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In this work, we study a blinking vortex-uniform stream map. This map arises as an idealize
essential, model of time-dependent convection past concentrated vorticity in a number o
systems. The map exhibits a rich variety of phenomena, yet it is simple enough so as to y
extensive analytical investigation. The map’s dynamics is dominated by the chaotic scatter
fluid particles near the vortex core. Studying the paths of fluid particles, it is seen that qua
such as residence time distributions and exit-vs-entry positions scale in self-similar fashio
bifurcation is identified in which a saddle fixed point is created upstream at infinity. The homoc
tangle formed by the transversely intersecting stable and unstable manifolds of this sad
principally responsible for the observed self-similarity. Also, since the model is simple eno
various other properties are quantified analytically in terms of the circulation strength, s
velocity, and blinking period. These properties include: entire hierarchies of fixed points
periodic points, the parameter values at which these points undergo conservative period-do
bifurcations, the structure of the unstable manifolds of the saddle fixed and periodic points, a
detailed structure of the resonance zones inside the vortex core region. A connection is
between a weakly dissipative version of our map and the Ikeda map from nonlinear optics. F
we discuss the essential ingredients that our model contains for studying how chaotic sca
induced by time-dependent flow past vortical structures produces enhanced diffusivities. ©1995
American Institute of Physics.
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I. INTRODUCTION

Recent simulations of high Reynolds numberbox turbu-
lence indicate the presence of linear structures of inte
vorticity, see Siggia@1981#, Sheet al. @1990#, and Zabusky
et al. @1993#. Inviscid models of such structures are po
vortices. Further, in any turbulent flow, physical or nume
cal, such intense vortical motion exists in the presence
irregularly occurring large scale eddy motions that swe
past, as well as convect, the filaments of vorticity. In
attempt to model particle paths in these types of fluid flow
we consider the highly idealized situation of a single po
vortex in the presence of a uniform stream that underg
unidirectional oscillation under a square wave duty cycle
does the vortex strength. This model exhibits a wealth
interesting phenomena and simultaneously yields to ex
sive analytical investigation. Furthermore, it may be the s
plest fluid mechanical model in which chaotic dynamics a
pears.

The model that we consider is related to the blinki
vortex model introduced by Aref@1984# and further studied
by Doherty and Ottino@1988# ~see also Chap. 7 in Ottino
@1989#!. In the Aref model, co-rotating vortices of equ
strength are alternately turned on and off under a squ
wave duty cycle. The effect of one vortex on the other is,
a first approximation, that of a locally uniform flow, and o
model is thus related to that of the blinking vortices.

The model considered here may be made more real
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by allowing for randomness in the velocity, vortex streng
and the time dependence in the duty cycle, and by examin
more complicated types of vortices such as patches or v
ces with finite cores; however, these additions would com
the expense of the simplicity of the model. Also, as in ch
otic dynamics in general, one must be cautious in interp
ing the results within the framework of turbulence, see
instance the discussion in Aref@1990#. At each instant one
sees the generated flow as being laminar. Only the par
paths themselves exhibit chaotic behavior. While this m
shed light on the mixing process inherent in turbulent flow
the dynamics lacks essential features of turbulence, pri
pally vortex stretching. Nevertheless, Pierrehumbert@1992#
has employed model problems with chaotic convection
investigate scalar spread in the turbulent atmosphere.

The model considered here exhibits chaotic scatter
behavior for a wide range of uniform stream velocities, c
culation strengths, and blinking periods. This behavior
manifested by the presence of fluid particles initially a
proaching the point vortex that scatter off of it in a chao
fashion. Measurements are made of both the positions
these particles as they exit the vortex region and the len
of the time intervals these particles spend in the core reg
the so-called residence times. Our measurements show
these quantities depend sensitively on the initial position
the incoming particle and that they scale in self-similar fa
ions.

The main geometrical structures responsible for the
6710 © 1995 American Institute of Physics¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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served chaotic scattering are the principal saddle fixed po
of the map along with the homoclinic tangle attached to
The principal saddle fixed point is created by a bifurcation
infinity that results when the velocity of the uniform stream
changes from being zero to being positive. An analysis
this bifurcation, as well as of the dynamics near infinity,
carried out using the technique of Poincare´ compactification.

For the positive interval of control parameters in whic
this principal saddle fixed point exists, one branch of each
its stable and unstable manifolds asymptote to infinity. T
other branches intersect each other transversely and, t
form a homoclinic tangle. For a theoretical treatment of the
concepts from the global theory of dynamical systems, s
Guckenheimer and Holmes@1983#, and for one of the earli-
est applications of these concepts to fluid mechanical pr
lems see Rom-Kedaret al. @1990#. If the blinking period and
the circulation strength are held constant, then one obser
that: ~i! the distance from the fixed point to the center of th
vortex scales inversely with the velocity of the uniform
stream; and~ii ! the width of the homoclinic tangle grows
with increasing uniform stream velocity, and this dependen
is highly nonlinear. This detailed scaling information abo
the geometrical structure reveals the reason for the obser
sensitive dependence and self-similarity in the chaotic sc
tering measurements.

For other studies of chaotic scattering in physic
systems—both classical and quantum—see for example
special issue ofChaos@Vol. 3, No. 4,~1993!# devoted to this
subject~in particular the introduction by Ott and Tel@1993#!
and the references cited in those works. Also see Ble
et al. @1990#. Finally, the problem studied in Kadke and No
vikov @1993#, although very different in scope from that o
the present paper, has several similar features.

A noteworthy feature of the model is that the location o
all fixed points and many periodic points can be determin
analytically. We take advantage of this to show that the m
exhibits many conservative period-doubling cascades. As
velocity of the uniform stream is decreased from certa
critical values, stable periodic points become unstable~hy-
perbolic with reflection!, and in so doing, they shed pairs o
new stable periodic points of twice the period. An estimate
the Feigenbaum universal constant for this model, based o
limited number of period-doubling events, is near the co
servative Feigenbaum number,dF'8.72.This conservative
version of universality has been studied in many are
preserving maps, most notably in the quadratic De Vogele
map, see for example Helleman@1980#, Collet et al. @1981#,
Greeneet al. @1981#, and the exposition of Fermi accelera
tion in Section 3.4 of Lichtenberg and Lieberman@1983#.

A further feature of the model is that the map may b
reformulated as a Hamiltonian system consisting of t
stream function for a pure point vortex subject to a period
series of delta function kicks. The periodic delta functio
kicks are equivalent to the action of the uniform stream th
transports particles unidirectionally for half of the duty cycl
This reformulation enables us to determine the resonant
namics inside the principal homoclinic tangle in a fairl
complete way. There are both inner and outer core regio
The outer core region is that region containing the resona
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bands formed by the principalm:1 ~andm:n! subharmonic
periodic points. In contrast, the inner core region is that
gion containing the 1:n ~andm:n for m,n! superharmonic
points. Each of these regions may also contain KAM to
and higher order island chains, but the important result is t
they are well-defined regions in the fluid domain. Moreov
the width of these resonances is obtained analytically in
ymptotic form, and the Chirikov resonance overlap criteri
~Chirikov @1979#! is applied to determine the threshold p
rameter values for which some pairs of resonances over
These overlap thresholds determine the extent to which p
ticles can penetrate close to the center of vorticity.

For examples of other works in which the dynamics go
erned by oscillators are subject to delta function kicking,
refer the reader to Zaslavsky@1991# where the formation of
stochastic webs is presented, and to Cecchiet al. @1993#
where the oscillators under study are hard relaxation osc
tors.

Finally, we examine the change in behavior fluid pa
ticles undergo when the vortex changes from being a p
point vortex to a weakly entraining point vortex. These vo
tices weakly entrain fluid particles into the core region. N
merically it is found that strange attractors appear in the fl
flow. These attractors seem to be the closures of the unst
manifolds of the saddle fixed points. Yuet al. @1990, 1991#
study the fractal properties of the attractors that arise in
random map modeling particles floating on surfaces. Th
map is derived from an incompressible three-dimensio
fluid in which the third velocity component contains a pe
odic sequence of delta functions and makes a nonzero c
tribution to the divergence of the full velocity field, so tha
the flow restricted to the surface is compressible. Moreov
Yu et al. @1990# point to other fluid mechanical problems i
which weakly-compressible flows can occur. Also, Zaslav
and Rachko@1979# and Zaslavsky@1978# study equations
with a periodic sequence of delta functions and they also fi
the formation of strange attractors. However, their mode
designed to analyze the onset of turbulence and it consist
a single mode with a stable limit cycle in which the kick
represent the cumulative effect of all of the other modes.

The paper is organized as follows. In Sec. II, we form
late the map and present the time-continuous version o
The period-doubling cascades, emanating from the fix
points, are found in Sec. III. The global dynamics of the m
are studied in Sec. IV. These global properties are then u
in Sec. V to analyze the chaotic scattering phenomena a
ciated to this blinking flow. In Sec. VI, we study the supe
harmonic resonances in the core region. Further, in Sec.
we present the analysis of the bifurcation of the princip
fixed point at infinity. In Sec. VIII, we briefly analyze the
case of weakly attracting point vortices. Finally, in Sec. I
we discuss the physical relevance of our model and sum
rize our main results. The appendices contain various us
calculations.

II. FORMULATION OF THE MAP

We consider the flow generated by a point vortex
strengthk located at the origin and turned on for a tim
durationT/2. At t5T/2 the vortex is turned off and a uni
, No. 4, 1995¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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form stream of velocityV in the positive x-direction is
turned on for a durationT/2. This cycle is then repeated
indefinitely.

With the complex variablez used to define a coordinate
system in the two-dimensional fluid domain, the comple
potential of the vortex motion is given by

w1~z!52
ik

2p
ln z, ~2.1!

and that of the uniform flow by

w2~z!5Vz. ~2.2!

Therefore, if a fluid particle is initially atz0 , then it is lo-
cated at

z1/25z0 exp F ik

2puz0u2
T

2G
at the end of a half cycle, and at

z15z1/21
VT

2

at the end of a full cycle. This area-preserving, conform
mapping is invariant underT→2T, V→2V, k→2k.

We nondimensionalize the position variablez by setting
z85z/L, where the length scaleL 5 1

2AkT/p is the radius of
that circle on which a particle rotates through one radian in
time interval of lengthT/2. When primes are dropped, th
map is

z15z0 exp F i

uz0u2
G1e. ~2.3!

Here the single dimensionless control parameter~see Appen-
dix A for an alternative parametrization! in the problem is

e[ATpV2

k
5
L0
L
, ~2.4!

whereL05(1/2)VT is the distance a particle is carried b
the uniform stream in timeT/2. Sincek carries the same
units as diffusivity,e2 can loosely be thought of as a ‘‘Rey
nolds’’ number.

Formally the map is

zn115zn exp F i

uznu2
G1e. ~2.5!

Clearly, the particle can be returned to its initial position b
a translation of2e, followed by a clockwise rotation. Hence
the inverse map is given by:

zn5~zn112e! exp F 2 i

uzn112eu2G .
It follows from ~2.5! that

uzn112eu5uznu,

and that, therefore, the line Re(z)5e/2 is a line of symmetry
of the map. Exploiting this symmetry and simultaneous
simplifying the analysis of the map, we introduce the tran
formation:
CHAOS, Vol. 5ownloaded¬28¬May¬2008¬to¬146.203.28.10.¬Redistribution¬subject¬to
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z5Z1
e

2
. ~2.6!

In terms ofZ, the map becomes:

Zn115MZn[SZn1
e

2D exp F i

uZn1e/2u2G1
e

2
~2.7!

and the inverse map is

M21Zn11[SZn112
e

2D exp F 2 i

uZn112e/2u2G2
e

2
.

~2.8!

This new format, which is the form of the map we shall u
throughout this work, represents a quarter wavelength s
in the duty cycle compared to that of~2.5! see Fig. 1. A fluid
particle is advanced first by a shift to the right ofe/2, then by
an appropriate counterclockwise rotation and finally by
other translation to the right ofe/2, completing the cycle
Even though the formulation~2.7! looks more cumbersom
than the original map~2.5!, it has the important advantag
that the symmetry line is now conveniently Re~Z!50. Also,
as a consequence of the symmetry, reflection in Re~Z!50 of
the inverse map on the similarly reflected point is the sa
as the action ofM on the point itself:

MZ52@M21~2Z* !#* ,

where * denotes complex conjugate. Moreover, iterat
yields:Mk~Z!5@2Mk~2Z* !#* . Thus, if we follow the seed
pointZ0 forward in time and the seed2 Z0* backward in
time we obtain trajectories that are reflections of one ano
in ReZ50.

Finally, for several purposes, it is convenient to hav
time-continuous version of the map:

Ż*5
]

]Z F2 i ln Z1eZ (
k52`

`

d~ t2k!G
5

]

]Z
F~Z!. ~2.9!

FIG. 1. Motion of a fluid particle under the map~2.7!.
, No. 4, 1995¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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Under the dynamics of~2.9!, a fluid particle initially (t50)
atZ0 gets convected to the pointZ01e/2 in between times
t50 and t501 by the uniform stream, then it is swep
through an angle 1/uZ01e/2u2 on a circle of radiusuZ01e/2u
in a unit time, and finally in between timest512 andt51 it
gets translated to the right by an amounte/2, yielding pre-
cisely the mappingM in ~2.7!.

The system ~2.9! is a time-periodic, one-degree-of
freedom system~often referred to as a one-and-a-half degr
of freedom system! in which the Hamiltonian for a point
vortex receives periodic kicks of magnitudee. The imaginary
part of the complex potentialF~Z!, i.e. the streamfunction,
is the Hamiltonian for the flow of~2.9!:

H~Z,t !52 ln uZu1e Im~Z! (
k52`

`

d~ t2k!. ~2.10!

With this formulation, we regard the periodickicking as a
perturbation to the otherwise periodic circular motion enge
dered by purely vortical motion, although the control param
etere in ~2.7! should not necessarily be regarded as smal

III. HIERARCHIES OF FIXED POINTS AND PERIODIC
ORBITS

As explained above, fixed points of the map~2.7! must
lie on the line Re~Z!50. This may be seen directly from the
symmetry of the map or by observing that~2.7! implies
uZf2e/2u5uZf1e/2u, whereZf denotes the fixed point.
Thus, whene.0 and a fixed point exists, we may set:

Zf[ i
d

2
, ~3.1!

whered is a real number, and it follows from~2.7! that

id5~ id1e! exp F 4i

d21e2G1e.

Finally, taking moduli and simplifying using trigonometric
identities, we arrive at an implicit transcendental equation
d as a function ofe :

e

d
5 tan F 2

e21d2
2p l G , ~3.2!

where l is a non-negative integer and where the conventi
we adopt is that the argument of the tangent function must
in between 0 andp.

Plots of these fixed points are shown in Fig. 2~a! for l50
and in Fig. 2~b! for l51,...,5. Stable branches are indicate
by continuous lines and unstable branches by dashed lin
At any fixed pointZf5 i (d/2), the linearized map has ei-
genvalues

l1,25E6AE221, ~3.3!

whereE[cosb1b sinb, andb[4/~d21e2!.
Next, we turn to the location of these fixed points, an

the trajectories they execute during one iteration of the m
The paths for the upper and lower branchl50 and l51
fixed points are shown in Fig. 2~c!. The upper branchl50
fixed point gets mapped to the pointi (d/2)1(e/2) by the
action of the blinking uniform flow during the first quarter o
CHAOS, Vol. 5ownloaded¬28¬May¬2008¬to¬146.203.28.10.¬Redistribution¬subject¬to
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the duty cycle. Then it is transported around on the arc
large circle of radiusu i (d/2)1(e/2)u to the point i (d/2)
2(e/2) by the blinking vortex. Finally, it is returned to it
starting position during the last quarter of the duty cycle
the uniform flow, and is therefore, a fixed point of the m
~2.7!. Due to its central role in the dynamics of the mapM ,
we refer to this point as the principal fixed point, a
denote it byZp f . That it is a saddle, and hence u
stable, follows sinceE2.1 there.

By contrast, the lower branchl50 fixed point follows a
circle of much smaller radius, and makes almost one c
plete revolution before returning to its starting point w
d,0. Next, the upper branchl51 fixed point makes slightly
more than one complete revolution around a circle during
middle of the duty cycle@traversing the upper arc in betwee
the pointsi (d/2)1(e/2) andi (d/2)2(e/2) twice#, and the
radius of this circle is slightly smaller than that of the sta
l50 fixed point. It is also unstable andd .0. Finally, the
lower branchl51 fixed point~for which d,0! executes al-
most two complete revolutions about an even smaller cir
see the fourth panel. In fact, it traverses all but the bottom
of that circle twice.

FIG. 2. ~a! The l50 branch of fixed points, given by formula~3.2!. ~b! the
l51,...,5 branches of fixed points, given by formula~3.2!; the value ofl
increases going inwards.~c! Four panels showing the trajectories execu
during one iteration of the map withe50.4 by thel50 upper and lower
branch fixed points~c.1 and c.2!, and by thel51 upper and lower branc
fixed points~c.3 and c.4!.
, No. 4, 1995¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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For a generall5L, the trajectory of the upper branch
~regular hyperbolic! fixed point executes slightly more than
L complete revolutions around a circle, and the trajectory
the lower branch fixed point makes almostL11 complete
revolutions around a smaller circle.

Furthermore, the locations of the fixed points in the lim
of e→0 are clear from the pictures of their trajectories durin
one duty cycle, as shown in Fig. 2~c!. The e50 asymptotic
location ofZp f is

Zp f; i
1

e

since we know from~3.2! thatd/2;1/e ase→0. See also Fig.
2~a!.

In the limit of e50, the lower branchl50 and the upper
branchl51 fixed points are located exactly on the interse
tion of the imaginary axis with the circleuZu251/2p,
namely, at i (d/2)52(1/A2p) i'20.3989i , and at
i (d/2)5(1/A2p) i'0.3989i , respectively. Therefore, not-
ing that every point on the circleuZu251/2p is a fixed point
in the e50 version of the map~2.7!, we observe that the
lower branchl50 fixed point and the unstablel51 fixed
point are precisely the two points from this entire circle o
fixed points which persist fore.0. This is the well-known
Poincare´–Birkhoff picture.

Similarly, in the limit of e50, the stablel51 and the
unstablel52 fixed points are located exactly on the inte
section of the imaginary axis with the circleuZu251/4p,
namely, at i (d/2)52(1/A4p) i'20.2821i , and at
i (d/2)5(1/A4p) i'0.2821i , respectively. They are the
only two points from the entiree50 circle of fixed points at
uZu251/4p that persist fore.0. In general, in the limit of
e50, we haveu i (d/2)u5(1/A2pL) for both the l5L21
stable fixed point and thel5L unstable fixed point, see Fig
2~b!.

Moreover, for eachl , there exists a value ofe at which
the pair of lower and upper branch fixed points correspon
ing to that value ofl coalesce and disappear in a saddle
node bifurcation. We shall denote this value, which may
found by solving (de/dd)(e l)50, by e l , and we observe
that the correspondingd for which ~3.2! holds is positive. As
discussed above, for example,e l50'1.2038, andneither of
the two l50 fixed points exist fore.e l50, as is shown in
Fig. 2~a!. Furthermore, Fig. 2~b! shows that the range ine for
which thel th fixed points exist decreases asl increases.

It is clear from Fig. 2~a! and 2~b! that ase is increased
from zero, stable fixed points lose their stability and becom
hyperbolic with reflection. In the process, a pair of stab
period-2 points are created. For each of thel branches, this
bifurcation occurs at a different value ofe. At the bifurcation,
a horizontal figure-of-eight shape is born~the separatrix! and
the new elliptic points are created inside the loops of t
figure-of-eight, such that their location isj1 ih and 2j
1 ih. The strategy for computingj andh is given in Appen-
dix B. An interesting question is whether these bifurcatio
are the first steps in conservative period-doubling cascad
However, we found these branches of stable period-2 po
could be continued for a wide range ofe values, and we did
CHAOS, Vol. 5ownloaded¬28¬May¬2008¬to¬146.203.28.10.¬Redistribution¬subject¬to
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not observe any further bifurcation of the elliptic period
points, although we have not been able to prove this.

Interestingly, we observed the first four steps in w
appears to be a conservative period-doubling cascade ae is
decreased from the valuese l . From above, we recall that a
e l a stable and unstable fixed point coalesce in a sad
node bifurcation. Their location ate l is i (d l /2), whered l.0.
When e is decreased frome l , the stable fixed points ap
proach the origin. When the corresponding value od
reaches zero, the fixed points become hyperbolic with re
tion, as is readily seen in Eq.~3.2!. In effect, whend→0, Eq.
~3.2! implies that

2

e21d2
2p l5

p

2

or, using the definitionb54/~e21d2!, we haveb5p(2l11).
Note that atd50,

e~d50!5A 2

p~ l1 1
2!
.

Moreover, from~3.3!, we see thatE521, for all l , there.
Since the bifurcations in these cascades occur in

same sequence on all branches, we analyze the casca
detail for one branch, namely thel50 branch. For an inter
val of e values with e,e l50'1.2038, thelower l50
branch fixed point is stable. It is elliptic since the comple
conjugate pair of eigenvalues lie on the unit circle. Howev
ase decreases frome l50 to e (1) 5 A4/p ' 1.128, theeigen-
values migrate from having Re~l!51 to having Re~l!521.
At e'1.128 the fixed point becomes unstable~reflection hy-
perbolic!, and a pair of period-2 points are created, wh
correspond to thek50 branch of case II in Appendix B.

This process repeats itself indefinitely. The new sta
period-2 points are located symmetrically with respect to
real line, say at6 i (d/2). It is readily shown that the eigen
values of these period-2 points are

l652
p2d2e2

2
6Ap4d4e4

4
2p2d2e2.

Also, from the geometrical interpretation of the motion u
dergone by a fluid particle located at the period point of
map, it is clear ~see case II of Appendix B! that
4/~e21d2!5p. This last relation can, in turn, be used to fi
the value ofe, denotede~2!, for whichl6521, i.e., when the
pair of period-2 elliptic points become hyperbolic with r
flection.Thisyieldse (2)5 (2/p)@11 A121/p2# ' 1.1136.
For e just belowe~2!, a quartet of period-4 points are bor
Numerically, we find that these in turn become hyperbo
with reflection and shed period-8 points ate~3!'1.1118. Al-
though we did not pursue further bifurcations, we conject
that a full cascade of conservative period-doubling bifur
tions takes place.

It is known, see for example Helleman@1980# and
Greeneet al. @1981#, that a bifurcation tree the values of th
parameters at which the bifurcation actually occur scale
ymptotically as
, No. 4, 1995¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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e~n!5e~`!1adF
2n ,

wheredF'8.72 isFeigenbaum’s universal constant for co
servative maps. Asymptotically, for 1!n,

dF5
e~n11!2e~n!

e~n12!2e~n11! .

Even though we are not in the asymptotic regime, we
estimatedF for ~2.7! from

e~2!2e~1!

e~3!2e~2! '8.17

which is in reasonable agreement with the universaldF . This
result supports our conjecture that a fully developed casc
of bifurcations is taking place, not only for thel50 branch,
but for all of thel>0 branches.

IV. GLOBAL DYNAMICS

In this section, the global geometry of the map need
for the scattering results of the next section is described

A. The principal homoclinic tangle

The relative disposition of the stable and unstable ma
folds, WS~Zp f! andW

U~Zp f!, of the principal fixed point
Zp f governs almost all of the interesting dynamics of t
mapM . As stated in the Introduction and as shown in Fig
for e50.39, one branch of each of the manifolds asympto
to infinity. The other two branches, however, intersect tra
versely in infinitely many points, forming a homoclini
tangle.

The splitting distance between the stable and unsta
manifoldsWS~Zp f! andW

U~Zp f!, which may be taken as
measure of the width of the homoclinic tangle, increa
nonlinearly with e. We show long portions of the unstab
manifoldsWU~Zp f! for e50.32, 0.39, 0.44, 0.62, 1.13 i
Fig. 4, and the stable manifolds are reflections in the Im~Z!-
axis of the unstable manifolds. In the asymptotic limit
vanishinge, the width of the tangle is exponentially sma
i.e., O (e2c/e) for somec.0. Indeed, Fig. 4~a! shows that
the tangle is extremely narrow even fore50.32. By contrast,

FIG. 3. The principal fixed pointZp f and the principal homoclinic tangle
formed byWU~Zp f! andW

S~Zp f! for e50.39.
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for both e50.39 ande50.44, the tangle already has a su
stantial width. Finally, for bothe50.62 ande51.13, the un-
stable manifoldsWU~Zp f! ~and hence also the stable man
folds! penetrate deep into the core of the vortex, see F
4~d! and 4~e!.

B. Stochasticity threshold and core penetration

For small values ofe, particles starting close to the cen
ter of the vortex remain close to it forever. They are trapp
between invariant circles. For example, fore<0.25, there are
many, nested invariant circles inside the principal homocli
tangle. Fig. 5~a! shows one invariant circle fore50.25.
These circles act as barriers that prevent particles inside f
leaving the core region and particles outside from penet
ing it.

However, for values ofe.0.25, there are fewer circles
and the area they occupy shrinks. Hence, particles can p
etrate deeper into the core region ase increases, and this is
consistent with the observed increase in the width of
principal homoclinic tangle.

For e>0.265 there do not appear to be any more ma
barriers. There are no closed circles that persist from
family of circles in thee50 version of the map. As a result
it might be said thate'0.265 is the threshold for globa
stochasticity, since particles can explore almost the en
core region. For example, withe50.265, almost the entire
region inside of the period-7 island chain appears stochas
See Fig. 5~b! with initial condition x0520.1325 and
y051.85 iterated 100 000 times. The only exception to th
entire region appearing stochastic are, of course, the m
tiny islands around periodic points of the map.

Although the main barriers are no longer present
e>0.265, it is observed numerically that particles stick
certain island chains and stay inside of the associated r
nance bands for many iterates. For example, fore50.265,
the particle initially atZ052.295i sticks to a period-21 is-
land chain for more than 80 000 iterates of the map. Th
although the particular value of the control parametere is
above the stochasticity threshold~and hence there are n
complete barriers preventing core penetration!, there are still
effective barriers. This stickiness decreases whene increases.

In addition, for anym:1 subharmonic periodic orbit, the
phase of one of the periodic points in the orbit may read
be determined using the symmetry of the map, and
phases of the otherm21 points follow from the fact that
they are equally spaced in the angleu[tan21~Im~Z!/Re~Z!!
that is conjugate to the actionI[Z2/2. This may be seen
from the period-7 and period-21 elliptic orbits. However,
one attempts to calculate these phases using a perturb
series in powers ofAe, then one must go to theO ~e! equa-
tion to determine them. Observe that on average in thee→0
limit the fluid particle is in the negative-x half-plane 50% of
the time and so half of the kicks it receives direct it inwa
onto an orbit of smaller action, while during the other 50
of them periods it is in the positive-x half-plane, and hence
the other half of the kicks force it outward onto an orbit
larger action. Furthermore, this holds for each initial pha
u0. Thus, theO (Ae) correction to the action automaticall
, No. 4, 1995¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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FIG. 4. The principal homoclinic tangles fore50.32, 0.39, 0.44, 0.62, and 1.13.
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returns to its initial value at the end ofm periods, irrespec
tive of the initial phase, and one must use higher order eq
tions to selectu0. This phenomena has an analog in tw
map theory.

Finally, the location of the unstable manifold of thel51
saddle fixed point, which we denote byWU(1), provides
another indication that particles can move deeper into
core region ase increases. Figures 5~c! and 5~d! show one
branch ofWU(1) for e50.35 ande50.44, respectively, a
well as one branch of the respective manifoldsWU~Zp f!.
Whereas fore50.35, the two manifolds shown stay bound
away from each other, they are very close to each othe
e50.44. In fact, the inner manifoldWU(1) closely follows
inside the folds of the outer manifoldWU~Zp f!.
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V. SCATTERING

Most of the unbounded orbits of the map~2.7! that pass
through or near the principal homoclinic tangle undergo c
otic scattering. Chaotic scattering plays an important r
when the parametere is in the range~0.25,1.2!. The measure
of initial conditions which undergo chaotic scattering is ne
its maximum for 0.35,e,0.8.

We begin by studying the evolution of an initial cond
tion that is far from the origin. In particular, we take th
point Z052x01 ib, wherex0@1 and iterate it under the
map ~2.7! until it crosses the line Re~Z!5x0 , see Fig. 6. In
general, iterates of a point such asZ0 will never land exactly
on the line Re~Z!5x0 . However, because of the smoo
, No. 4, 1995¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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behavior of the trajectories far from the origin@asymptoti-
cally they behave asy5y01(1/e)ln(x/x0)#, a linear inter-
polation betweenZn and Zn11 @where Zn5Mn~Z0!,
Re~Zn)<x0 and Re~Zn11).x0# will allow us to assign a
unique pointZ̃ for the passage of the orbit through the lin
Re~Z!5x0 , i.e., Z̃5x01 ib8.

The fate of an incoming fluid particle is sensitively d
pendent on its initial condition. This sensitive dependence
manifested in a plot ofb8 as a function ofb. In Fig. 7~a! we
show such a plot withe50.39. Three regimes can be ob

FIG. 5. ~a! Invariant circle and island chains fore50.25; ~b! 100 000 itera-
tions of the initial conditionx0520.1325,y051.85 for e50.265. Ob-
serve the~sticky! island chains in the outer region of the plot. No invaria
circles are observed at this value ofe. ~c! The unstable manifolds of thel50
andl51 saddle fixed points whene50.35. The latter lies deeper in the cor
region, well away from the former.~d! The unstable manifolds of thel50
and l51 saddle fixed points whene50.44. Here the latter is spread over
much larger portion of the core region than is the case whene50.35, and it
practically meets the former.

FIG. 6. Definition of the parametersb andb8 used in the chaotic scattering
analysis. After several iterations under the map~2.7!, the point originally at
Z052x01 ib, crosses the line Re~Z!5x0 with an ordinate defined asb8.
CHAOS, Vol. 5Downloaded¬28¬May¬2008¬to¬146.203.28.10.¬Redistribution¬subject¬to
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served. Forb,6.95,b8 is a smooth, nonmonotonically in
creasing function ofb. For 6.95,b,7.29, theplot of b8 vs
b behaves singularly~i.e., b8 varies wildly for small varia-
tions in b!. For b.b*'7.29, wehave exactlyb8(b)5b.
The richest of these regimes is the second one, of wh
successive blowups are shown in Figs. 7~b!–7~d!. Note that
we chose to plotb8 as a function ofb to measure the scat
tering that the trajectories undergo rather than their asy
totic deflection angle, since the latter is always appro
mately zero in this system.

Another important indicator of the chaotic scatteri
fluid particles undergo is the number of iterations that th

t

FIG. 7. Successive blowups the functionb8 vs b for e50.39. The self-
similarity is apparent. The magnification of~b!, ~c! and ~d! with respect to
~a! is 15, 150, and 1500 respectively.
, No. 4, 1995¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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679Stolovitzky, Kaper, and Sirovich: A simple model
spend in a neighborhood of the origin. This time is ofte
referred to as the residence time. Figures 8~a!–8~d! show the
time delayDt(b) needed for a particle starting at2x01 ib to
reach x01 ib8 „more precisely, D(b)5max$nuRe[Mn

3(2x01 ib)]<x0%…. This quantity also shows an irregula
behavior. For the two highest resolutions shown@Figs. 7~d!
and 8~d!#, zones of smooth behavior can be distinguish
that resemble the features of the less-well resolved Fi
7~a!–7~c! and 8~a!–8~c!. This is an indication of self simi-
larity, i.e., that the system exhibits fractal properties.

An alternative way to study the residence time depe
dence on initial condition is to plot the number of iteration
needed for a given pointZ0 to cross a given linex5xc as a
function of Z0 . This feature is shown in Fig. 8~e!, where
each shade of gray represents a different exit time. It is cl
that outside the region bounded by the stable manifold of
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principal fixed point, the exit times behave smooth
whereas inside that region an interesting mixing of col
takes place, indicating a sensitive dependence of the
times on the initial condition.

In both Figs. 7 and 8, we notice that asb increases,
broad irregular zones and regular zones occur in alterna
succession. The width of each individual regular and irre
lar zone decreases asb approaches the valueb* from below.
It is also clear from Figs. 7 and 8 that each regular zone
a well-defined minimum. Call theb-value of the minimum of
the first regular zoneb0 , of the second oneb1 , and so on.
Figure 9 shows a plot ofbi11 vs bi . These points follow a
very well-defined straight line,bi115d1lbi with l50.84
60.04 and whered is some real number. This means th
dbi5bi112bi5ldbi215...5l idb0 . That is to say, the dis-
tance between minima shrinks exponentially. As the dista

FIG. 8. ~a!–~d! Successive blowups of the residence timeDt needed for a
particle starting at2x01 ib to reachx01 ib8 at e50.39. The sensitive de-
pendence of the residence time on the initial condition is shown in~e! for
e50.39, where to each point a shade of gray is assigned that represen
time needed for that point to cross the linex0510 from left to right. It is
clear that the region of the space affected by the chaotic scattering is
zone bounded by the stable manifold of the principal fixed point.
5, No. 4, 1995o¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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680 Stolovitzky, Kaper, and Sirovich: A simple model
between minima is a measure of the size of the irregu
zone, it follows that the latter also shrinks exponentially.

The shape of the homoclinic tangle attached to the pr
cipal fixed pointZp f and the dynamics of orbits in the tangl
discussed in the previous section explain the behavior
scribed above. Figure 10~a! shows an orbit starting at the
point A, which is within the area defined by the transver
intersection of the stable and unstable manifolds that fo

FIG. 9. Plot ofbi11 as a function ofbi for e50.39, wherebi is abscissa
corresponding of the minimum of the function of Fig. 7~or Fig. 8! between
two consecutive irregular regions, at a given resolution. The slope of the
is 0.8460.04.
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the tangle. Upon iteration, the point jumps from one of t
crests to the immediately consecutive one~going counter-
clockwise!. At some iteration, the orbit enters the regio
where the homoclinic tangle lies. There, it experiences w
appear to be random oscillations due to the underlying c
otic structure of the homoclinic tangle. But, unlike th
bounded orbits, this orbit will eventually exit that regio
Because of the strong shaking that it suffered, the final s
will be sensitive to its initial condition. Figure 10~b! shows
that if the incoming orbit is outside of the region occupied
the tangle, it does not enter the chaotic region. The or
however, will be scattered as a result of its passage thro
the homoclinic tangle. This is the case for the regular par
theb8 vs b plots of Fig. 7.

Finally, we can also understand the behavior ofb8 vs b
for b.b* , whenb8(b)5b. Simply, those are the orbits tha
start ~and live! above the separatrix@see Fig. 10~b!#. Such
orbits do not experience any chaotic structure~neither horse-
shoe nor homoclinic tangle! and then behave symmetricall

The description given above relies heavily on the str
ture of the principal homoclinic tangle, see Fig. 10. Howev
the initial conditions used in Figs. 7 and 8 are taken
Z052201 ib. To complete the study, we use Fig. 11 whi
shows both a piece of the separatrix and a portion of
homoclinic tangle fore50.39 in a neighborhood of the poin
Z52201 ib. From the width of the tangle and the positio
of the other two branches of the stable and unstable m
folds ofZp f , we immediately see why the range of irregu
behavior in Fig. 7 goes fromb'6.8 to b'7.29. Further-
more, we can also understand why the size of the irreg
zones of theb8 vs b plot shrinks exponentially~see Fig. 9!.
In effect, if we traverse the homoclinic tangle of Fig. 1

line
c shaking
ht.
, nor any
FIG. 10. ~a! An initial condition starting at point A inside the lobe formed by segments of the stable and unstable manifolds experiences some chaoti
and some delay before leaving the neighborhood of the vortex. The subsequent evolution will see the point in the exterior lobes in the upper rig~b! An
initial condition starting outside the homoclinic tangle, remains outside of it upon evolution, and does not experience any strong chaotic mixing
noticeable delay.
, No. 4, 1995¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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D

vertically and upwards, we will be crossing successive
gions that lie inside the homoclinic tangle, and regions t
do not. If we picture the former regions as triangular shap
zones, their base will be very small and will lay on the u
stable manifold, close to the fixed point. The success
bases of these ‘‘triangles’’ will shrink at a rate given by t
smaller of the eigenvalues of the Jacobian of the map ev
ated at the hyperbolic fixed point. For the case shown in
Fig. 9, the smallerm of the eigenvalues is 0.82, while th
slope of the curve isl50.84. For e50.34, 0.365, 0.407
0.51, and 0.624, the values of the smallest eigenvalues a
saddle and of this slope are, respectively:m50.89,l50.90;
m50.88, l50.91; m50.85, l50.87; m50.76, l50.81;
m50.68,l50.74.

The above-mentioned figures showing pieces of unsta
manifold nearx5220 also reveal that the lobes of the h
moclinic tangle are nested within each other. It is this co
plicated and approximately self-similar nesting of the lob
far from the core that is responsible for the observed sca
properties.

The above description of the scattering properties
valid for a restricted range in the parametere. To understand
how this picture changes withe, it is useful to recall the
history given in Sec. III of the fixed points ase changes.
First, for e.1.2038, the principal fixed pointZp f disappears
in a saddle–node bifurcation. Hence, the stable and unst
manifolds that formed the principal tangle no longer ex
either. Second, the dependence of the width of the tangle
e, which we illustrated in Fig. 4 fore51.13, 0.62, 0.44, 0.39
and 0.32, can be used to predict the change in the shap
theb8 vs b plot. Fore51.13, the irregular regions will occu
in isolated and extremely narrow bands. These bands
wider for e50.62, spanning a larger range inb-values. Fi-
nally, they get narrower again ase decreases to 0.44 an
0.39. In fact, fore50.32, the width of the tangle is hardl
noticeable, as is expected since the splitting distance betw
the manifolds is exponentially small for small values ofe.
However, a small region of irregular behavior was observ
both in theb8 vsb plot as well as in the time delay plot. On

FIG. 11. A piece of the separatrix and a portion of the homoclinic tangle
e50.39. At x5220, only the region 6.8<y<7.29 is affected by the
tangle. This region coincides with the range ofb’s that exhibit irregular
behavior in Figs. 7 and 8.
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can expect that the irregular behavior will not be we
resolved below some value ofe. For example, fore50.14,
no chaotic scattering is observed in theb8 vs b plot. The
only remnant of the singular behavior at this value ofe is a
logarithmic singularity of the time delayDt(b) at the value
of b corresponding to the point on the upper left branch
the separatrix.

The change in the scattering properties ase decreases is
also related to the appearance of the other members o
hierarchy of fixed points. Ate50.6552, thel51 fixed points
appear, in a hyperbolic-elliptic pair, see Fig. 2~b!. Further-
more, we recall from Sec. IV B that the homoclinic tangl
of the l.0 fixed points interacts with the tangle of the pri
cipal fixed point for the range 0.35,e,0.655, forming a
heteroclinic structure@see Fig. 5~d! for e50.44#. For this
range ofe, the unbounded orbits entering this region expe
ence strong mixing which is reflected in the singular part
the b8 vs b plot. If we decreasee even more, the principa
fixed point ceases its interaction with thel.0 fixed points
@see, for example, Fig. 5~c! in which e50.35#, and the only
mixing affecting the irregular part of theb8 vs b plot is the
horseshoe structure of the principal homoclinic tangle.

VI. RESONANT CORE DYNAMICS

For small values of the control parametere ~approxi-
mately e,0.3!, the stochastic core region contains ma
chains of islands around fixed points and periodic points
the mapM . In this section, we calculate the width of the 1:n
superharmonic resonance zones deep inside the core.
we use the Chirikov criterion~Chirikov @1979#! to determine
the threshold parameter values at which pairs of adjac
resonances overlap. See, for example, Tabor@1989# ~Sec.
4.6! for a general treatment of this criterion and an examp
Also, we refer the reader to Greene@1979 a,b# for the residue
method to detect the destruction of KAM tori.

The Hamiltonian in terms of action-angle variables is

H~ I ,u,t !52 ln AI1eA2I sin u (
k52`

`

d~ t2k!.

Although this form of the Hamiltonian clearly exposes t
role of the periodic kicking, application of the Poisson Su
mation Formula to it isolates each of the resonant ter
From Lighthill @1958#, we have

(
k52`

`

d~ t2k!5112(
n51

`

cos~2pnt!.

Hence, grouping terms appropriately and using the sine
dition formulas, the Hamiltonian becomes:

H~ I ,u,t !52 ln AI1eA2I (
n52`

`

sin~u22pnt!. ~6.1!

Having isolated each of the resonance terms in~6.1!, we
now turn to study one of them. This corresponds to fixing
integer value ofn and examining an annular region about t
e50 invariant circle withI5I n[1/4pn. Choosing the gen-
erating functionF(J,u,t)5(u22pnt)J1uI n facilitates this
study since

I5
]F

]u
5I n1J

for
, No. 4, 1995¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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D

and the resonant phase~conjugate to the action deviationJ!
is

c5
]F

]J
5u22pnt.

Upon averaging the Hamiltonian over the time interval 2p,
all of the nonresonant phase terms vanish, so that the a
aged Hamiltonian depends only onJ and the slow resonan
phase:

H̄~J,c!52 ln AI n1J1eA2~ I n1J! ~sin c!

22pnJ, ~6.2!

where the last term arises sinceF is explicitly time depen-
dent. Next, we may expand both of the functions ofI in ~6.2!
about the resonant valueI n :

2 ln AI52 ln AI n2
1

2I n
J1

1

2
•

1

2~ I n!
2 J

21O ~J3!

andeA2I 5 eA2I n 1 O (eJ). Plugging these expansions in
H̄, absorbing the constant term into the value ofH̄, shifting
the resonant phase by a constant initial phasep/2, and ob-
serving that the terms linear inJ cancel, we are left with
precisely the normal form for thenth resonance:

H̄~J,c!5
1

4~ I n!
2 J

21eA2I n cos c1O ~J3,eJ!. ~6.3!

For all 0,e,e0, wheree0 depends onn, the nth reso-
nance is isolated from the other principal resonances.
separatrices are given by:Jsx(c) 5 62I nAeA2I n cos(c/2) in
c2J space. Hence the width of the resonance zone ma
directly calculated as twice the maximum ofuJsxu

~DI n!5Ae29/4~ I n!
5/4.

Translating this width in action to a width in frequency, w
get

~Dv!n5
dv

dI
~ I n!•~DI n!

5Ae25/4~ I n!
23/45Ae211/4p3/4n3/4. ~6.4!

Finally, we use the above determination of the width
an isolated resonance zone to develop the Chirikov re
nance overlap criterion. For this, we need~6.4! and the spac-
ing between adjacent resonances:

DV[
]H0

]I
~ I n11!2

]H0

]I
~ I n!52p~n11!22pn52p.

~6.5!

Chirikov @1979# established that two adjacent resonan
overlap when

~Dv!n5
DV

2
.

Plugging in the numbers, the Chirikov’s criterion implies th
thenth and (n11)th resonances overlap for:

e>A p

211n3
.
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As an example, setn51, so that we determine an upp
bound for the threshold value ofe at which thel50 stable
period-1 resonance zone overlaps with thel51 layer:

e>A p

211
'0.04.

Numerical simulations confirm that this is approximately t
threshold, and that it is a conservative estimate of the thr
old.

VII. BIFURCATION AT INFINITY

The principal fixed pointZp f is created in a bifurcation
at infinity whene50. It is created as the resonant response
theO ~e!-amplitude perturbation of the circle of fixed poin
at infinity in thee50 system. Recall from the previous se
tion that the blinking uniform stream contains all harmon
of the basic frequency,n50,1,..., where then50 mode is
just the constant term 1. This constant term is referred to
the zero mode. Due to its presence in the blinking unifo
stream, the zero frequency orbit~namely the circle of fixed
points! at infinity gives rise to a 1:1 resonance band fore.0.

The complete analysis is more delicate than this b
sketch and requires Poincare´ compactification ofR2. Since
this is also of interest in its own right, we present it here. S
for example Lefschetz@1963# or Perko@1991# for a general
treatment of the technique.

We begin with the complex conjugate of the equatio
~2.9! in time-continuous form:

Ż5
iZ

uZu2
1eF (

k52`

`

d~ t2k!G . ~7.1!

In order to bring the points at infinity to a finite location
the plane, we transform to the new complex variab
z[1/Z, giving:

ż52 i zuzu22ez2F (
k52`

`

d~ t2k!G . ~7.2!

Next, we representz in its polar formreiu so that we may
easily analyze the way in which trajectories approach
origin in the complexz plane. Substituting into~7.2! yields:

ṙ52er 2 cos uF (
k52`

`

d~ t2k!G ,
~7.3!

u̇52r 22er sin uF (
k52`

`

d~ t2k!G .
This is the form of the equations which we analyze.

The dynamics near infinity in the originalZ plane~near
r50! are determined as follows: For2p/2,u,p/2, r is
decreasing, and forp/2,u,3p/2, r is increasing. Moreover
for small r and for 0,e!1, u approaches zero for any initia
value ofu. In particular, if 0,u,p, thenu decreases to zero
and if 2p,u,0, thenu increases to zero, since the seco
term in the second component of~7.3! dominates the first for
small r . We note thatr must be smaller than the value ofr at
, No. 4, 1995¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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D

the principal saddle fixed point. The entire phase portra
shown on the Poincare´ sphere in Fig. 12, where the coord
nate axes correspond to the variables:

U5
Re~Z!

A11uZu2
, V5

Im~Z!

A11uZu2
, W5

1

A11uZu2
.

~7.4!

Now, by continuity of the vector field, we can infer th
dynamics on the equator~the ‘‘circle at infinity’’ ! from the
above analysis for smallr . Whenr50, the system has fixe
points atu50, p. The pointr50, u50 is an attracting fixed
point, while r50, u5p is a repelling fixed point. The flow
on the equator of the Poincare´ sphere, therefore, goes fro
the latter to the former, on both sides.

We observe that the above analysis is consistent with
simple physical observation that the sets of points with
gular coordinatesu50 and p are the only sets of point
whose angles do not get changed by the uniform stream
points with angles between 0 andp are translated to point
with smaller angleu, while all points with angles betwee
2p and 0 are translated to points with larger angleu. Thus,
at infinity, where the point vortex has no rotation, we w
only find fixed points atu50 andp, and the angles of al
points not initially on thex-axis must approach 0.

VIII. WEAKLY ENTRAINING VORTICES AND STRANGE
ATTRACTORS

In the previous sections, the blinking vortex was taken
be an ideal point vortex, and the fluid flow was are
preserving. In this section, however, we briefly consider
weakly-dissipative map:

zn115bzne
im/uznu21e, ~8.1!

where 0,b,1. While it is not our intention to study an
specific compressible flows with this dissipative map of
plane,~8.1! may be considered as a paradigm map akin to
map studied in Yuet al. @1990, 1991#. There the dynamics o
surface floaters is studied using a random two-dimensi
map which is not area-preserving, yet the full thre
dimensional velocity field for the fluid below the surface

FIG. 12. Illustration of the dynamics of the stable and unstable manifold
the principal fixed point ate50.39 on the sphereU21V21W251 induced
by the Poincare´ compactification presented in Sec. VII.
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incompressible. Furthermore, Yuet al. @1990# mention other
contexts in which one gets weakly dissipative maps. N
that in ~8.1!, one can vary the circulationm.

The dynamics of the dissipative map~8.1! differ both
qualitatively and quantitatively from those of the are
preserving map~2.5!. First, in addition to the hierarchies o
fixed points and periodic points that~8.1! possesses just a
~2.5! does, the map~8.1! has a circle of fixed points of radiu
be/(12b2) centered at the point (x,y)5[2e/(12b2),0].
Clearly, in the limit of b51, the map~8.1! reduces to an
area-preserving map of the type considered above. Moreo
in this limit, the circle of fixed points expands out to infinit

Second, the map~8.1! appears to exhibit strange attra
tors. See, for example, Figure 13. These attractors are
served numerically for a wide range of parameter values
b, m, ande. The main attractors we observed numerically
created atb51 in global bifurcations. The attractors appe
to be the closure of the union of the unstable manifolds
the hierarchy of fixed points, given by the condition for~8.1!
that is analogous to~3.2!, along with the fixed points them
selves. Furthermore, when the full three-dimensional ve
ity field is incompressible, one does not get an infinite tra
concentration on the strange attractor.

Finally, the map~8.1! is related to the Ikeda map from
nonlinear optics~see Hammel@1986# and Hammelet al.
@1985#!, which has also been shown numerically to exhi
strange attractors. The Ikeda map is given by

wn115Bwne
ike2 ia/uwnu211)1g. ~8.2!

We can almost attain~8.1! by settingk50, B5b, 2a5m,
andg5e. The only difference is the denominator of the a
gument of the exponential, which in the optics context c
not vanish. Hence, essential singularity atz50 in ~8.1! is not
present in the Ikeda map. A comparison with the deta
analysis of~8.2! performed in Hammel@1986# might shed
further light on the global geometry of the structures, such
the stable and unstable manifolds of the saddle fixed po
that are responsible for creating these attractors.

s of

FIG. 13. A strange attractor for the map~8.1! discussed in Sec. VIII, with
e50.8, m52.2, b50.8, and 100 000iterations of the initial condition
x050.0 andy050.1.
5, No. 4, 1995o¬AIP¬license¬or¬copyright;¬see¬http://chaos.aip.org/chaos/copyright.jsp
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In addition, Romeiraset al. @1990#, have demonstrated
that small random effects do not radically change the sh
of the Ikeda attractor. These random effects tend merel
make the boundary slightly fuzzy~although see Romeira
et al. @1990# for a full discussion of the multifractal proper
ties of the attractors!. Thus, one may expect similar resul
when small random noise is added to~8.1!.

IX. SUMMARY AND DISCUSSION

The model presented in this paper can be a useful too
understanding basic qualitative features pertaining to
transport of passive scalars in a number of fluid systems
an example, we mentioned in the Introduction the inte
vortical filaments that arise in turbulent flows. These line
structures are contained in the irregular field generated by
largest eddies that sweep past, as well as convect them.
second example let us mention the long-lived ocean vort
~e.g., the Gulf Stream rings formed by the pinch off of t
meanders of the Gulf Stream, Eversonet al. @1995#! which
effectively transport heat and salinity. Due to the Earth’s
tation, these vortices tend to move to the west, which imp
to them a net drift velocity. As a third and final example w
mention that in the opening and closing of the mitral valve
the heart, vortices are regularly cast off the valve leaflets
the oncoming periodic stream of blood~Peskin@1975#!.

These three examples, as well as other fluid syste
have in common the following constituents: a vortical m
tion, a large scale flow and some time-dependent pertu
tion. The model presented in this paper is a simple versio
this class of systems, in which the action of an ideal vorte
followed by the action of a uniform stream periodically. Th
picture that arises when these three ingredients are pu
gether should be similar~at least for some range of param
eters! to that of Fig. 10. That is, we expect a separatrix th
extends to infinity, carrying along a homoclinic tangle.

The trajectories of the particles that interact with t
tangle will be entrained for some time in the vortical motio
as shown in Fig. 10~a!. Assimilating the particles to any pas
sive scalar~namely temperature, concentration of a dy
etc.!, it is clear that the picture sketched above suffices
produce an enhanced diffusivity for the passive scalar.

In effect, let us imagine a blob of passive particles~in a
fluid at rest in infinity!, and a vortex approaching at a co
stant speed towards this blob. When the vortex is far aw
the particles are dispersed with their molecular diffusiv
However, those particles that are, at some time, in the ne
borhood of the homoclinic tangle of the system will be e
trained in the vortical motion, get carried along by the vort
for some residence time~which can be rather long as show
in Fig. 8!, and then be eventually shed away essentia
along the unstable manifold. For such a blob, the diffusiv
of the passive scalar will be enhanced by the presenc
vortical structures.

If we extend these ideas, the model also provide
framework for understanding enhanced diffusivity of pass
scalars mixed by high Reynolds number turbulence, whe
hierarchy of eddies of different scales coexist, the larger
dies convecting the smaller ones. The enhanced diffusivit
CHAOS, Vol. 5Downloaded¬28¬May¬2008¬to¬146.203.28.10.¬Redistribution¬subject¬to
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this case becomes the so-called eddy diffusivity. This
hancement of the transport properties by vortical structu
lies at the heart of turbulent mixing.

The simple model that we analyzed in this paper con
tutes the bare bones of the physical process just discuss
natural context by which to analyze these issues is tha
chaotic scattering. When the lengths and times are appro
ately normalized, we have shown that our blinking vorte
blinking uniform stream system depends only on one par
eter, namely the normalized strength of the uniform streame,
defined in~2.4!.

When e grows from zero to being positive, an unstab
fixed point is created in a bifurcation at infinity, as a reson
response to the ordere amplitude perturbation to the othe
wise undisturbed vortex field~see Sec. VII!. The fixed point
so created~called here the principal fixed point! and its as-
sociated homoclinic tangle are responsible for most of
observed chaotic scattering features. The principal fi
point is one of a hierarchy of fixed points which, given t
simplicity of the map, can be computed analytically@Eq.
~3.2!#. Many periodic points can also be computed anal
cally, and we determined implicit formulas for the location
period-2 orbits~Appendix B!. Some of these period-2 poin
participate in a hierarchy of a conservative period-doubl
inverse cascade, as was discussed in Sec. III. Ase increases
more KAM barriers disappear, and more of the vortex c
becomes available to those particles that, coming from
away, get entrained in the vortex. The first stages of
process by which the vortex core becomes globally cha
can be understood using Chirikov’s resonance overlap c
rion ~Sec. VI!. As e increases, the dynamics in the vort
core changes. This dynamics determines, to some exten
shape of the homoclinic tangle, which in turn prescribes
scattering properties of the system~Sec. V!.

In summary, we studied in detail how the shape of
tangle and the core dynamics determine the chaotic sca
ing properties~and eventually the transport properties! for
our system ase is increased from zero. Eventually, fo
e.1.2038 the principal fixed point disappears in a sadd
node bifurcation, and no further scattering is observed.

Since submission of this paper, the work of Weiss@1994#
has appeared. There, a map consisting of a kicked-vo
~represented by Gaussian streamfunctions! and a uniform
flow, very similar to~2.7!, is analyzed. Despite the similarit
of some of the results for the Gaussian and ideal point v
tices, however, there is an important difference: while
ideal vortex has a divergence atz50, the flow field gener-
ated by the Gaussian is smooth everywhere. While this
affect some aspects of the inner core dynamics, this does
seem to noticeably affect the main conclusions concern
the chaotic scattering properties. In this respect, the
works complement each other.
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APPENDIX A: VARYING THE CIRCULATION

It is also of interest to vary the strength of the circulati
in this idealized model. Toward this end we work with t
map

wn115wne
im/uwnu211. ~A1!

Here the velocity of the uniform stream has been scaled t
one. A simple rescaling of the dependent variablew trans-
forms this map~A1! into the original map~2.5!. Let w̃
[ w/Am. In terms of this new coordinate, the map~A1! be-
comes:

Amw̃n115Amw̃ne
i /uw̃nu211. ~A2!

Thus, dividing through byAm, we arrive at precisely the
map~2.5! with e 5 1/Am, and withzn replaced byw̃n .

APPENDIX B: HIERARCHY OF PERIOD-2 POINTS

The standard method to find period-2 points is ba
directly on the map~2.7!. For each positive integer, thi
method finds a hierarchy of period-2 points, and can in p
ciple be extended to find points for any integer peri
Period-2 points of the mapM given by ~2.7! satisfy
Z5M2Z, equivalently,M21Z5MZ:

SZ2
e

2De2 i /uZ2~e/2!u22
e

2
5SZ1

e

2Dei /uZ1~e/2!u21
e

2
.

Thus, taking moduli and lettingZ5j1 ih denote a period-2
point, we get:

j1~e/2!

h
5

sinS 1

~j1~e/2!!21h2D
11cosS 1

~j1~e/2!!21h2D . ~B1!

At this point, we have to divide the analysis in two cas
depending on whether the denominator of the previous e
tion is equal or different from zero.

1. Case I: cos(1/( j1e/2)21h2)Þ21

The two period-2 points are located at6j1 ih, i.e.,
symmetrically with respect to the imaginary axis. Therefo
equation~B1! must be satisfied for bothj1 ih and2j1 ih.
This is equivalent to simultaneously solving:

j1~e/2!

h
5tanS 1

2@~j1~e/2!!21h2#
2pkD , ~B2!

2j1~e/2!

h
5tanS 1

2@~2j1~e/2!!21h2#
2pmD , ~B3!
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where we have used double angle formulas, andk andm are
positive integers.

The trajectories executed during two iterations of t
map by these fixed points are the following. The fluid p
ticle initially at j1 ih is transported to the right a distanc
e/2 where it then embarks on a circular trajectory, makingk
complete revolutions around the origin and stopping whe
reaches2j2e/21 ih, and finally it is translated to the righ
by the uniform stream to the point2j1 ih, concluding one
iterate of the map. In the next iterate, the uniform stream fi
moves the fluid particle to the point2j1(e/2)1 ih, from
where it also embarks on a circular trajectory for~m1a
fraction! complete revolutions about the origin. The circul
part of the trajectory ends at the pointj2(e/2)1 ih, from
where the uniform stream returns it toj1 ih, its initial po-
sition before the first iterate. From the transcendental eq
tions ~B2! and ~B3!, one can numerically solve for the tw
unknownsj andh as a function ofe for each pair of values
of the parametersk andm.

2. Case II: cos(1/( j1e/2)21h2)521

Two period-2 points are located on the imaginary a
symmetrically about the origin at6 i (d/2). Therefore, from
Eq. ~B1!, we have that

4

e21d2
5p~2l11!

from whence:

d l56A 4

p~2l11!
2e2. ~B4!

Geometrically, these fixed points execute the following t
jectories: the fixed point starting ati (d/2) gets shifted to the
right an amounte/2, then it makesl1 1

2 turns around the
origin, landing at2e/22 i (d/2), from where it is finally
transported to the right a distance ofe/2 until it reaches the
point2 i (d/2), ending the first iterate of the map. During th
next iteration the particle visits2 i (d/2)1(e/2) and ~after
rotatingl1 1

2 times! 2 i (d/2)2(e/2) before finally returning
to its initial position ati (d/2).
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