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Abstract. We consider the problem of estimating a small
stimulus-induced response to stimulation that is masked by
a fluctuating background when measurements of the back-
ground in the absence of stimulation are available, as is
common in optical imaging of the cortex and in many other
experimental situations. Two related methods based on the
Karhunen-Lòeve procedure are discussed. One seeks the
function, an indicator function, that is most parallel to the re-
sponse data and most orthogonal to the background data. The
second removes the subspace spanned by the background
from the response. Numerical investigations on simulated
optical imaging data show that the first method is generally
superior. Connections between the two methods and tech-
niques for assessing the quality of the result are discussed.

1 Introduction

In a number of applications, one encounters the challenge
of extracting a very small signal submerged in a domi-
nating background. This is the case that exists, for ex-
ample, for optical imaging of the mammalian visual cor-
tex (Blasdel and Salama 1986; Ts’o et al. 1990; Frostig et
al. 1990) in response to external visual stimulation. In this in-
stance, which will be used to illustrate the methods presented
in this paper, the signal amplitude is between 10−3 and 10−4

of the background “noise”. The extremely small changes
in cortical reflectance, elicited in response to the stimulus,
sit in a background that fluctuates due to respiration and
heart beat, autonomous neural activity (Arieli et al. 1996),
and other unwanted signals such as instrumental random
noise.

Under ordinary conditions extraction of a meaningful
signal from such noisy records might pose near-insurmoun-
table difficulties. While the task is quite formidable, the chal-
lenge is made less daunting by the fact that the nature and
timing of the stimulation are known a priori, as are some
of the sources of the noise. This separation of the data into
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classes lies at the heart of the procedures that we present be-
low. Examples of the application of this technique to optical
imaging are given in Sirovich et al. (1996) and Everson et
al. (1997 and in preparation).

2 Background

The data which we analyze are typically in the form of im-
ages and, although the procedures hold for data of more
general format, it is convenient to refer metaphorically to
the data as composed of images. Thus we denote the data
set by

f = f (t, x) (1)

wheret is the index or time-stamp, andf measures the ‘gray
level’ at ‘pixel’ location x of the image collected at timet.

An optimal organization of the image information is pro-
vided by the Karhunen-Lòeve (K-L) procedure (Karhunen
1946; Lòeve 1955; Stewart 1993; Schmidt 1907; Sirovich
and Everson 1992). Since this formalism is a key element
in our later discussion, we briefly outline the procedure. To
begin, we attempt to expand the data set (1) in the form

f (t, x) =
∑
n

an(t)σnψn(x) (2)

where both{an} and{ψn} form orthonormal sets. If (2) is
to hold under these orthonormality conditions it follows that

σnψn(x) =
∑
t

an(t)f (t, x) = (an, f )t (3)

where (f, g)t denotes the inner product with respect to the
temporal variable,t, and

σnan(t) =
∑

x

ψ(x)f (t, x) = (ψn, f )x (4)

where (f, g)x denotes the inner product with respect to the
spatial variable,x. If (4) is back-substituted into (3) we ob-
tain ∑

s

C(t, s)an(s) = λnan(t) (5)
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whereλn = σ2
n, and

C(t, s) =
∑

x

f (t, x)f (s, x) (6)

is proportional to the temporal correlation. Alternatively, if
(3) is substituted in (4) we obtain∑

y

K(x, y)ψn(y) = λnψn(x) (7)

where

K(x, y) =
∑
t

f (t, x)f (t, y) (8)

is proportional to the spatial covariance.
Both kernels are symmetric,C(t, s) = C(s, t) andK(x, y)

= K(y, x), from which it follows that the corresponding
eigenfunctions form complete orthonormal sets. Thus the
existence of the expansion (2) is established. Equations (3)
and (4) state that if one eigenset is known, the other is de-
termined by quadrature. From a practical point of view one
solves (5) or (7) depending on whether the number of im-
ages is greater than the number of pixels in each image.
When the number of snapshots is smaller the eigenvectors
are more conveniently determined via (5), and the technique
is known as themethod of snapshots(Sirovich 1987).

The eigenfunctionsψn(x) for the spatial domain are
known variously as the Karhunen-Loève eigenfunctions, em-
pirical eigenfunctions or empirical orthogonal functions (Lo-
renz 1956) and they may be identified with the principal
components of principal components analysis. It is conve-
nient to arrange discrete data as a matrixF, each of whose
rows is an image (Fnm = f (tn, xm)). In this form the K-L
decomposition may be recognized as a singular value de-
composition ofF:

F = AΣΨT (9)

where A is an orthogonal matrix whose columns{an(t)}
span the range ofF, Σ is the diagonal matrix whose entries
areσn andΨ is an orthogonal matrix whose columns are the
K-L eigenvectors{ψ(x)}. Thus (9) is (2) written in vector
notation.

The eigenvalues, which are non-negative, measure the
mean square projection of each eigenfunction onto the data

λn = σ2
n =

∑
t

(ψn, f )2
x =
∑

x

(an, f )2
t (10)

and the data may be approximated by projecting onto those
eigenfunctions (the ‘principal eigenfunctions’) which carry
significant power. In fact the K-L decomposition provides
the optimal basis, among all linear bases, for such approxi-
mation since the mean squared error,

‖f (t, x) −
N∑
n=1

a′n(t)σ′nψ
′
n(x)‖2

x,t (11)

is minimized for any choice ofN by the choicea′n = an,
σ′n = σn andψ′n(x) = ψn(x).

3 Indicator functions

The images which are of interest have an extremely low
signal-to-noise ratio. However, since they carry responses to
known stimuli, presented at known times, we can use this
information to extract the small signal.

In a wide set of circumstances the image data can be
naturally divided into two classes, which we will denote by
f (t, x) and f̂ (t̂, x). For example,f can represent the ensem-
ble of images collected in response to a specific stimulus,
while f̂ are a set of reference images, the ‘response’ images
in the absence of a stimulus – what we refer to as blanks, or
the class of all other stimuli. In what follows we taket to be
a discrete index, i.e., we considerf (t, x), t = 1, 2, . . . , N ;
and f̂ (t̂, x), t̂ = 1, 2, . . . ,M . Throughout this article we re-
fer to the data as images; however, it should be emphasized
that the two-dimensional nature of the images is not explic-
itly exploited andf (t, x) could be vectors, pixels, voxels or
higher-dimensional data.

The standard ‘differential imaging’ procedure (Blasdel
1992) for extracting the signal is to subtract the average
blank from the average response; namely

∆(x) = 〈f (t, x)〉 − 〈f̂ (t̂, x)〉

=
1
N

N∑
t=1

f (t, x) − 1
M

M∑
t̂=1

f̂ (t̂, x) (12)

In the limit of largeN andM , and noise that is uncorrelated
with the signal,∆(x) estimates the true signal, approaching
it as O(min(M,N )1/2). However, whenN and M are of
limited size, background contributions to the averages in
(12) may fail to cancel.

We next present two, somewhat related, methods for sig-
nal extraction. These will be compared in Sect. 4.

3.1 Method I

We seek an image, known as the indicator function (or indi-
cator image),φ(x) with which we attempt to satisfy the two
conditions:

(f (t, x), φ(x))x = 1, t = 1, . . . , N

(f̂ (t̂, x), φ(x))x = 0, t̂ = 1, . . . ,M (13)

Thus, in loose terms, the indicator function,φ, is aligned
with the ensemble carrying the signal,f , and orthogonal
to the complementary ensemble,f̂ . This construction bears
a kinship to the linear discriminants of Fisher, used for
deciding to which of two classes a particular vector be-
longs (Fisher 1936; Duda and Hart 1973). If we are success-
ful in finding a φ that satisfies (13) then (φ, f )x is a clear
indicator of whetherf belongs to the stimulated or to the
blank class.

In usual practice the number of image pixels,P =
dim[φ] = dim[f ] = dim[f̂ ], greatly exceeds the number of
images, i.e.,P > N + M . It would appear, therefore, that
the system is underdetermined. On the other hand it is not
clear that the right-hand side of (13) lies in the range of
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the left-hand side. The first possibility is confronted below,
while the second can be circumvented if instead we seek to
minimize the criterion function:

C (φ) =
N∑
t=1

((f, φ)x − 1)2 +
M∑
t̂=1

(f̂ , φ)2
x (14)

It is straightforward to computeδC /δφ, and setting it to
zero we obtain∑

y

(∑
t

f (t, x)f (t, y) +
∑
t̂

f̂ (t̂, x)f̂ (t̂, y)

)
φ(y)

=
∑
t

f (t, x) (15)

The operator of the left-hand side is the covariance of a total
ensemble of images, and the right-hand side is proportional
to the conditional average, averaged over only members of
the distinguished class. Thus, we might write (15) in the
form ∑

y

K(x, y)φ(y) = f̄ (x) = N 〈f〉 (16)

Clearly, the solution to (16) involves the inversion of
the operatorK, which requires special attention since the
eigenvalues ofK generally decay slowly to zero. In fact,
it is desirable to filter out pixel noise and contributions to
the indicator function that result from chance differences
between the stimulated and blank datasets (as opposed to
the stimulus-driven component ofφ, which is sought). To
this endφ is restricted to lie in the space spanned by the
first T eigenfunctions ofK(x, y); thus if

KT (x, y) =
T∑
n=1

σ2
nψn(x)ψn(y) (17)

the indicator function is given by the solution of∑
y

KT (x, y)φ(y) = N 〈f〉 (18)

The choice of the truncationT , which requires some care,
is addressed in Sect. 5.

The snapshot method reduces the problem by seeking a
solution,φ, of (15) in the space of images

φ =
N∑
t=1

u(t)f (t, x) +
M∑
t̂=1

v(t̂)f̂ (t̂, x) (19)

The variational form of (14) with respect tou(t) andv(t̂) is
satisfied if the following equation in terms of the temporal
correlations is true:[

C B
BT Ĉ

] [
u
v

]
=

[
1N
0M

]
(20)

where

Cnm = (f (n, x), f (m, x))x

Bpq = (f (p, x), f̂ (q, x))x

Ĉkl = (f̂ (k, x), f̂ (l, x))x (21)

3.2 Method II

Two features of the procedure presented in the previous sec-
tion deserve further consideration: (i) under experimental
conditions, considerable variation in the members off (t, x)
can be expected, even though the images are obtained under
like conditions; (ii) in general, the response to stimulation
may be multi-dimensional, so we might expect more than
one direction for which (13) holds. We therefore consider
the following variational problem for a (different) indicator
function,φ′(x):

extremize
∑
t

(f, φ′)2
x

subject to ‖φ′‖2
x = 1, and (f̂ , φ′)x = 0 for t̂ = 1, . . . ,M

(22)

To carry this out we introduce Lagrange multipliersγ
andµ(t̂), and the criterion function

C =
∑
t

(f, φ′)2
x − γ(φ′, φ′)x −

∑
t

µ(t)(f̂ , φ′)x (23)

On setting the variation ofC with respect toφ′ to zero we
obtain,∑

y

∑
t

(f (t, x), f (t, y))tφ
′(y) = γφ′(x) +

∑
t̂

µ(t̂)f̂ (t̂, x)
(24)

We solve as above by taking

φ′ =
N∑
t=1

α(t)f (t, x) +
M∑
t̂=1

β(t̂)f̂ (t̂, x) (25)

If this is substituted into (24) we obtain

N∑
k=1

Cnkαk +
M∑
l=1

Bnlβl = γαn (26)

µm + γβm = 0 (27)

Note that the second of these only serves to evaluateβm. The
system is completed by applying the side condition (f̂ , φ′)x =
0 to (25). This yields

M∑
l=1

Cnlβl +
N∑
k=1

αkBkn = 0 (28)

Therefore the coefficients are determined by[
C B
BT Ĉ

] [
α
β

]
= γ

[
α
0

]
(29)

or equivalently [
C − γ B

BT Ĉ

] [
α
β

]
= 0 (30)

The last relation shows that, in general, we obtainN real
non-negative eigenvalues,γn, n = 1, . . . , N . Then if we
write the corresponding eigenvectors as [αn,βn]T, it follows
that (αn,αm) = 0 for distinct eigenvaluesγm andγn.
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We may now relate the indicator functions of Methods
I and II. Without loss of generality we can take‖αn‖2 = 1.
Then it follows that[u, v]T of Method I is given by[

u
v

]
=

N∑
n=1

(αn, 1)
γn

[
αn
βn

]
(31)

The derivation of this relation assumes that the Method I
indicator function is not restricted to a truncated subspace.
Nonetheless, the results presented in Sect. 4 show that the
eigenvector of (30) corresponding to the largest eigenvalue
is similar to the Method I indicator function.

The nature of the indicator functions is illuminated by
noting that if the spaces spanned by the stimulated and blank
ensembles do not intersect (so thatBpq = (f (p, x), f̂ (q, x))x
= 0) theαn are eigenvectors ofC, the temporal correlation
matrix of the stimulated ensemble. The indicator functions
φ′ are therefore identified with the K-L eigenvectors of the
stimulated ensemble. WhenB is not zero theαn are eigen-
functions of the operator

Q = C − BĈ−1BT (32)

Writing Q in terms ofF and the singular value decomposi-

tion (9) of F̂ = ÂΣ̂Ψ̂
T
, obtains

Q = FFT − (F Ψ̂Σ̂ÂT)(ÂΣ̂
−2

ÂT)(ÂΣ̂Ψ̂
T

FT) (33)

= FFT − FΨ̂ Ψ̂
T
FT (34)

= (F − FP̂)(F − FP̂)T (35)

where P̂ = Ψ̂ Ψ̂
T

is an orthogonal projector onto the space
spanned by the blank ensemble.Q is thus recognized as
the temporal correlation matrix for the stimulated ensemble
from which the subspace of blanks has been removed. The
indicator functionsφ′ are therefore the K-L eigenfunctions
of this reduced ensemble. Here lies the essential difference
between the two methods: theφ′ are forced to be strictly
orthogonal to every element in the blank space, while the
demand of orthogonality ofφ to the blank space is only
satisfied in an average sense (cf. (14)).

Rather than remove the entire blank space from the stim-
ulated space it may be desirable to remove only part of it. We
can modify the definition ofφ′ so that it is orthogonal only
to T of the K-L eigenfunctionsψ̂n of the blank space; that
is, φ′ is the solution to the following variational problem:

extremize
N∑
n=1

(f, φ′)2
x

subject to ‖φ′(x)‖2 = 1 and (f, ψ̂n)x = 0, for n = 1, . . . , T
(36)

This endows the type II indicator image with a noise-cut-off
parameter somewhat similar to that introduced for type I.

4 Numerical examples

In order to illustrate the indicator functions and to inves-
tigate their efficacy we have studied their application to

real optical imaging data onto which a synthetic response
was added. The unstimulated or blank data were composed
of 400 optical images, recorded in the absence of visual
stimulation, from the striate cortex of macaque (for details
see O’Brien et al. 1995). The response to stimulation was
modeled by adding a functionν(t)p(x) to a further 400 im-
ages that were recorded interleaved with the blank data.
The spatial pattern (Fig. 1a) [in coordinatesx = (x, y),
−64 ≤ x < 64, −48 ≤ y < 48, and withk = (10, 20)]
was

p(x, y) ={
ReD
|D| with D(x, y) = (x + iy)eik·x x < 2y − 32

0 elsewhere
(37)

which is a rough caricature of ocular dominance columns
found in the primate visual cortex. The amplitudesν(t)
were chosen from pseudo-random numbers uniformly dis-
tributed between 0 and 1, so thatν(t)p(x) is O(1), which
is comparable with the amplitude of typical responses in
optical imaging data. Stimulated and blank images are in-
distinguishable to the naked eye (Fig. 1). The mean pixel
value, 1

P

∑P
x f̄ (x) = 1

P

∑P
x 〈f (t, x)〉, of the simulated and

blank data together was 1975. The root mean square fluctu-
ation about the mean image,〈 1

P

∑P
x (f (t, x)−f̄ (x))2〉1/2 was

37.35. Also shown in Fig. 1d is the subtraction image∆(x),
in which it is hard to discernp. Of course, in this example a
simple spatial Fourier filter, aligned with the pattern, would
do an excellent job of extracting,p. However, in real ap-
plications the sought spatial pattern is unknown, precluding
the design of a filter to extract it.

The spectrum of the eigenvalues,λn, from a K-L de-
composition of the combined stimulated and blank ensem-
bles is shown in Fig. 2. The first spatial eigenfunction,ψ1(x),
corresponding to the dominant eigenvalue lies close to the
mean image. Eigenfunctions up to the knee atn ≈ 150 de-
scribe fluctuations in the vegetative response of the cortex
and the addedp(x) of (37). Beyond the knee the eigen-
functions describe mainly pixel noise and display only weak
pixel correlations. Removal of pixel noise and computational
economies are afforded by projecting the data onto only the
earlier eigenfunctions and by performing subsequent calcu-
lations in this smaller subspace. The calculations presented
here were performed in the space spanned by the first 500
eigenfunctions.

The degree to which the stimulated and blank subspaces
intersect is quantified by

Tr PnP̂n = Tr P̂nPnP̂n = Tr (PnP̂n)(PnP̂n)T = |PnP̂n|2
(38)

wherePn and P̂n are projectors onto the principaln K-L
eigenfunctions of the stimulated and blank spaces respec-
tively. Here the operatorPnP̂nPn has eigenvectors in the
stimulatedn-dimensional subspace whose eigenvalues state
how much survives after such a vector is projected into the
unstimulated space and then back into the stimulated space.
The trace is the sum of these eigenvalues. If the subspaces
are identical TrPnP̂n = n, whereas if they do not intersect
Tr PnP̂n = 0. As shown in Fig. 3 the stimulated and blank
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a b

c d

Fig. 1. aThe pattern added to blank
images.b A typical blank image.c
A weighted sum used in the simu-
lation, with a added at maximum
weighting strength.d The differ-
ence image, (12), between the stim-
ulated and blank ensembles

Fig. 2. Spectrum of eigenvalues from a Karhunen-Loève decomposition of
the stimulated and blank data

subspaces differ considerably in the first 100 dimensions,
in addition to the one-dimensional difference that may be
expected from the presence ofp(x) in the stimulated data.
The effect of pixel noise is apparent forn ≥ 100. Two sets,
each of 400 samples of pixel noise, will have little in com-
mon, since in the whole picture there are 12 288 pixels, each
independently affected by pixel noise.

If the amplitude ofp were larger, its contribution to the
dataset would be approximately represented by a linear com-
bination of one or two eigenfunctions. In such circumstances
signal extraction is a simple matter; however, in this case,
as is typical, (p, ψn)x is not negligible for a range ofn.

Fig. 3. Overlap between the stimulated and blank subspaces

4.1 Method I

Figure 4 shows the angle (cosθ = (p, φ)x/‖p‖‖φ‖) between
the indicator functionφ and the patternp as the truncation
point T (18) is increased to a point where the empirical
eigenfunctions are dominated by pixel noise. AtT ≈ 45 the
indicator function most closely approximatesp; the angle of
39◦ corresponds to capturing cos2 39◦ = 61% of the power
of p. This indicator function (Fig. 5) shows the principal
features, including the dislocation, ofp, and we point out
thatφ(x) is close to zero in the regiony > 2x wherep = 0.

The initial empirical eigenfunctions of both the stimu-
lated and blank images span very similar spaces (Fig. 3)
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Fig. 4. Angle between the indicator function,φ, and the patternp as a
function of the truncation point,T

Fig. 5. Indicator function,φ(x), closest to the patternp, calculated with
truncationT = 44

and describe gross features of the data. They are practically
orthogonal top so that indicator functions constructed with
smallT fail to locatep. On the other hand, whenT is large
the indicator function describes not onlyp, but also dif-
ferences between the datasets due to random fluctuations,
and eventually pixel noise dominates the indicator function.
Methods for determining the bestT are the topic of Sect. 5.

4.2 Method II

Figure 6 shows the angle betweenp and the indicator func-
tion φ′ (36) as the number of blank-space eigenfunctions that

Fig. 6. Angle between the indicator function of Method II,φ′, and the
patternp as a function of the number of blank-space eigenfunctions that
are removed from the stimulated space

are removed is increased. After the first approximately 100
blank-space eigenfunctions have been removed only small
decreases in angle are accrued as additional eigenfunctions,
which describe mainly pixel noise, are subtracted. Figure 7
shows indicator functions corresponding to the removal of
90 and 400 eigenfunctions: there is little improvement in
the angle at the expense of increased pixellation. The entire
space spanned by the blanks does contain most ofp, so re-
moving sufficient blank eigenfunctions eventually degrades
the quality ofφ′.

Although φ′ in this case fails to locatep as accurately
as φ, when the amplitude ofp is larger or the blank and
stimulated subspaces are more similar, the Method II indi-
cator function can perform slightly better thanφ. On the
other hand, we have found that for real experimental data
the Method I indicator function performs better; as discussed
below, we suspect the reason to be that for real data the blank
space is partially contaminated with pattern.

4.3 Contaminated data

The simulated data considered above are relatively clean
in the sense thatp does not lie in the span of the princi-
pal blank-space K-L eigenfunctions. Denoting the orthog-
onal projector onto the space spanned by the firstn K-L
eigenfunctions of the stimulated and blank spaces byPn
and P̂n respectively, we have‖P100p‖/‖p‖ = 0.98 and
‖P̂100p‖/‖p‖ = 0.26. In many optical imaging experiments,
however, the blank space is partially contaminated withp.
To simulate this we add ˆν(t)p(x) to the blank images, where
〈ν̂(t)〉/〈ν(t)〉 = 0.2 so that the power carried by the pattern
in the ‘blank space’ is 0.04 of that in the ‘stimulated space’.
In this case‖P̂100p‖/‖p‖ = 0.48.

Figure 8 shows the angle betweenp and the two types of
indicator function for the contaminated data. Here Method II
throws out the baby with the bath-water because the pattern
is spanned by the blank space and is therefore removed in
the construction ofφ′. It is our experience with real exper-
imental data that Method. I indicator functions are superior
to those of Method II. In the remainder of this paper we
shall therefore concentrate on Method I.

5 Choosing the truncation

Construction of the indicator function formally involves in-
version of the covariance operatorK(x, y). As discussed in
Sect. 3.1, the indicator function is restricted to lie in the
space spanned by the firstT eigenfunctions ofK(x, y). The
choice of the truncationT , however, requires some care.
As Fig. 4 shows, ifT is too small eigenfunctions ofK
spanningp are not included in the solution, whereas ifT is
too large contributions from chance differences between the
stimulated and blank datasets dominate the solution.

In this section we discuss criteria for choosing the trun-
cation. It is helpful to have an expression for the indicator
functions as superpositions of K-L eigenfunctions. Substitu-
tion for KT andf in (18) yields
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Fig. 7. Method II indicator func-
tions, φ′, corresponding to the re-
moval of a 90 and b 400 blank-
space eigenfunctions

a b

∑
y

T∑
n=1

σ2
nψn(x)ψn(y)φ(y) =

N∑
t=1

T∑
k=1

ak(t)σkψk(x) (39)

where the sum ont extends over just the stimulated snap-
shots. Formation of the spatial inner product with both sides
of (39) obtains

σ2
n(ψm(y), φ(y))x =

∑
t

T∑
k=1

ak(t)σk
∑

x

ψk(x)ψm(x)w(t)

= σm(w, am)t (40)

where the sum ont now extends over both stimulated re-
sponses and blanks, and wherew(t) = 1 for a stimulated
snapshot andw(t) = 0 for a blank. Consequently

(φ(x), ψm(x))x =
1
σm

(w(t), am(t))t (41)

and the indicator function may be written as

φ(x) =
T∑
n=1

1
σn

(an, w)t ψn(x) (42)

Since, in general, (ψn, p)x is unknownT cannot be chosen
to explicitly minimize the angle betweenp andφ. Instead we
have to rely on the implicit assumption thatan(t) is corre-
lated with the presence or absence of a response to the stimu-
lus manifest inψn(x). As (42) shows, the indicator function
method constructsφ(x) exploiting spatio-temporal correla-
tions between the stimulus and the response. The ‘noise’ is
also spatio-temporally correlated, but in a different manner.
The method will fail if there are spatio-temporal correlations
in the noise that are correlated with the stimulus.

Equation (42) also makes clear the central role played
in this construction by the K-L expansion which associates
spatial eigenfunctions with modal coefficients. The indica-
tor function is a superposition of the eigenfunctions and the
weight given to each is directly proportional to the correla-
tion of the modal coefficient with the presence of the stim-
ulus.

At first glance the inversion ofK, whose eigenvalues de-
cay slowly to zero, would appear to be a problem that would
benefit from a gradual regularization, such as Tikhonov reg-
ularization [see, for example, Hansen (1992) and Tikhonov

Fig. 8. Angle between the patternp and the indicator functions of Method
I (triangles) and Method II (diamonds) for contaminated data

and Arsenin (1977)]. However, in practical applications divi-
sion by zero is not the chief concern. Rather, it is necessary
to exclude from the solution theψn(x) which describe cor-
relations due to chance fluctuations (not just pixel noise)
between the stimulated and blank datasets. A sharp trunca-
tion achieves this more effectively than a smooth filtering –
a fact which has been confirmed by numerical experiment.

5.1 Residuals

The criterion function or residual, as derived from (14) and
(18), may be simply expressed as

C (T ) = ‖w‖2 −
T∑
n=1

(an, w)2
t (43)

= N −
T∑
n=1

(
N∑
t=1

an(t)

)2

(44)

where the squared inner sum extends only over stimulated
snapshots. ClearlyC decreases as the truncation point,T ,
increases. If the pattern is represented by only one or two
K-L eigenfunctions,C (T ) may be expected to fall sharply
at the indices of these eigenfunctions. Figure 9 showsC (T )
for the data described in Sect. 4. The rapid drop which fin-
ishes atT ≈ 40 suggests that there is little advantage to
be gained in retaining eigenfunctions beyond this point, and
comparison with Fig. 4 shows thatT ≈ 40 is approximately
the optimal truncation.C (T ) decreases only very slowly as
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Fig. 9. Variation of residuals,C (T ), with truncation,T . Symbolsindicate
residuals for unshuffled problem. Mean variation of residuals for 10 000
shuffled datasets is given by thecontinuous line. Confidence limits for a
single shuffled data set: 0.1 (long dashes), 0.01 (short dashes) and 0.001
(dots)

T approaches 150, the point at which the K-L eigenfunctions
are dominated by pixel noise. Indicator functions constructed
with this many eigenfunctions are very well correlated with
the presence or absence of the stimulus, but the spatial struc-
ture is overwhelmingly dominated by pixel noise.

The degree to which the indicator function represents a
genuine difference between the stimulated and blank datasets
can be assessed by comparingC (T ) with residuals derived
from shuffled data.

To this end the stimulated and blank datasets are pooled,
shuffled and repartitioned into surrogate stimulated and blank
datasets, and residuals calculated for the surrogates. Inspec-
tion of (43) shows that the residual for the surrogate data
is easily calculated by forming the inner products (an, w̃),
wherew̃ ∈ RN+M is a vector with ones inN randomly cho-
sen positions and zeroes elsewhere. An ensemble of shuffled
residuals permits the estimation of the values below which
a given fraction of the residuals fall by chance. Though the
shuffled residuals are not (especially for small and largeT )
normally distributed, these confidence intervals may be es-
timated by repeated shuffling and explicit generation of the
distributions.

Figure 9 also shows the mean shuffled residuals˜C (T )
and the 0.1, 0.01 and 0.001 confidence contours for single
runs of shuffled data. WhenT ≥ 40 we can be confident
that the indicator function certainly represents a difference
between stimulated and blank data. The maximum difference
between the mean shuffled residual andC (T ) occurs atT =
38, only slightly smaller than the optimum truncation.

The contribution of theT th eigenfunction to the residual
is measured by

C (T − 1)− C (T ) = (aT , w)2 (45)

while its contribution to the indicator function is (aT , w)
·ψT (x)/σT . A reasonable choice of truncation point is,
therefore, theT for which (aT , w)2 becomes smaller than
〈(aT , w̃)2〉, where〈·〉 denotes the average over an ensemble
of shuffledw̃. As Fig. 10 shows, whenn < 45 (an, w)2 is
greater than might be expected from shuffled data, whereas
whenn > 45 the mean contribution from surrogate data is
as great as that from the real data, and there is little point in
retaining eigenfunctions pastT ≈ 45.

Fig. 10.The quantity (an(t), w(t)) plotted versusn (symbols) and the mean
value of (an(t), w(t)) for shuffled surrogate data

5.2 Reduced problems

The efficacy of a particular indicator may be assessed by
projecting it out of all the data (to form ‘reduced’ datasets)
and then seeking another indicator function to discriminate
between these reduced datasets. If the first indicator func-
tion was successful in capturing the difference between the
stimulated and blank datasets, no indicator function (for any
truncation) will identify a substantial difference between the
reduced stimulated and blank datasets. More precisely, de-
note byφ(x;T ) the indicator function formed with truncation
T , then the reduced datasets are

f ′(t, x) = f (t, x) − (φ(x;T ), f (x, t))x φ(x;T )/‖φ(x, T )‖2

f̂ ′(t̂, x) = f̂ (t̂; x) − (φ(x, T ), f̂ (x, t̂))x φ(x;T )/‖φ(x, T )‖2

(46)

The indicator functions for the reduced data at truncationsT ′
may be denotedφ′(x, T ′) and we find the maximum differ-
ence between the mean shuffled residuals and the unshuffled
residuals for the reduced problem:

ρ(T ) = max
T ′

{
C ′(T ′) − 〈 ˜C ′(T ′)〉

}
(47)

In practice it is usually unnecessary to recompute〈 ˜C ′(T ′)〉
as it is extremely well approximated by〈 ˜C (T ))〉 for the full
problem.ρ(T ) is shown in Fig. 11 together with residuals
for the reduced problems at differentT . WhenT is small
φ(x;T ) performs poorly, while whenT is larger than opti-
mum φ(x;T ) is dominated by chance fluctuations between
f and f̂ , so that in both casesφ′(x, T ′) is able to discrim-
inate between the reduced datasets. Close to the optimum,
a truncation which projectsφ(x;T ) out of f and f̂ has re-
moved the principal difference between them andφ′(x;T ′)
is unable to distinguish between them at any truncationT ′.
In Fig. 11 this criterion suggests a rather broad range for
the truncation. It does, however, span the optimumT and
shows when chance fluctuations begin to dominate.

5.3 Subspace support

A further estimate of the best truncation may be obtained
by monitoring the degree to which the indicator function
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a

b

Fig. 11. aMaximum differenceρ(T ) between shuffled and unshuffled resid-
uals.b Residual versus truncation,T ′, for reduced problems corresponding
to T = 20, 45 and 80. Thecontinuous lineis the mean residual over many
shufflings

Fig. 12. Proportion of indicator functionφ(x;T ) residing in stimulated
(symbols) and blank (continuous) subspaces

resides in each of the stimulated and blank spaces. Define,
as above,Pn and P̂n to be orthogonal projectors onto the
principal n K-L eigenfunctions of the stimulated and blank
subspaces respectively. Choosingn = 100 (Fig. 3), we then
monitor‖Pnφ(x;T )‖/‖φ(x;T )‖ and‖P̂nφ(x;T )‖/‖φ(x;T )‖
as shown in Fig. 12. Ideally‖Pnφ(x;T )‖/‖φ(x;T )‖ = 1 and
‖P̂nφ(x;T )‖/‖φ(x;T )‖ = 0, however, as the figure shows,
the proportion lying in the blank space is large until the
indicator function can distinguish between the two spaces.
The maximum difference occurs forT = 48 which is close
to the best truncation.

5.4 Summary

As noted above we are forced to rely on indirect methods to
determine the best truncation. Each of the criteria discussed
above is helpful in choosing the truncation, but as they are
not unequivocal, poor data will encourage the use of more
than one of them. In exploratory data analysis confidence
intervals estimated from repeated shufflings are frequently
helpful in determining whether there is any signal at all.

6 Extensions and variations

In certain situations the response to a particular stimulus
can be evoked but with opposite sign by stimulating with
a complementary stimulus. This is near the case for ocular
dominance columns in the visual cortex. Denoting the data
that are expected to contain the response with opposite sign
by f̃ (t, x), we may seek an indicator function such that

(f (t, x), φ(x))x = +1, t = 1, . . . , N

(f̃ (t̃, x), φ(x))x = −1, t̃ = 1, . . . , Ñ (48)

Again appealing to a variational principle, we obtain, as
might be expected from linearity,∑

y

K(x, y)φ(y) = 〈f〉 − 〈f̃〉 (49)

The considerations above apply in a straightforward manner
to this case. We remark that in this case there is no analogue
of the Method II indicator function, because the signal now
resides in bothf and f̃ . If, in addition, unstimulated mea-
surementsf̂ (t, x) are available, (48) may be augmented with

(f̂ (t̂, x), φ(x))x = 0, t̂ = 1, . . . ,M (50)

which leads to an increase in the quality of the resulting
indicator function.

It commonly occurs that there are several, sayG, groups
or classes of stimulation and we wish to find indicator func-
tions φ(g)(x), g = 1, . . . , G, which best represent the dis-
tinguished class. Clearly, if an additional class of blanks
is available one may findG indicator functions as described
above. Often the classes are, in some sense, on an equal foot-
ing, such as the responses to the same stimulus but presented
atG different orientations around the circle (for a discussion
of symmetries in the visual cortex see Sirovich et al. 1996).
In this instance one may use the undistinguished classes as
the blank set; that is, we can seekG functions each of which
minimizes the criterion function

C (g) =
∑
f∈Sg

((f, φ(g))x − 1)2 +
∑
f 6∈Sg

(f, φ(g))2
x (51)

whereSg is the set of responses to thegth stimulus.
It should be noted that there is an approximate linear

dependence among theG indicator functions found in this
manner. Variation of (51) leads to expressions forφ(g) in
terms of the covariance function of the dataset and the con-
ditional averages〈f〉g for each of the stimulus classes:
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∑
y

KT (x, y)φ(g)(y) = N 〈f〉g (52)

whereKT is the covariance composed of all the classes re-
stricted to the space spanned by the firstT K-L eigenfunc-
tions. The sum of theG indicator functions thus satisfies

∑
y

KT (x, y)
G∑
g=1

φ(g)(y) =
G∑
g=1

〈f (x)〉g = 〈f (x)〉 (53)

and so

G∑
g=1

φ(g)(y) =
T∑
n=1

σ−2
n ψn(y)

∑
x

ψn(x)〈f (x)〉 (54)

where theψn are the K-L eigenfunctions for the ensemble
comprised of all the snapshots. Writingf in terms of its K-L
expansion (2) yields

G∑
g=1

φ(g)(y) =
T∑
n=1

σ−2
n ψn(y)

∑
x

ψn(x) (55)

× 1
M

M∑
t=1

T∑
k=1

ak(t)σkψk(x)

=
T∑
n=1

σ−1
n 〈an〉ψn(y) (56)

Since thean(t) are orthonormal the elements of only one
of them (usually the first) can be of the same sign. Con-
sequently there is substantial cancellation in the sums〈an〉
so that〈an〉/σn ≈ 0. Thus the right-hand side of (56) is
approximately, though not exactly, zero and theG indica-
tor functions have an approximate linear dependence. This
may be understood by considering that each of theφ(g) dis-
criminates between the snapshots in it own class and the
snapshots in all other classes; consequently, any response
common to all classes will not be represented in anyφ(g).
In many instances this common mode rejection is distinctly
advantageous.

Symmetry considerations may be used to place additional
constraints on theG indicator functions (51); the particular
application to determining the cortical response to oriented
stimuli is discussed in Everson et al. (1997).

Finally, we mention that the quadratic powers appearing
in the criterion function (14) may be replaced by a more
general power, sayq:

C (φ) =
N∑
t=1

|(f, φ)x − 1|q +
M∑
t̂=1

|(f̂ , φ)x|q (57)

Larger values ofq emphasize thosef which deviate strongly
from the mean, while smaller values ofq might be ex-
pected to provide a degree of robustness to outliers. Numer-
ical schemes to findφ in this case are readily implemented;
however, we not have found that other values ofq provide
any substantial improvement over the least squares method
which is much more efficiently computed.

7 Summary

We have examined two methods for estimating a small re-
sponse due to stimulation which is masked by a fluctuating
background. Loosely, the first method seeks a indicator func-
tion that is most parallel to the stimulated data and most
orthogonal to the unstimulated data. The second method,
which consists of removing part of the subspace spanned by
the unstimulated data, is usually inferior to the first method
because the signal is contained, though at smaller amplitude,
by the blank subspace as well as the stimulated subspace.

Construction of the Method I indicator function relies on
restricting the function to be a superposition of the firstT
K-L eigenfunctions of the data. We have discussed several
criteria by which to choose the optimalT and, as remarked
above, poor data will encourage the use of more than one
of them.

Use of the Method I indicator function has permitted
the detection of cortical structures in poor data for which
traditional subtraction procedures were ineffective.
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