Call the-value of the minimum of

An alternative way to study the residence time depenthe first regular zond,, of the second oné,, and so on.
dence on initial condition is to plot the number of iterations Figure 9 shows a plot df; ,; vs b;. These points follow a
needed for a given poirk, to cross a given lin&k=x. as a very well-defined straight lineb; . ;,=d-+\b; with A=0.84
function of Z,. This feature is shown in Fig.(§), where = +0.04 and wheral is some real number. This means that
each shade of gray represents a different exit time. It is cleafb;=b;,,—b;=\éb;_;=...=\'8by. That is to say, the dis-
that outside the region bounded by the stable manifold of théance between minima shrinks exponentially. As the distance
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680 Stolovitzky, Kaper, and Sirovich: A simple model

l : l . : . the tangle. Upon iteration, the point jumps from one of the
crests to the immediately consecutive ofg®ing counter-
clockwise. At some iteration, the orbit enters the region
where the homoclinic tangle lies. There, it experiences what
appear to be random oscillations due to the underlying cha-
otic structure of the homoclinic tangle. But, unlike the
bounded orbits, this orbit will eventually exit that region.
Because of the strong shaking that it suffered, the final state
will be sensitive to its initial condition. Figure 10 shows
that if the incoming orbit is outside of the region occupied by
the tangle, it does not enter the chaotic region. The orbit,
however, will be scattered as a result of its passage through
the homoclinic tangle. This is the case for the regular part of
theb’ vs b plots of Fig. 7.
Finally, we can also understand the behaviobbfvs b
for b>b*, whenb'(b)=b. Simply, those are the orbits that
start (and live above the separatrijsee Fig. 1(b)]. Such
7.0 7.1 7.2 . . . .
oy orbits do not experience any chaotic structtmeither horse-
shoe nor homoclinic tangleand then behave symmetrically.
FIG. 9. Plot ofb;,; as a function ofo; for e=0.39, whereb; is abscissa The description given above relies heavily on the struc-
corresponding of_ the minimum of the function of Fig(di Fig. 8 between ~ ture of the principal homoclinic tangle, see Fig. 10. However,
it\g/\/g.(;c:‘zs;g:nveirregular regions, at a given resolution. The slope of the Ilnt%he initial conditions used in Figs. 7 and 8 are taken at
Zo=—20+ib. To complete the study, we use Fig. 11 which
shows both a piece of the separatrix and a portion of the
between minima is a measure of the size of the irregulahomoclinic tangle fore=0.39 in a neighborhood of the point
zone, it follows that the latter also shrinks exponentially. Z=-20+ib. From the width of the tangle and the position
The shape of the homoclinic tangle attached to the prinef the other two branches of the stable and unstable mani-
cipal fixed pointZ,; and the dynamics of orbits in the tangle folds of Z ¢, we immediately see why the range of irregular
discussed in the previous section explain the behavior ddsehavior in Fig. 7 goes frorh~6.8 to b~7.29. Further-
scribed above. Figure 18 shows an orbit starting at the more, we can also understand why the size of the irregular
point A, which is within the area defined by the transversezones of theb’ vs b plot shrinks exponentiallysee Fig. 9.
intersection of the stable and unstable manifolds that fornin effect, if we traverse the homoclinic tangle of Fig. 11
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FIG. 10. (a) An initial condition starting at point A inside the lobe formed by segments of the stable and unstable manifolds experiences some chaotic shaking
and some delay before leaving the neighborhood of the vortex. The subsequent evolution will see the point in the exterior lobes in the uppémright.

initial condition starting outside the homoclinic tangle, remains outside of it upon evolution, and does not experience any strong chaotic mixing, nor any
noticeable delay.
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can expect that the irregular behavior will not be well-
resolved below some value ef For example, fore=0.14,

no chaotic scattering is observed in thé vs b plot. The
only remnant of the singular behavior at this valueed$ a
logarithmic singularity of the time delajxt(b) at the value

of b corresponding to the point on the upper left branch of
the separatrix.

The change in the scattering propertiessatecreases is
also related to the appearance of the other members of the
hierarchy of fixed points. At&=0.6552, thd =1 fixed points
appear, in a hyperbolic-elliptic pair, see FigbR Further-
more, we recall from Sec. IV B that the homoclinic tangles
of thel>0 fixed points interacts with the tangle of the prin-
cipal fixed point for the range 0.3%<0.655, forming a
FIG. 11. A piece of the separatrix and a portion of the homoclinic tangle forhe'{erOCIInIC structurgsee Flg.- %) for. 620'.44]' F.0r this .
e=0-.39.- At x=—20, only the region 6.&y=<7.29 is afected by the range ofe, the !”,‘bounqed Prb'ts ente”_ng this .reglon experi-
tangle. This region coincides with the range 6 that exhibit iregular ~ €nce strong mixing which is reflected in the singular part of
behavior in Figs. 7 and 8. theb’ vs b plot. If we decrease& even more, the principal
fixed point ceases its interaction with the-0 fixed points
[see, for example, Fig.(&) in which €=0.35], and the only
mixing affecting the irregular part of the’ vs b plot is the
porseshoe structure of the principal homoclinic tangle.

Im(z)

vertically and upwards, we will be crossing successive re
gions that lie inside the homoclinic tangle, and regions tha
do not. If we picture the former regions as triangular shaped&/|. RESONANT CORE DYNAMICS

zones, their base will be very small and will lay on the un- For small values of the control parameterapproxi-
stable manifold, (_:Iose to the fix_ed point. The_ L~:uccessivemate|y €<0.3), the stochastic core region contains many
bases of these “triangles” will shrink at a rate given by the chains of islands around fixed points and periodic points of
smaller of the eigenvalues of the Jacobian of the map evalyye mapM. In this section, we calculate the width of thenl:
ated at the hyperbolic fixed point. For the case shown in thg,perharmonic resonance zones deep inside the core. Then
Fig. 9, the smaller. of the eigenvalues is 0.82, while the \ye yse the Chirikov criterionChirikov [1979)) to determine
slope of the curve is\=0.84. Fore=0.34, 0.365, 0.407, the threshold parameter values at which pairs of adjacent
0.51, and 0.624, the values of the smallest eigenvalues at thesonances overlap. See, for example, TA1@89 (Sec.
saddle and of this slope are, respectively:0.89,A=0.90; 4 ¢) for a general treatment of this criterion and an example.
#=0.88, A=0.91; u=0.85 \=0.87; u=0.76, \=0.81;  AIs0, we refer the reader to Greef979 a,f for the residue
n=0.68,A=0.74. method to detect the destruction of KAM tori.

The above-mentioned figures showing pieces of unstable  The Hamiltonian in terms of action-angle variables is:
manifold nearx=—20 also reveal that the lobes of the ho-

moclinic tangle are nested within each other. It is this com- ; “
. . T . H(,6,t)=—In yI+ey2l sin 6 S(t—K).
plicated and approximately self-similar nesting of the lobes ( ) \/— ¢ k;w ( )

far from the core that is responsible for the observed Sca"”Q\lthough this form of the Hamiltonian clearly exposes the
properties. role of the periodic kicking, application of the Poisson Sum-

‘The above description of the scattering properties iSyation Formula to it isolates each of the resonant terms.
valid for a restricted range in the parameteffo understand g0 Lighthill [1958], we have

how this picture changes witl, it is useful to recall the
history given in Sec. Il of the fixed points aschanges.
First, for e>1.2038, the principal fixed poin€; disappears
in a ;addle—node blfurcat|on._He_nce, the stable and unStabﬁence, grouping terms appropriately and using the sine ad-
manifolds that formed the principal tangle no longer eX|stdition formulas. the Hamiltonian becomes:

either. Second, the dependence of the width of the tangle on '
€, which we illustrated in Fig. 4 foe=1.13, 0.62, 0.44, 0.39,
and 0.32, can be used to predict the change in the shape o
theb’ vsb plot. Fore=1.13, the irregular regions will occur

o Having isolated each of the resonance term&in), we
in isolated and extremely narrow bands. These bands are . o

: . ) . now turn to study one of them. This corresponds to fixing an
wider for e=0.62, spanning a larger range linvalues. Fi-

) integer value oh and examining an annular region about the
nally, they get narrower again asdecreases to 0.44 and €=0 invariant circle withl =1,=1/47n. Choosing the gen-
0.39. In fact, fore=0.32, the width of the tangle is hardly n_ ' 9 9

noticeable, as is expected since the splitting distance betvveeeﬁatlng functionF(J, 6,t) =(6—2mnt)J+ 61, facilitates this

> S(t—k)=14+2>, cog2mnt).
k=—o n=1

1,0,t)=— In ﬁ+e@2_ sin(@—2mnt). (6.1

the manifolds is exponentially small for small values eof Study since
However, a small region of irregular behavior was observed |— le +3
both in theb’ vsb plot as well as in the time delay plot. One 90 "
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682 Stolovitzky, Kaper, and Sirovich: A simple model

and the resonant phageonjugate to the action deviatiah) ~ As an example, seh=1, so that we determine an upper
is bound for the threshold value efat which thel =0 stable
period-1 resonance zone overlaps with kkel layer:

_8F_0 5
I,D—E— —2mnt. -
€= F~0.04.

Upon averaging the Hamiltonian over the time interval, 2

all of the nonresonant phase terms vanish, so that the aveKtumerical simulations confirm that this is approximately the
aged Hamiltonian depends only dnand the slow resonant threshold, and that it is a conservative estimate of the thresh-

phase: old.
H3.p=—In JI,+J3+eV2(1,+J) (sin ¥)
—2mnJ, C A BIFURCATION AT INFINITY
where the last term arises sinEeis explicitly time depen- o ) o . . .
dent. Next, we may expand both of the functions o1 (6.2) The principal fixed pointZ,; is created in a bifurcation
about the resonant valle at infinity whene=0. It is created as the resonant response to

the @(e)-amplitude perturbation of the circle of fixed points
at infinity in the e=0 system. Recall from the previous sec-
tion that the blinking uniform stream contains all harmonics
of the basic frequencyy=0,1,..., where thev=0 mode is
just the constant term 1. This constant term is referred to as
the zero mode. Due to its presence in the blinking uniform
stream, the zero frequency orljitamely the circle of fixed
points at infinity gives rise to a 1:1 resonance band £o10.
The complete analysis is more delicate than this brief
— 1 5 S sketch and requires Poincacempactification ofR?. Since
H(J,¢)= 201,.)2 P+eV2l, cos y+(3%e€d). (63 ihisis also of interest in its own right, we present it here. See
" for example Lefschetg1963| or Perko[1991]] for a general
For all 0<e<¢y, wheree, depends om, the nth reso-  reatment of the technique.
nance is isolated from the other principal resonances. Its \ve pegin with the complex conjugate of the equations
separatrices are given b¥g,(#) = =21 ,Ve\2l, cos@f2)in  (2.9) in time-continuous form:
—J space. Hence the width of the resonance zone may be
directly calculated as twice the maximum |df,] -1z

e%:—z‘f‘f
(A1) =€2%4(1,)5"4.

Translating this width in action to a width in frequency, we
get

1 1 1
— In \/|—:— In \/E_EJ—FEWJZ—F((J?))

ande 2l = €21, + ©(&J). Plugging these expansions into
H, absorbing the constant term into the valuafshifting
the resonant phase by a constant initial phat® and ob-
serving that the terms linear i cancel, we are left with
precisely the normal form for thieth resonance:

) 5(t—k)}. (7.0

In order to bring the points at infinity to a finite location in
the plane, we transform to the new complex variable:
(=1/Z, giving:

dw
(Ao)n=—s (1)~ (Al,) - S
di gzqaaﬁffLXwav«ﬂ. (7.9

— \/225/4(|n)73/4: \/2211/4’#3/4”3/4. (64)
. o . Next, we represent in its polar formre'? so that we may
Finally, we use the above determination of the width Ofeasily analyze the way in which trajectories approach the

an isolated resonance zone to develop the Chirikov resQsyigin in the complext plane. Substituting int67.2) yields:
nance overlap criterion. For this, we ne@) and the spac-

ing between adjacent resonances: ) =
r=—er? cos 6 >, 8(t—K)|,
(?HO (9HO k= —o
AQ=—— (lh41)— — (Ip)=27(n+1)—27n=27. (7.3
al al . % :
(6.9 0= —r2—er sin a[ > 5(t—k)}.
Chirikov [1979] established that two adjacent resonances k=
overlap when This is the form of the equations which we analyze.
AQ The dynamics near infinity in the original plane(near
(Aw)y=—. r=0) are determined as follows: For#/2<6<w/2, r is
2 decreasing, and fo/2<<6<3w/2, r is increasing. Moreover,
Plugging in the numbers, the Chirikov’s criterion implies thatfor smallr and for 6<e<1, # approaches zero for any initial
thenth and 1+ 1)th resonances overlap for: value of 6. In particular, if 6<#<ir, then6 decreases to zero,
and if —7<<#<0, thend increases to zero, since the second
= [ ™ term in the second component @%.3) dominates the first for
~ NV 2Ip® smallr. We note that must be smaller than the value &t
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FIG. 12. lllustration of the dynamics of the stable and unstable manifolds of 1 L . | )
the principal fixed point a&=0.39 on the spherdl?+V2+W?=1 induced 0 ) 5
by the Poincareompactification presented in Sec. VII.

Re(Z)

FIG. 13. A strange attractor for the m#&®.1) discussed in Sec. VIII, with
the principal saddle fixed point. The entire phase portrait is=0.8, x=2.2, b=0.8, and 100 00Gterations of the initial condition

shown on the Poincarsphere in Fig. 12, where the coordi- %o=0.0 andy,=0.1.
nate axes correspond to the variables:

Re 2) Im(2) 1 incompressible. Furthermore, ¥at al. [1990] mention other
U= it 2) - 22 W= I+ 2P contexts in which one gets weakly dissipative maps. Note

(7.4 that in (8.1), one can vary the circulatiop.
o . ) The dynamics of the dissipative mdp.1) differ both
Now, by continuity of the vector field, we can infer the qyajitatively and quantitatively from those of the area-
dynamics on _the equatdthe “circle at infinity”) from the preserving mag2.5). First, in addition to the hierarchies of
above analysis for small. Whenr =0, the system has fixed fixed points and periodic points thé8.1) possesses just as
points at6=0, 7. The pointr =0, #=0 is an attracting fixed (2 5) does, the magB.1) has a circle of fixed points of radius
point, whiler=0, 6= is a (epelllng fixed point. The flow be/(1—b?) centered at the pointx(y)=[—e/(1—b?),0].
on the equator of the Poincasphere, therefore, goes from cjearly, in the limit ofb=1, the map(8.1) reduces to an
the latter to the former, on both sides. - _ . area-preserving map of the type considered above. Moreover,
We observe that the above analysis is consistent with thg, thjs limit, the circle of fixed points expands out to infinity.
simple physical observation that the sets of points with an-  gecond, the maf8.1) appears to exhibit strange attrac-
gular coordinatesy=0 and 7 are the only sets of points tors. See, for example, Figure 13. These attractors are ob-
whose angles do not get changed by the uniform stream. Allgryed numerically for a wide range of parameter values for
points with angles between 0 andare translated to points |, , ande. The main attractors we observed numerically are
with smaller angled, while all points with angles between ¢reated ab=1 in global bifurcations. The attractors appear
—mand 0 are translated to points with larger angldhus, {5 pe the closure of the union of the unstable manifolds of
at infinity, where the point vortex has no rotation, we will the nierarchy of fixed points, given by the condition {8r)
only find fixed points a®=0 andm, and the angles of all  that is analogous t63.2), along with the fixed points them-
points not initially on thex-axis must approach 0. selves. Furthermore, when the full three-dimensional veloc-
ity field is incompressible, one does not get an infinite tracer
VIll. WEAKLY ENTRAINING VORTICES AND STRANGE  concentration on the strange attractor.
ATTRACTORS Finally, the map(8.1) is related to the Ikeda map from
nonlinear optics(see Hammel[1986] and Hammelet al.
In the previous sections, the blinking vortex was taken td 1985]), which has also been shown numerically to exhibit
be an ideal point vortex, and the fluid flow was area-strange attractors. The Ikeda map is given by
preserving. In this section, however, we briefly consider the _ e ial w24 1)
weakly-dissipative map: Wn1=Bwyee "oty 8.2
We can almost attaii8.1) by settingx=0, B=b, —a=y,
and y=e. The only difference is the denominator of the ar-
where 0<b<1. While it is not our intention to study any gument of the exponential, which in the optics context can-
specific compressible flows with this dissipative map of thenot vanish. Hence, essential singularityat0 in (8.1) is not
plane,(8.1) may be considered as a paradigm map akin to thgresent in the lkeda map. A comparison with the detailed
map studied in Yiet al.[1990, 1991. There the dynamics of analysis of(8.2) performed in Hamme[1986] might shed
surface floaters is studied using a random two-dimensiondlrther light on the global geometry of the structures, such as
map which is not area-preserving, yet the full three-the stable and unstable manifolds of the saddle fixed points,
dimensional velocity field for the fluid below the surface is that are responsible for creating these attractors.

z,.,=bzelml* 1 ¢ (8.2
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In addition, Romeira®t al. [1990], have demonstrated this case becomes the so-called eddy diffusivity. This en-
that small random effects do not radically change the shapkancement of the transport properties by vortical structures
of the lkeda attractor. These random effects tend merely tties at the heart of turbulent mixing.
make the boundary slightly fuzzgalthough see Romeiras The simple model that we analyzed in this paper consti-
et al. [199Q for a full discussion of the multifractal proper- tutes the bare bones of the physical process just discussed. A
ties of the attractoys Thus, one may expect similar results natural context by which to analyze these issues is that of
when small random noise is added(&71). chaotic scattering. When the lengths and times are appropri-

ately normalized, we have shown that our blinking vortex-

blinking uniform stream system depends only on one param-
IX. SUMMARY AND DISCUSSION eter, namely the normalized strength of the uniform stream
Iqefined in(2.4).

The model presented in this paper can be a useful tool i . .
P pap When € grows from zero to being positive, an unstable

understanding basic qualitative features pertaining to th

transport of passive scalars in a number of fluid systems. A xed pomttls t(;]reate dd na b:fturganon tat Lnfl[n'ty’ tasﬂ? restﬁnant
an example, we mentioned in the Introduction the intens¢®SPONSE 1o the orderamplitude perturbation to the other-

vortical filaments that arise in turbulent flows. These linear’V'S¢ undisturbed vortex fielsee Sec. Vi The fixed point

structures are contained in the irregular field generated by the createdcalled here the principal fixed pojnand its as-

largest eddies that sweep past, as well as convect them. ASs%ciated homoclinic tangle are responsible for most of the
’ served chaotic scattering features. The principal fixed

second example let us mention the long-lived ocean vortice§°Sen . . . ; ;
(e.g., the Gulf Stream rings formed by the pinch off of thePoINt is one of a hierarchy of fixed points which, given the

meanders of the Gulf Stream, Eversenal. [1995)) which simplicity of the' map, can be computed analyticalyg. .
effectively transport heat and salinity. Due to the Earth’s ro—(3'2)]' Many periodic points can also be computed analyti-

tation, these vortices tend to move to the west, which impartga"_% and we determingd implicit formulas for th_e Iocatiqn of
to them a net drift velocity. As a third and final example we period-2 orbit(Appendix B. Some of these period-2 points

mention that in the opening and closing of the mitral valve ofparticipate in a hierarchy of a conservaiive period-doubling

the heart, vortices are regularly cast off the valve leaflets intdVerse cascadg, as was discussed in Sec. llk isreases
the oncoming periodic stream of blogBeskin[1975). more KAM barriers disappear, and more of the vortex core

These three examples, as well as other fluid Systemé)ecomes available to those particles that, coming from far

have in common the following constituents: a vortical mo-3Way, get entrained in the vortex. The first stages of this

tion, a large scale flow and some time-dependent perturb£rocess by which the vortex core becomes globally chaotic
an be understood using Chirikov's resonance overlap crite-

tion. The model presented in this paper is a simple version of

this class of systems, in which the action of an ideal vortex ig'on (Shec. VI. ,_?rs]e (|jncrea§es,dtrt1e dynamltcs in the vtorttexth
followed by the action of a uniform stream periodically. The core changes. This dynamics determines, to some extent, the

picture that arises when these three ingredients are put tg_hape of the homoclinic tangle, which in turn prescribes the

gether should be simila@at least for some range of param- scattering properties of the systdfec. ).

eterg to that of Fig. 10. That is, we expect a separatrix that Iln suzlmr?ry, we jt”d'e‘?' mddetall .hOW rt]he f]hap_e of the
extends to infinity, carrying along a homoclinic tangle. tangle and the core dynamics determine the chaotic scatter-

The trajectories of the particles that interact with theing properties(and eventually the transport propenjider

tangle will be entrained for some time in the vortical motion,Our system ase IS .|ncre;ased ffom Z€ro. Eveptually, for
as shown in Fig. 1@). Assimilating the particles to any pas- €>1'20_38 the_ principal fixed point dlsa_ppe_ars in a saddle—
sive scalar(namely temperature, concentration of a dye,node_bﬁurcatlor!, a_nd no fqrther scattering Is obsqwed.
etc), it is clear that the picture sketched above suffices tchass'nce submission of this paper, the work of WgiE894]

produce an enhanced diffusivity for the passive scalar. appeared. There, a map conS|st|ng of a klck_ed-vortex
In effect, let us imagine a blob of passive particlzsa (represented by Gaussian streamfunctioasd a uniform

fluid at rest in infinity, and a vortex approaching at a con- flow, very similar to(2.7), is analyzed. Despite the similarity

stant speed towards this blob. When the vortex is far awa)f[?f somhe of the r?hsults _for th(_a Gauts SI?Z.?fnd |de§I pcr)1|_||'1t \t/r? r
the particles are dispersed with their molecular diffusivity._'ces’ OwWever, there 1S an important difterence. while the

However, those patrticles that are, at some time, in the neigHgeal vortex has a'dlvgrgence 20, the flow f'eld, gener-
borhood of the homoclinic tangle of the system will be en-ated by the Gaussian is smooth everywhere. While this will

trained in the vortical motion, get carried along by the vortex2ffect some aspects of the inner core dynamics, this does not

for some residence tim@vhich can be rather long as shown seem to qoticeably_ affect the _main conplusions concerning
in Fig. 8, and then be eventually shed away essentiall he chaotic scattering properties. In this respect, the two
along the unstable manifold. For such a blob, the dif“fusivityWorks complement each other.

of the passive scalar will be enhanced by the presence OA]:CKNOWLEDGMENTS
vortical structures.

If we extend these ideas, the model also provides a We thank two anonymous referees for comments that
framework for understanding enhanced diffusivity of passiveimproved the presentation of this work. In particular, we are
scalars mixed by high Reynolds number turbulence, where grateful to one of the referees for bringing the references to
hierarchy of eddies of different scales coexist, the larger edYu et al. [1990, 199], and Romeiraset al. [1990Q] to our
dies convecting the smaller ones. The enhanced diffusivity imttention. Chris Jones introduced T. K. to the works of Ham-
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mel et al. [1985] and Hamme[1986] before this work was where we have used double angle formulas, lamtidm are
started. Jones’ work with Hammel was inspirational for Secpositive integers.

VIII of the present paper, as well as in several indirect ways.  The trajectories executed during two iterations of the
T.K. thanks Dick Hall and Bernd Krauskopf for useful dis- map by these fixed points are the following. The fluid par-
cussions. G.S. acknowledges enlightening discussions witticle initially at £+i# is transported to the right a distance
Professor M. O. Magnasco. T.K. and L.S. gratefully ac-e/2 where it then embarks on a circular trajectory, making
knowledge partial support from the National Science Founcomplete revolutions around the origin and stopping when it
dation under Grant Nos. DMS-9307074 and IRI-9116451reaches-¢—€e/2+i 7, and finally it is translated to the right

respectively. by the uniform stream to the point £+i %, concluding one
iterate of the map. In the next iterate, the uniform stream first
APPENDIX A: VARYING THE CIRCULATION moves the fluid particle to the point £+ (e/2)+i 7, from

where it also embarks on a circular trajectory fon+a
fraction) complete revolutions about the origin. The circular
part of the trajectory ends at the poigit- (e/2)+in, from
where the uniform stream returns it §o+i %, its initial po-

W 1:Wneiul\wn\2+ 1. (A1)  sition before the first iterate. From the transcendental equa-

, . tions (B2) and (B3), one can numerically solve for the two
Here the velocity of the uniform stream has been scaled to b nknowns¢ and  as a function of for each pair of values

one. A simple rescaling of the dependent variablérans-
forms this map(Al) into the original map(2.5). Let w of the parameterk andm.
= w/ \/ﬁ In terms of this new coordinate, the méjl) be-

comes: 2. Case II: cos(1/( é+el2)*+P)=—1

Wy 1= e/l 4 1. (A2) Two period-2 points are located on the imaginary axis
symmetrically about the origin ati(5/2). Therefore, from
Eg. (B1), we have that

Itis also of interest to vary the strength of the circulation
in this idealized model. Toward this end we work with the
map

Thus, dividing through by\/;, we arrive at precisely the
map (2.5 with € = 1/y/u, and withz, replaced by, .

APPENDIX B: HIERARCHY OF PERIOD-2 POINTS e+ 62 m(2l+1)

The standard method to find period-2 points is basedrom whence:

directly on the map(2.7). For each positive integer, this
method finds a hierarchy of period-2 points, and can in prin- 8=+ / 4 €2 (B4)
ciple be extended to find points for any integer period. m(21+1)
Perlod2-2 points of the _n;ap\/l given by (2.7) satisfy  Geometrically, these fixed points execute the following tra-
<=M*Z, equivalentlyM " “-Z=M Z: jectories: the fixed point starting Bt6/2) gets shifted to the
e\ , € € right an amounte/2, then it maked + 3 turns around the
(35— 5) e V<2 5= > origin, landing at—e/2—i(5/2), from where it is finally
transported to the right a distance @2 until it reaches the
Thus, taking moduli and lettingz=&+i » denote a period-2 point —i(8/2), ending the first iterate of the map. During the

ei/\z+(e/2)|2+

24
)

point, we get: next iteration the particle visits-i(6/2)+ (e/2) and (after
1 rotatingl + 3 timeg —i(6/2)— (e/2) before finally returning
£+ (el2) sin| W) to its initial pOSitiOﬂ ati(5/2).
. = 1 (B1)
1+ COS( (€+ (6/2))24_ 7]2 H. Aref, “Stirring by chaotic advection,” J. Fluid MecHL43 1 (1984.

) ] o o H. Aref, “Chaotic advection of fluid particles,” Philos. Trans. R. Soc. Lon-
At this point, we have to divide the analysis in two cases, don Ser. A333 273(1990. _ . . _
depending on whether the denominator of the previous equa® Bleher. C. Grebogi, and E. Ott, “Bifurcation to chaotic scattering,”

tion is equal or different from zero Physica D46, 87 (1990.
a : G. A. Cecchi, D. L. Gonzalez, M. O. Magnasco, G. B. Mindlin, O. Piro, and

. 2 _ A. J. Santillan, “Periodically-kicked hard oscillators,” Cha& 51
1. Case |: cos(1/( é+€l2)’+ 1)+ -1 (1993,
The two period-2 points are located até+iy, i.e., B. V. Chirikov, “A universal instability of many-dimensional oscillator sys-

. . . . . tems,” Phys. Rep52, 263(1979.
symmetrically with respect to the imaginary axis. Therefore'P. Collet, J.-P. Eckmann, and H. Koch, “On universality for area-preserving

equation(B1) must be satisfied for botéi+i» and — &+i 7. maps of the plane,” Physica B, 457 (1981).
This is equivalent to simultaneously solving: M. F. Doherty and J. M. Ottino, “Chaos in deterministic systems: Strange
attractors, turbulence, and applications in chemical engineering,” Chem.
E+(€el2) 1 Eng. Sci.43, 139(1988.
7 =ta 2[(&+ (6/2))2+ 772]_ k|, (B2) R. Everson, P. Cornillion, L. Sirovich, and A. Weber, “An empirical eigen-
function analysis of sea surface temperatures in the North Atlantic,”
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