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Abstract 

In a previous paper we discussed the spectral properties of the Earth's ozone layer, 
obtained using Empirical Orthogonal Function decomposition of the Total Ozone Map- 
ping Spectrometer (TOMS) database. Here we present other aspects of the analysis, 
including the EOF method adapted for incomplete datasets, analysis of spatial struc- 
ture and temporal variation of first several eigenfunctions, and an extended study of 
small-scale properties of ozone concentration fields. 

Geophysical datasets collected by satellite-based devices currently provide a wealth of in- 
formation which needs to be assimilated and interpreted. In this paper we analyze the global 
ozone concentration fields measured by Total Mapping Ozone Spectrometer [1]. The interest 
in atmospheric ozone is due to both its environmental role (ozone hole phenomenon [2, 3]), 
and the fact that it can be regarded as a passive tracer, thus providing an additional in- 
sight in the properties of atmospheric circulation. This is an extended version of a previous 
paper [4], where the principal attention was paid to the spectral properties of the ozone 
concentration fields. 

The TOMS device was installed on a satellite, Nimbus, which completed sixteen rotations 
in a 24-hour period, on a south-north synchronous orbit. Thus, every global field (see 
example in Fig. 1) consists of 14 separate records taken roughly 1.5 hours apart. Every 
field is represented on a 288×180 grid, so the resolution is order 100 km. The measurement 
method is based on the absorption by ozone of light reflected from the surface, so it fails in 
the polar night regions (a black circle around North Pole in Fig. 1). Occasional technical 
failures also lead to missing pixels or whole records, as also can be seen in Fig. 1. The 
TOMS database contains daily ozone fields for the period of 13 years, which amounts to 270 
Gigabytes of data. Due to computational requirements, we analyzed the subset consisting 
of 4 snapshots per month (approximately weekly). 

The Karhunen-Loeve (KL) procedure [5, 6, 7] is ideally suited for analyzing massive 
spatiotemporai datasets, due to its ability to extract persistent features. In particular, the 
snapshot method [8] considerably reduces the needed computation effort. However, the 
incompleteness of data required modification of the methodology. We discuss the numerical 
procedure in Section 1. Section 2 is devoted to the large-scale temporal and spatial properties 
of the ozone field. In Section 3 we report the results on statistical properties on the smaller 
scale. 
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1 K L  p r o c e d u r e  f o r  g a p p y  d a t a  

The Karhunen-Loeve procedure, applied to the array of data c(x, t), is aimed at finding the 
best sum-of-products representation 

c(~, 1) = ~ ¢~(t)¢~(~) (1) 
k 

The variational problem of minimizing the net error 

A = ~k(t)¢k(X ~ min (2) 

reduces to the linear eigenproblem 

/~¢k = ~¢k, ~k = (¢k, c)~ (3) 

where round brwckets denote averaging (inner product) in x: if, g)z = f fg  dx; a n d / ~  is 
the spatial correlation operator: 

K~Cx, y) = (c(x, t),c(y,t))t, [¢z¢ = (KxCx, y),OCy))v (4) 

The idea of the snapshot method [8] is that because of the symmetry between x and t in 
this formulation, one can instead solve the eigenproblem for ¢k 

~,~k = ~k~k, Ck = (~k, ~), (5) 

where/~t is the temporal correlation operator. For practical applications, where both x and 
t are discrete variables, advantage of choosing the appropriate alternative can be essential. 
Typically with image data (when t enumerates images, and x indexes pixels), the number 
of images can be much smaller than the number of pixels in each image, and consequently 
a large gain in performance can be achieved by solving the eigenproblem for t he / ( t  matrix, 
rather than for the much larger/(x. 

For discrete problems, the KL procedure produces the complete basis (¢k, ¢~), so that 
the net error (2) is zero. The total number of eigenfunctions required is the smaller of the 
number of snapshots and the number of pixels. Moreover, if the eigenfunctions are numbered 
in the order of decreasing energy, A02 < A~ < . . .  < A~ < . . . ,  then every sub-basis comprising 
the first n eigenfunctions is the best of all n-dimensional bases. 

Unfortunately, the problem is much more complicated, and the solution is much less 
degant, when the data is partially missing. Denote by D(x, t) the characteristic function 
(with values from {0,1}) describing the domain where the data is known. To generalize the 
optimization problem (2), we should consider integrating over the domain where the data is 
known: / ' A = D(x,t)(cCx, t ) -  ~-~¢k(t)¢k(x)) dxdt ~ min (6) 

k 

It can be easily seen that this problem has infinite number of solutions with A = 0. Indeed, 
if we fill in the gaps in data with arbitrary values and apply the classical KL procedure, 

544 

Downloaded 25 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



we will obtain the basis which represents the filled-in snapshots exactly everywhere, and 
in particular in regions with authentic data. This means that the KL procedure does not 
provide a preferable way to fill in the missing data points in the generic situation. 

The approach we choose instead is based on the fact that KL eigenfunctions can be 
actually found independently of each other. Namely, the pair (Co, ¢o) provides the best ap- 
proximation c(x, t) .~ ~b(t)¢(x), the pair (~1, ¢i) optimally approximates the reduced dataset 
cl(x , t )  = c(x, t )  - ¢0(t)¢0(x), etc. In this way, we seek the k-th eigenfunction for gappy 
data by solving 

with 
k -1  

c (x, t) = c(x, t) - E (8) 
0 

Variational differentiation of (7) over ~ and ¢ gives a pair of nonlinear equations 

¢(t) = f D(x' ,  t)c(x', t)¢(x') dx' (9) 
f D(x',t)¢(x~)2 dx ' 

¢(t) = f D(x,  t')c(x, t~)¢(t ~) dt' (10) 
f D(x,t')tk(t')2 dt ' 

Note that when all data is known, D(x , t )  = 1, and the denominators are constants (rather 
than functions of x or t), which reduces the task to solving the classical linear eigenvalue 
problem. Although the nonlinear problem (9,10) cannot be solved directly, it is well suited for 
solution by iterations (the next approximation being computed by substituting the previous 
one in the RHS). We cannot prove the convergence, but since the problem is in a sense close to 
the linear one, for which iterations do converge to the eigenveetor with the greatest real part 
of eigenvalue, we can expect the similar behavior in (9,10). Indeed, the process converged 
well. However the amount of computation needed to iterate (9,10) for every eigenfunction 
was still very demanding (several hours per eigenfunction, on the average, for about 600 
snapshots by 51840 pixels). 

The resulting basis is not necessarily orthogonal. However, on practice the angle between 
different eigenfunctions, 

( ¢ . , ¢ m )  
=  ¢cos  /1¢.12 i¢ 12 

did not exceed 1-3 °. Thus, in what follows we consider ¢ ,  as a good approximation to the 
"true" eigenfunctions. 

To evaluate the effect of this method, we compared the result with the naive technique of 
filling the missing data by time-average values and applying the classical KL procedure. The 
spectra of eigenvalues resulting from the two methods are very close, but there is essential 
difference in eigenfunctions in the polar regions. Fig. 2 shows the 6th eigenfunction for the 
southern hemisphere, obtained by both methods. The "naive" procedure creates a huge 
artifact in the polar night region, where the lack of data is most drastic. Beyond the polar 
circle, where gaps in the data are rare and random, the results agree well. 
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2 First eigenfunctions 

The ozone content in the Earth's stratosphere is maintained due to the balance between 
complicated photochemical processes of its generation and destruction. The photochemical 
lifetime of ozone can range from days to months [9], depending on latitude and altitude, 
and thus the ozone layer exhibits seasonal variations. It turns out that the first three 
eigenfunctions capture the entire seasonal variation, and the entire temporal regularity, while 
the time courses of other eigenfunctions have an appearance of random functions. 

The temporal course ~0(t) of the zeroth eigenfunction (Fig. 3) is almost constant in time 
and, consequently, ¢0 reflects the temporally averaged ozone concentration. The "Fourier 
coefficient" ~0(t) demonstrates weak annual variation of total ozone content (with distinct 
annual minima in northern winter and secondary minima in southern winter), as well as a 
weak secular trend of 2.5% per decade (average for the period 1980-92), more pronounced 
between 1980 and 1986. (For exhaustive investigation of trends of atmospheric ozone, based 
on TOMS data, see [10]) No other eigenfunction possesses manifest secular trend. 

The first and second eigenfunctions (Fig. 4) describe almost pure annual oscillation. 
The temporal coefficient q~l has extrema in Spring and Fall, while ¢2 is extreme in Winter 
and Summer. Especially interesting is the south-hemisphere part of ¢1, with its negative 
extremum over Antarctica and positive extremum over moderate latitudes. Taking into 
account that the corresponding temporal coefficient reaches its annual negative extremum in 
September-October, we conclude that ¢1 describes Antarctic ozone depletion in Fall, while 
sunlight generates ozone in mid-latitudes. In other words, ~1 is in a way related to the ozone 
hole phenomenon [11]. 

¢2 is probably related to two different mechanisms. In South Hemisphere, it is non- 
zero only over Antarctica, and positive in winter, corresponding perhaps to the late-Fall 
breakdown of Antarctic polar vortex, and consequent fast rise of ozone concentration. In 
Northern Hemisphere, Cx is positive in Summer in tropics, when and where ozone is generated 
by sunlight. The peculiar pattern of ¢2 over NH resembles generic mixing of a passive scalar 
blob (see, e.g. [12]), however it is not clear how significant this similarity is. 

The general structure of following several eigenfunctions reflects the fact that the spatial 
spectrum of a typical ozone concentration field is a decreasing function of wavenumber (see 
below). EEFs from 3 to 8, shown in Fig. 5, appear as large-scale structures around the poles, 
where variation is much greater than in the equatorial region. Neither of them reveals any 
specific physical mechanism, though some qualitative observations can be made. Thus the 
temporal variation of EEFs 6 and 7 (Fig. 6) shows sharp peaks of activity in December- 
January, more pronounced in some years than in others. Spatially, both functions are mostly 
located around the North Pole, with little variation in the SH. Temporal courses of EEFs 4 
and 8 suggest the presence of quasi-biennial oscillations, although the total observation time 
of 12 years is probably too short for a reliable spectral analysis. 

Finally, note that processes in the two hemispheres seem to be largely decoupled, as 
demonstrated by hemispherical asymmetry of EEFs 3, 5, 6, and 7. Since the atmospheric 
transport across the equator is indeed small, and the patterns of atmospheric circulation are 
different in South and North Hemispheres (in part, because of greater influence of orography 
in the NH), it is natural to perform the EOF analysis for the two hemispheres separately. 
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This will be presented elsewhere. 

3 S m a l l - s c a l e  e i g e n f u n c t i o n s  a n d  s p e c t r u m  

The spectrum of eigenvalues An, is very important because it shows for how much variance 
every eigenfunction is responsible [13, 4]. Indeed, the magnitude of projection of c(x, t) onto 
¢.(x) is 

En = f ( f  c(x,t)¢n(x) dx) 2 dt 
---- J" Cn(x) (j" Cn(x')K(x, x') dx ~) dx (11) 
= f ~.(X)AnCn(X) az 
---- An 

Hence eigenvalues are measures of average variance per eigenfunction, and the total variance 
is given by their sum total: 

n 

In Fig. 7 we display in doubly logarithmic form An versus index n. As is seen the variance 
spectrum falls, to good approximation, on two different power laws 

{n a~; n < 35, c~i = -0.85 4- .035 
An oc n~;  n > 50, (~o -1.56 4- .022 (13) 

The error bounds appearing in (13) are based only on the least squares fit to the data, and 
not on the methods used in arriving at the spectrum which appears in Fig. 7. 

It is possible to transform this spectrum to the traditional wavenumber spectrum [4]. 
The key observation here is that higher-order eigenfunctions (see samples in Fig. 5), i.e. 
those with smaller variance, consist of positive and negative patches of roughly the same 
length scale. This is natural, in view of the well-known fact that for processes possessing 
spatial homogeneity, empirical eigenfunctions are nothing else but sinusoids. Indeed, consider 
for simplicity a one-dimensional process f (x ,  t), such that  the spatial correlation function 
between points x and y depends only on the distance between them: 

(f(x,  t)f(y,  t)), = K(x - y) (14) 

Then Fourier transform (denoted by tilde) of the eigenproblem (5) reduces to the equation 

K(k)¢(k)  = A¢(k) (15) 

which is in the generic case solved by sinusoids ~(k) = 6(k - k0), A =/ ( (k0) .  
On the global scale, the ozone distribution is nonhomogeneous, owing to latitudinal de- 

pendencies of the ozone source/sink and atmospheric circulation, influence of the underlying 
surface, etc. However, on smaller scales we can expect local homogeneity, and the appearance 
of higher-order eigenfunction supports this notion. To quantitively verify that  small-scale 
eigenfunctions are characterized by a distinct length scale, and to determine it, we consider 
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the correlation length of each eigenfunction as the position of the first minimum of the spatial 
correlation function 

B~(r) = (¢n(x)¢~(y))lx_yl)=r 

where I x -  Yl stands for the distance between the two points on the sphere. In Fig. 9 a 
sample correlation function is presented for the eigenfunction ¢44, shown in Fig. 8. These 
functions B~ decay with oscillations, and possess a distinct first minimum corresponding to 
the average distance Ln between adjacent maxima and minima of Cn. This distance can be 
interpreted as half wavelength. 

Wavelength determined in this way can be related to the eigenfunction index by the 
following argument. Assume that the eigenfunctions are homogeneously distributed in the 
two-dimensional Fourier space. Then the number of those with wavenumber smaller than 
some k, is order 

N ~ k 2, whence k cc N 1/2. (16) 

Assuming, in addition, that the spectral density is decreasing with wavenumber increasing, 
we can interpret N above as being proportional to the eigenfunction index. Finally, the 
correlation length, being in the inverse relation with wavenumber, should satisfy 

L~ cx n -1/2 (17) 

The correlation length is plotted in Fig. 10 versus the eigenfunction index in log-log coordi- 
nates. It is clear from this figure that (17) provides an excellent fit to the data in the two 
asymptotic regimes. The region of the knee, transitory between the two spectral asymptotics, 
is the only anomaly and it appears as a plateau in the figure and corresponds to just one 
scale. 

27r/k. = L. ~ 4000 kin. (18) 

We refer the reader to ref. [4] for the discussion of the knee region. 
Now that  the relation (17) between eigenfunction index and its wavenumber is established, 

we can translate the power laws for ,kn, (13) to the wavenumber form. In keeping with 
customary practice we consider the variance per wavenumber Ec(k) = kF.c(k). It follows 
from (13) and (16) that 

{ k -z/3, k < k, 
E~(k) cx k_2, k > k. (19) 

The more precise exponents are entered for suggestive reasons. Surprisingly enough, neither 
value has been predicted by existing theories of passive scalar advection, which propose 
either k -s/3 (Obukhov and Corrsin [14, 15, 16]), or k -1 (Batchelor [17], see also Chertkov et 
02. [18]). Leaving the theoretical discussion for elsewhere, here we will present an additional 
empirical analysis in order to establish the exponent - 2  in (19) in a more solid manner. 

4 Conf irmat ion  of  the  k -~ s p e c t r u m  

The k -2 spectrum of a scalar field can be interpreted as an evidence that the scalar variance is 
dominated by (curvi)linear discontinuities. In fact, it is this reasoning that lead Saffman [19] 
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to propose the k -4 energy spectrum for the two-dimensional turbulence, by arguing that the 
vorticity field should develop jumps, and concluding that k -~ vorticity spectrum means k -4 
spectrum of kinetic energy. 

Fig. 11 shows the field of squared gradient of the concentration (for the arbitrarily picked 
snapshot of March 1, 1995). It is clearly seen that large gradient values are mostly concen- 
trated in nearly one-dimensional filaments. Consider the structure function of such a field, 
De(r) = ((c(x) - c(y))2)lx t-v" For the distances l < r < L, where l is the characteristic 
thickness of a jump, an~ ~ ~s the characteristic distance between jumps, the average dif- 
ference between two points is ((c(x) - c(y)) 2) = PJCa, where P is the probability to have 
a jump between the points x and y, and 5c is the typical amplitude of a jump. Since 
P o( r, the structure function, should be proportional to r, and correlation should behave as 
Be(r) = (c a) -De ( r ) / 2  ~., (ca) -O(r ) .  This also implies the power spectrum Ee(k) = O(k-2). 
The actual structure function is shown in Fig. 12. It is practically linear for distances between 
about 300 to 1500 km. 

The correlation function of a scalar field determines the correlation function of its gradi- 
ent [20] by 

Bu(r) = (9t(x)gt(y))lx,yl= r = -B~'(r) (20) 

B n n ( r )  = ( g n ( x ) g n ( y ) ) l x , y l =  r - B'e(r) (21) 
r 

where primes denote derivatives over r, and subscripts l and n refer to longitudinal and 
normal components of the gradient, that is, its projections onto the straight line joining the 
two points, and onto its normal, respectively. For the linear Be(r), this gives Bu = O, which 
is easily understandable, since the difference in concentration between two points can be 
written as £ c(y) - c(y) = 9tCs) ds (22) 

where s is the coordinate along the line joining the two points. That this difference grows 
on the average as r 1/2 requires the integrand be delta-correlated on the distances order r. 
In Fig. 13, Bu and B,~n are shown for a particular snapshot. Although Bu is non-zero, it is 
essentially smaller than Ban at small scales, which is a reasonable agreement, making the 
allowance for the amplification of errors in numerical differentiation of experimental data. 
Actually, it is easy to see from (21), (20) that Bu << Ban implies that Be(r) is linear in r. 

Thus, the scalar power spectrum Ec(k) = O(k -2) seems to pass several tests. We will 
attempt to provide a theoretical explanation and discuss the failure of available theories to 
provide such. 

5 Conc lus ions  

Global atmospheric ozone concentration fields from TOMS device were analyzed in terms 
of Karhunen-Loeve method (Empirical Orthogonal Functions). This analysis reveals char- 
acteristic spatio-temporal patterns, including the Antarctic ozone hole phenomenon. A new 
variant of the KL procedure was developed to deal with data containing gaps resulting from 
both measurement method limitations (polar nights), and occasional device malfunction. By 
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analyzing spatial structure of eigenfunetions, it is shown that the eigenvalue spectrum can 
be reliably related to the wavenumber spectrum. This wavenumber spectrum contains two 
power-law domains with a knee between them. An explanation is proposed for the locations 
and extent of the knee region. Neither of the exponents in the power-law domains is pre- 
dicted by available theories of passive scalar advection by 2D fluid flow. For the small-scale 
power-law domain, an additional empirical evidence is obtained in favor of the hypothesis 
that the corresponding k -~ asymptotic is due to the spatial distribution of ozone, typically 
consisting of regions with almost-constant concentration, separated by one-dimensionai near- 
discontinuities. 

The authors are grateful to P. K. Bhartia, B. W. Knight, V. Yakhot, and G. Falkovich for 
helpful conversations. This work was supported under a grant from NASA-Goddard (NAG 
5-2336). 
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Data of 10/22/80 

Figure 1: A typical snapshot of the global ozone field. Outlines of continents are shown. 

a b 

Figure 2: Southern-hemisphere topographic view of ~be, obtained by iterations (a) and by 
the naive method (b). 
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Figure 3: Eigenfunction 0, ¢o, and its time history. 
(See color Plate 3.) 
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Figure 4: Eigenfunetions 1 and 2, and their t ime histories. 
(See Color Plate 4.) 
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Figure 5: A selection of eigenfunctions. 
(See Color Plate 5.) 
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Figure 6: Time histories for eigenfunctions shown in Fig. 5 
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Figure 7: Log-log plot of the global eigenvalue spectrum. 
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Figure 8: Eigenfunction 44. 
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Figure 9: Spatial correlation function of the eigenfunction ¢44, shown in Fig, 8 
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Figure 10: Correlation length scale of eigenfunction Cn vs. its index n. 

Squared gradient of concentration as of 03/01/85 

Figure 11: Squared gradient of the ozone concentration field. 
(See Color Plate 6.) 
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Structure function for concentration (08/03/85) 
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Figure 12: A concentration structure function. 
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Correlation for gradient vector and components 
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Figure 13: Correlation functions for the gradient components. 
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