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Any realistic model of the neuronal pathway from the retina to the visual
cortex (V1) must account for the bursting behavior of neurons in the lateral
geniculate nucleus (LGN). A robust but minimal model, the integrate-
and-fire-or-burst (IFB) model, has recently been proposed for individual
LGN neurons. Based on this, we derive a dynamic population model
and study a population of such LGN cells. This population model, the
first simulation of its kind evolving in a two-dimensional phase space, is
used to study the behavior of bursting populations in response to diverse
stimulus conditions.
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1 Introduction

The lateral geniculate nucleus (LGN) is the main gateway to the visual
cortex. Unlike the receptive fields of cortical neurons, the receptive fields of
LGN relay cells have essentially the same center-surround structure as their
retinal afferents. This observation, coupled with the roughly equal numbers
of retinal ganglion cells and LGN cells, led to the view that the LGN is a pas-
sive relay that simply transmits a faithful replica of the input to the cortex.
Anatomical data, however, show that retinal afferents comprise just 10% to
20% of the input to the LGN (Sherman & Guillery, 1996). The majority of
LGN input originates in the cortex and parabrachial region of the brain-
stem, with some inhibitory contributions coming from local interneurons
and from cells of the thalamic reticular nucleus, neither of which makes
direct connections with higher levels in the visual pathway. This complex
connectivity implies that the LGN serves as more than a passive relay.

Further evidence of the LGN’s active role in visual processing is the dual
modality of its so-called relay cells. When sufficiently depolarized, an LGN
cell will fire in a tonic mode, characterized by a train of regularly spaced
spikes, with a nearly linear response over a range of time-dependent stimuli
that typify real-world input (0–10 Hz) (Mukherjee & Kaplan, 1998). In tonic
mode, relay cells are well modeled by classic integrate-and-fire dynamics
(Tuckwell, 1988). Because of the primarily linear input-output relationship
when an LGN neuron fires in tonic mode, this state imparts to the cortex a
relatively faithful rendition of the visual stimulus over the entire duration
in which it is coded by the retinal ganglion cells.

Relay cells may also respond in a distinctly different mode, the burst
mode, in which a cell fires bursts of 2 to 10 spikes, with an interspike in-
terval of about 4 ms or less (Guido, Lu, & Sherman, 1992), followed by a
refractory period on the order of 100 ms before the next burst. Burst behavior
is precipitated by a low-threshold calcium spike that occurs when the cell
is hyperpolarized sufficiently to deinactivate calcium T-channels (Jahnsen
& Llinas, 1982). The calcium spike is termed low threshold because it is ini-
tiated at much more negative membrane potentials than those that initiate
conventional spikes that are mediated by activated sodium and potassium
channels. After its deinactivation, the calcium channels may be activated by
current injection or depolarizing excitatory postsynaptic potentials. If the
cell is driven past threshold, it then fires a train of action potentials for about
20 to 50 ms until the T-channels inactivate, after which the burst cycle begins
anew, provided the cell is again hyperpolarized below the deinactivation
threshold. The burst mode is a nonlinear response since it is intermittent,
whether driven by continuous or steplike input. Further, because of the
all-or-none character of the low-threshold calcium spike, the dynamics of
burst response is essentially the same in both amplitude and the number of
spikes, regardless of whether the cell is driven just above its firing threshold
or well past it. Thus, in contrast to the transmission of visual input in tonic
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mode, the LGN in burst mode transmits a modified version of the visual
stimulus to the cortex. The time dependence of the input and differences in
driving strength appear to have little influence on the details of the burst
activity, which is shaped primarily by the intrinsic dynamics of the relay
neuron.

The functional significance of the LGN’s two distinct modes of operation
may be related to attentional demands. Relay cells of fully awake animals
tend to fire in tonic mode, which suggests that a faithful transmission of
retinal activity is the primary need of the alert animal. Rhythmic burst-
ing, on the other hand, is common for low arousal states (Livingstone &
Hubel, 1981) and during paroxsymal events such as epileptic seizures (Ste-
riade & Contreras, 1995). Arrhythmic bursting has been observed (Guido &
Weyand, 1995) in both lightly anaesthetized and fully awake cats subjected
to a visual stimulus. Taken together, these results indicate that the burst
mode is not solely associated with a sleep state or functional disorders, and
the variability of bursting patterns may signal distinct events to the cortex.

Another difference between the tonic and burst modes is their temporal
frequency response (Mukherjee & Kaplan, 1995). Relatively depolarized
cells, which fire in tonic mode when stimulated, act as low-pass filters. The
transfer function of bursting cells, on the other hand, has a low-frequency
cutoff. Because real-world stimuli typically contain low frequencies, the
implication is that the job of the tonic mode is to transmit more faithfully the
details of synaptic events responding to a specific visual stimulus. Sudden
changes in retinal input, however, have more power at high frequencies,
so the role of the burst mode may be to disable the geniculate relay and
tell the cortex that nothing is happening when bursting rhythmically, but to
signal sharp changes in the visual field with arrhythmic bursts. Furthermore,
there is evidence that the LGN switches between burst and tonic mode
depending on the attentional needs of higher levels of the visual pathway
(Sherman, 1996). This hypothesis provides a potential explanation for the
intricate feedback connections arriving from the cortex and the brainstem,
a connectivity pattern that is likely not accidental.

Clearly, any realistic model of the visual pathway must account for the
dual behavior of the LGN. In this work, we elaborate on the features of a re-
cent detailed model (Smith, Cox, Sherman, & Rinzel, 2000) of thalamic relay
cells. Our principal purpose is to demonstrate the utility of a particular ap-
proach, the population dynamics method, in the simulation of a population
of LGN cells that accurately mirrors the burst and tonic modes over a wide
range of stimulus conditions. Although it is well known that the discharge
of individual LGN neurons can be tightly correlated with the activity of
individual retinal ganglion cells (Troy & Robson, 1992), this aspect of the
physiology will not be considered, and the input to an LGN cell, at least
implicitly, will be modeled by Poisson arrivals. We consider the behavior
of an assembly of LGN cells in the same spirit in which Smith et al. (2000)
consider individual LGN neuron responses to external driving.
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The population method presented here illustrates a higher-dimensional
extension of previous models (Knight, 1972; Knight, Manin, & Sirovich,
1996; Knight, Omurtag, & Sirovich, 2000; Nykamp & Tranchina, 2000;
Omurtag, Knight, & Sirovich, 2000; Sirovich, Knight, & Omurtag, 2000)
used in the simulation of a population of integrate-and-fire cells. A model
with an additional underlying dimension is necessary to capture the depen-
dence of relay cells on the calcium channel conductance, or on any other
ion channels that may be operative. To illustrate the population method for
relay cells, we employ a two-dimensional state space model for individ-
ual LGN cells as suggested by Smith et al. (2000). In section 2, we review
this single-cell model and formulate the corresponding population equa-
tion. In section 3, we present simulations of a population driven by steady
and step input currents and compare the validity of these results against a
direct simulation of 104 neurons, each of which follows the integrate-and-
fire-or-burst dynamics. The appendix contains the details of the numerical
techniques used.

2 Integrate-and-Fire-or-Burst Population Equations

Smith et al. (2000) have presented a model of relay neurons in the LGN
of a cat. Their model extends the classic integrate-and-fire dynamics to a
two-dimensional system that involves a membrane voltage, V, and a gating
variable, h, which models a slow Ca2+ current. The slow current, usually
referred to as the T-channel current, allows bursts of impulses to be fired by
a cell which recovers from hyperpolarization (Jahnsen & Llinas, 1982). Tha-
lamic cells that are sufficiently depolarized (roughly V > −60 mV) do not
burst, but exhibit integrate-and-fire behavior when a depolarizing current is
applied. Both of these features are built into the integrate-and-fire-or-burst
(IFB) model that we use to model the activity of each neuron of a popula-
tion. After a brief review of the single-cell equations, we derive the kinetic
equation for a population of IFB cells.

2.1 Dynamical Equations for an IFB Neuron. The IFB model intro-
duced in Smith et al. (2000) includes a Hodgkin-Huxley type equation for
the voltage V,

C
dV
dt
= I − IL − IT. (2.1)

Here, I is an applied current, IL is a leakage current of the form

IL = gL(V − VL), (2.2)

and the current IT couples the dynamics of V to the calcium conductance
variable h,

IT = gTm∞h(V − VT), (2.3)
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where m∞(V) is an activation function for the Ca2+ channel, and VL and VT
are the reversal potentials for the leakage and calcium ions. For simplicity,
m∞ is represented as a Heaviside function:

m∞(V) = H(V − Vh) =
{

1 (V > Vh)

0 (V < Vh).
(2.4)

The dynamics of the Ca2+ current, which typically varies on long timescales
relative to the time course of a fast sodium spike (≤ 4 ms), is given in the
IFB model by

dh
dt
=


− h
τ−h

(V > Vh)

1− h
τ+h

(V < Vh),

(2.5)

so h always approaches either zero or one. The parameter Vh divides the
V axis into a hyperpolarizing region (V < Vh), where the calcium current
is deinactivated, and a nonhyperpolarizing region (V > Vh) in which the
calcium current is inactivated. The timescale τ−h sets the duration of a burst
event, and τ+h controls the inactivation rate. In accordance with the literature,
τ+h À τ−h (Smith et al., 2000).

The leakage reversal potential VL (≈ −65 mV) sets the rest voltage in the
absence of a stimulus, and for mammalian LGN cells in vitro, VL typically
lies below the potential Vh (≈ −60mV) at which burst behavior is observed
(Jahnsen & Llinas, 1982). The reversal potential VT (≈ 120 mV) for the
calcium ions is relatively large and causes rapid depolarization once the
T-channels are activated. On crossing the firing-threshold voltage, Vθ ≈
−35 mV, the cell fires and the membrane potential is reset to Vr > Vh,
where Vr ≈ −50 mV is typical. Consequently, the five voltage parameters
of the IFB model satisfy the relation

VL < Vh < Vr < Vθ < VT. (2.6)

The calcium variable h ranges between 0 and 1. For relatively large values
of h, a cell will burst due to the calcium channel coupling term and will
produce fast trajectories in V with rapid resets. For relatively low values of
h, given a large enough input current, tonic firing occurs. Figure 1 illustrates
these dynamic features of the IFB model. In this simulation, the neuron was
driven by Poisson-distributed synaptic events that increased the membrane
potential by ε = 1.5 mV with each occurrence. The driving rate was chosen
too small for the cell to fire in tonic mode. Instead, the cell drifted randomly
near the threshold Vh = −60 mV for Ca2+ deinactivation. Bursts occurred
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Figure 1: Simulation of a single IFB neuron driven by Poisson-distributed
synaptic events with fixed mean arrival rate σ 0 = I

Cε , with I = .08 µA
cm2 ,

ε = 1.5 mV, and all other parameters as in Table 1. (Top) Time series for V
(solid line) and h (dashed line). The horizontal line demarcates the threshold
V = Vθ . (Bottom) Phase plane orbit. The asterisk locates the initial condition
(V0, h0) = (−61, .01). In the time span shown, there were two burst events, the
first of containing three spikes and the other four spikes.

whenever the calcium channel deinactivated and enough clustered synaptic
events, in collaboration with the T-channel current, conspired to drive the
neuron past the firing threshold.

2.2 Population Dynamics. Our aim is to study the behavior of a popu-
lation of excitatory IFB neurons. A general approach to this problem, in the
limit of a continuous distribution of neurons, is presented in Knight et al.
(1996), Knight (2000), Nykamp and Tranchina (2000), and Omurtag, Knight,
et al. (2000). Based on the development in the cited references, the number
of neurons in a state v = (V, h) at time t is described by a probability den-
sity, ρ(V, h, t), whose dynamics respects conservation of probability. The
evolution equation for ρ thus takes the form of a conservation law,

∂ρ

∂t
= − ∂

∂v
· J. (2.7)
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The probability flux,

J = JS + Jσ ≡ (JV, Jh), (2.8)

is split into two parts. The first part is a streaming flux,

JS = F(v)ρ, (2.9)

due to the direction field of the single-neuron dynamical system, equa-
tions 2.1 through 2.5, where

F(v) =
(
−C−1 [IL + IT] ,

(1− h)
τ+h

H(Vh − V)− h
τ−h

H(V − Vh)

)
(2.10)

≡ (FV,Fh).

The applied current enters our analysis as a stochastic arrival term in equa-
tion 2.7, with an arrival rate σ(t), so that each arrival elevates the membrane
voltage by an increment ε. Written in terms of an excitation flux, this is ex-
pressed as

Jσ = êV σ(t)
∫ V

V−ε
ρ(Ṽ, h, t) dṼ , (2.11)

where êV is a unit vector pointing along the voltage direction in the (V, h)
phase space. This states that the probability current in the voltage direction,
across the voltage V, comes from all population members whose voltages
range below V by an amount not exceeding the jump voltage ε. The as-
sumptions underlying equation 2.11 are detailed in Omurtag, Knight, and
Sirovich (2000).

With the flux definitions 2.9 and 2.11, the population density ρ(V, h, t)
evolves according to

∂ρ

∂t
= − ∂

∂v
· [F(v)ρ]− σ(t) [ρ(V, h, t)− ρ(V − ε, h, t)] . (2.12)

Although a realistic synaptic arrival initiates a continuous conductance
change, this effect is well approximated by a jump of size ε in the mem-
brane potential. Thus, we see in equation 2.12 a loss term proportional to
ρ(V, h, t) and a gain term proportional to ρ(V − ε, h, t) due to synaptic
events. Hereafter, this is referred to as the finite-jump model. For purposes of
exposition, we restrict attention to excitatory current inputs.

We note that (like Smith et al., 2000) we are investigating the dynamics
of the thalamic cell alone, and not the integrated dynamics of the retinal
ganglion cell and LGN cell pair. This involves one simplifying departure
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from the actual physiological situation. For the input current I, Smith et al.
(2000) use a specified smooth function of time. Our population equation 2.12
goes a bit further by including the stochastic nature of synaptic arrivals,
which are treated as uncorrelated with LGN cell activity. This should be in
fair accord with the physiology for nonretinal input that is many-to-one but
is only an earliest approximation for the one-to-one retinal input.

2.3 Population Firing Rate. A response variable of interest is the av-
erage firing rate of individual neurons in the population, r(t). In general,
two input sources drive any cell of a particular population: synaptic events
arriving at a rate σ 0(t) that arise from the external neural input and synaptic
events resulting from feedback within the population. We will ignore feed-
back in the interest of simplicity and take the input to be purely of external
origin (see Omurtag, Knight, and Sirovich, 2000, for the more general treat-
ment). The population will be assumed homogeneous, so that each neuron
is driven equally at the input rate σ = σ 0(t). In the case of stochastic external
input, σ 0(t) is the ensemble mean arrival rate of external nerve impulses,

σ 0(t) = lim
1t↓0

〈
1
1t

∫ t+1t

t
dt
∞∑

n=1

δ(t− t0
n)

〉
, (2.13)

where δ(t) is the Dirac delta function, 〈·〉 denotes an ensemble average, and
{t0

n}∞n=1 is a set of spike arrival times.
The population firing rate, r(t), is determined by the rate at which cells

cross the threshold Vθ . This may be expressed as a function of the voltage-
direction flux at threshold integrated over all calcium channel activation
states h,

r(t) =
∫ 1

0
dh JV (Vθ , h, t

)
(2.14)

=
∫ 1

0
dh FV(Vθ , h)ρ(Vθ , h, t)+ σ 0(t)

∫ 1

0

∫ Vθ

Vθ−ε
dh dṼ ρ(Ṽ, h, t) .

2.4 Boundary Conditions. Boundary conditions on ρ are chosen to con-
serve total probability over the phase-space domain D,∫

D
ρ(v, t) dv = 1 . (2.15)

From equation 2.7 and an application of the divergence theorem, it follows
that the boundary flux integrates to zero,∮

∂D
n̂ · J dS = 0 , (2.16)
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where n̂ is a boundary normal vector. Our domain of interest is the box
D = {VL ≤ V ≤ Vθ , 0 ≤ h ≤ 1}, for which it is appropriate to choose the
no-flux boundary conditions

n̂ · J = 0 at V = VL , h = 0, 1 , (2.17)

so that the outward flux vanishes at each boundary face except at the thresh-
old boundary V = Vθ . To handle the voltage offset term, ρ(V−ε, h, t), in the
population equation 2.12, which requires evaluation of the density at points
outside the box, it is natural to choose ρ to vanish at all points outside D,
and we set

ρ(v, t) = 0 , V /∈ D . (2.18)

In addition, there is a reset condition that reintroduces the flux at V = Vθ

back into the domain at the reset V = Vr. This may be incorporated directly
into the population equation 2.7 by means of a delta function,

∂ρ

∂t
= − ∂

∂v
· J+ JV(Vθ , h, t) δ (V − Vr) . (2.19)

It is worth noting that the threshold flux is reset pointwise in h. This is consis-
tent with the slow temporal variation of the calcium channel, and we assume
that h does not change appreciably during the time between a cell firing a
spike and its subsequent fast relaxation to reset. Under these conditions,
with the total flux J suitably redefined to include the delta function source,
probability is conserved and equation 2.16 is satisfied. Equation 2.19, with
the boundary conditions 2.17 and 2.18, forms the complete mathematical
specification of the model for a single population.

2.5 Diffusion Approximation. An approximation that lends itself to
simpler analysis is the small-jump limit, ε → 0. Upon expanding the den-
sity, ρ, in the excitation flux equation 2.11 through second-order terms, one
obtains

ρ(Ṽ, h, t) = ρ(V, h, t)+ δV ∂ρ

∂V
(V, h, t)+O(δV2) (Ṽ = V + δV) (2.20)

eV · Jσ =
∫ 0

−ε

[
ρ(V, h, t)+ δV ∂ρ

∂V
(V, h, t)+ . . .

]
d (δV)

≈ ερ(V, h, t)− ε
2

2
∂ρ

∂V
(V, h, t). (2.21)

Substitution of equation 2.21 into 2.7 gives the diffusion approximation (the
Fokker-Planck equation),

∂ρ

∂t
= − ∂

∂v
· (F+ σε eV) ρ + σε

2

2
∂2ρ

∂V2 + JV (Vθ , h, t
)
δ (V − Vr) , (2.22)
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Table 1: Model Parameters.

τ−h 2× 10−2 sec
τ+h 10−1 sec
gL 3.5× 10−2 mS/cm2

gT 7× 10−2 mS/cm2

VT 120 mV
VL −65 mV
Vθ −35 mV
Vr −50 mV
Vh −60 mV
C 2 µF/cm2

where the approximate threshold flux is

JV (Vθ , h, t
) = [FV (Vθ , h

)+ σε]ρ
(
Vθ , h, t

)− σε2

2
∂ρ

∂V

(
Vθ , h, t

)
. (2.23)

The diffusion approximation is also useful for comparison with the finite-
jump model, and this will be done in section 3.2 (also see Sirovich et al.,
2000).

A further simplification of the diffusion approximation is valid in the
ε → 0 limit with σε finite. This special limit reduces equation 2.22 to a
pure advection equation for which exact solutions can be derived (see sec-
tion 3.1). Physically, this approximation is appropriate when input spike
rates are extremely large and the evoked postsynaptic potentials are small.
This would be the case, for example, when DC input overwhelms stochastic
fluctuations.

3 Results

In Table 1 we show the parameter values used in our simulations, following
Smith et al. (2000), whose choices are based on experimental data from
cat LGN cells. In particular, when the cell is in burst mode, the parameter
subspace near these values produces 2 to 10 spikes per burst.

We tested the population simulation with a variety of external inputs. In
all cases, we compared the accuracy against a direct numerical simulation
(DNS), in which equations 2.1 and 2.5 were numerically integrated for a
discrete network of 104 neurons, each driven by Poisson-distributed action
potentials involving the same voltage elevation, ε, with the same mean
arrival rate, σ 0, as in the population simulation.

As explained in the appendix, a population simulation is sensitive to fi-
nite grid effects that do not affect the DNS, and for this reason we treat the
DNS as the standard for comparison. As in Omurtag, Knight, and Sirovich
(2000), the two approaches converge for a sufficiently fine mesh. For in-
stance, as seen in Figure 6, the firing-rate response curve to a step input
current generated by the DNS overshoots the converged mean firing rate of
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the population simulation by about 20%. These simulations took roughly
the same amount of computation time, but we note that as the number of
neurons of the DNS increases, the population simulation becomes far more
computationally efficient. Since the fluctuations in the DNS about the true
solution scale inversely proportional to the square root of the number of
neurons, one would need four times as many neurons to reduce the error
by half. For an uncoupled population, the computation time would increase
by a factor of about 4. The increase in computation time for the DNS is even
greater when the neurons are coupled, whereas the population simulation
demands no extra computation time.

3.1 An Exactly Solvable Case. To compare the results of the population
simulation with an exactly solvable problem, we first considered the case
of constant driving, σ 0ε = I

C , in the diffusion approximation 2.22 of the

population equation. We further suppose that the diffusive term, σ
0ε2

2
∂2ρ

∂V2 , is
negligible, a justifiable simplification if the voltage increment ε arising from
a random spike input is small but σ 0ε finite. This case, which may also be
viewed as a population model for which the external driving is noiseless,
then reduces to the pure advection equation,

∂ρ

∂t
= −∂((F

V + I
C )ρ)

∂V
− ∂(F

hρ)

∂h
+ δ (V − Vr) JV(Vθ , h, t). (3.1)

Here F = (FV,Fh
)

is defined by equation 2.10. This equation can be solved
exactly by the method of characteristics.

In the absence of diffusive smearing of the density field by stochastic
effects, the population density ρ traces the single-neuron orbit defined by
equations 2.1 and 2.5. Upon dividing these equations, we obtain the char-
acteristic trace equation,

dV
dh
= FV + I

C

Fh
. (3.2)

Integrating equation 3.2 in the Ca2+-inactivated region (V > Vh) gives

V = 1
C

eγT (h−h0)

[
CV0

(
h
h0

)γL

+ τ−h (I + gL VL)(γT )
γL

×(0(−γL , γT h)− 0(−γL , γT h0))

+ CVT(γT h)γL eγT h0(0(1− γL , γT h)− 0(1− γL , γT h0))

]
(3.3)

where γT =
gTτ

−
h

C , γL =
gLτ
−
h

C ,0(a, z) = ∫∞z ta−1e−t dt is the incomplete gamma
function (Abramowitz & Stegun, 1972), h0 defines the starting point of a
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Figure 2: Characteristic traces (see equations 3.3 and 3.4) with an input current
I = .05 µA

cm2 , which leads to a burst of four spikes. The asterisk in the upper left
corner at (Veq, heq) = (−63.6, 1) indicates the fixed point to which the neuron
will eventually settle. The reset condition has been added manually.

particular characteristic curve, and V0 = V(h0). In the Ca2+-deinactivated
region, the dynamics of V and h are uncoupled, and we find

V = VL + I
gL
+
[

V0 − VL − I
gL

](
h− 1
h0 − 1

) gLτ
+
h

C

. (3.4)

Characteristic lines for the case of a calcium-driven burst event, using
the initial point (V0, h0) = (Vh, 1), are shown in Figure 2. Because the input
is nonstochastic and subthreshold, a neuron driven with this small current
(I = .05 µA

cm2 ) equilibrates at the fixed point at (Veq, heq) = (−63.6, 1) (marked
by the asterisk). Before reaching the equilibrium, a burst of four spikes,
preceded by a low-threshold calcium spike, was fired before the calcium
channels fully deinactivated. Stochastic input, explored in section 3.2, has
the effect of increasing the average firing rate of a population of IFB cells
due to additional depolarizing input from random, excitatory spike inputs.
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However, the number of spikes per burst event generally remains the same
because the IFB dynamics are dominated by the calcium current when V >

Vh and h > 0 (see Figure 5 for comparison).
If the input current is large, each neuron fires in a classic integrate-and-fire

(Omurtag, Knight, and Sirovich, 2000) tonic mode and the calcium channel
equilibrates to the inactivated state h = 0. In this case, the equilibrium
potential, Veq, of the average cell is given by setting dV

dt = 0 in equation 2.1,
with the result

Veq = I
gL
+ VL. (3.5)

The population is driven past threshold when I > Icrit = gL(Vθ − VL), in
which case each neuron of the population fires a periodic train of spikes
with a time-averaged firing rate that eventually equilibrates to a constant
value r̄,

r̄ = 1
T

∫ T

t−T
r(s) ds , (3.6)

with r(t) given by

r(t) =
∫ 1

0
dh FV(Vθ , h)ρ(Vθ , h, t) . (3.7)

This time-averaged firing rate r̄ is independent of the reference time, t, pro-
vided t is chosen large enough for each member of the population to have
equilibrated to its limit cycle. The interval T is chosen large enough to en-
compass many traversals of a given cell from its reset potential through
the threshold. To test the accuracy of the population simulation, we com-
pared time-averaged population firing rate, r̄, with the single-neuron firing
rate, f (I), which is obtained from equation 2.1 upon integrating through the
interval [Vr,Vθ ] :

f (I) =
[

C
gL

ln
Vr − VL − I/gL

Vθ − VL − I/gL

]−1

. (3.8)

In Figure 3 we plot the exact result (see equation 3.8) and simulation results,
and see that they are in excellent agreement.

3.2 Constant Stochastic Input. Irregularity in the arrival times in the ex-
ternal driving introduces stochasticity into the population evolution, which
is modeled either as diffusion (see equation 2.22) or finite jumps in the mem-
brane voltage (see equation 2.12). In either case, there is a finite chance that
a cell will be driven through the threshold, Vθ , even if the mean current
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Figure 3: Comparison of the exact analytical firing rate (see equation 3.8) (solid
line) for a neuron driven by a nonstochastic current with the population firing
rate obtained from simulation (asterisks). The population firing rate of the finite-
jump model with stochastic driving (ε = .5 mV) at an equivalent Poisson rate
is included for comparison (circles). Horizontal axis: Applied current I ( µA

cm2 ).
Vertical axis: Firing rate r(t) (Hz).

is not strong enough to push the average cell through threshold. Thus, we
expect to see higher firing rates compared to the case of purely determinis-
tic driving (see section 3.1). The population results are in accord with this
expectation, as shown in Figure 3.

A notable feature of stochastic input is a nonvanishing firing rate for
driving currents below the threshold. In Figure 3, this effect appears in the
equilibrium firing-rate curve as a bump peaked at I = .175 µA

cm2 for the param-
eter values stated in Table 1. This bump is a consequence of low-threshold
calcium spiking events. If the cell’s resting potential lies near the calcium
channel activation threshold, Veq ≈ Vh, which occurs if the input rate sat-
isfies σ 0 ≈ gL(Vh−VL)

Cε

(
σ 0 ≈ .0875 ms−1), then random walks in voltage,

in cooperation with activated calcium currents, occasionally drive neurons
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Figure 4: Comparison of the time-independent equilibrium distributions for a
population firing in tonic mode. The figure is plotted in the h = 0 plane. Solid
line: Finite-jump numerical solution. Dash-dot line: Diffusion approximation.
The numerically generated distribution, equation 2.22, and the analytical solu-
tion, equation 3.9, for the diffusion approximation are imperceptibly different.
Parameters: σ 0 = .5 ms−1, ε = 1.5 mV, 150 grid points in V and h (all other
parameters given by Table 1).

through the threshold Vθ . If the average resting membrane potential lies too
far above Vh but still well below the threshold, then the calcium currents
are rarely deinactivated for a sufficient duration to trigger the low-threshold
calcium spike.

With a fixed Poisson arrival rate, the population always achieves a time-
independent equilibrium whose characteristic features hinge on whether
the population is firing in tonic or burst mode. The tonic mode for any indi-
vidual LGN cell is typified by an uninterrupted sequence of independently
generated spikes, all occurring in the calcium-inactivated state (McCormick
& Feeser, 1990). The equilibrium profile for a tonic-spiking population thus
lies in a plane cutting through h = 0 in the two-dimensional phase space (see
Figure 4). By contrast, a cell in burst mode fires clusters of calcium-triggered
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Figure 5: Density plot of the numerically generated equilibrium solution for a
population of continuously bursting cells (log ρ is plotted in the V − h plane
with color scale indicated on the right). Parameters: 50 × 50 grid resolution,
ε = 1 mV, σ 0 = .025 ms−1, and all other parameters as in Table 1. The more
jagged features of the density distribution are numerical artifacts owing to the
modest resolution.

spikes followed by a refractory period on the order of 100 ms. The burst
cycle repeats provided that any depolarizing input is small enough to al-
low the cell to rehyperpolarize below the calcium deinactivation threshold
potential. Consequently, the density profile for a repetitively bursting pop-
ulation is spread throughout the phase space (see Figure 5).

3.2.1 Tonic Spiking. Since tonic spiking cells have inactivated calcium
currents (h = 0), we may obtain an analytical expression for the equilibrium
solution by solving the time-independent population equation in the ab-
sence of h-dependent dynamics. For ease of comparison with the numerical
results, we focus on the more analytically tractable diffusion approximation,
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equation 2.22, which has the equilibrium solution

ρeq(V) = 2CJθ
Iε

eβV− α
2 V2

∫ Vθ

V
e−βs+ α

2 s2
H (s− Vr) ds , (3.9)

where α = 2gL
Iε , β = 2

ε
(1 + gLVL

I ), and H (V − Vr) is the Heaviside function.
The equilibrium firing rate, Jθ = JV(Vθ , 0, t), is determined self-consistently
from the normalization condition, equation 2.15. The exact solution, equa-
tion 3.9, is virtually identical to the simulation result. It is also seen that the
diffusion approximation, when compared to the finite-jump case, has the
effect of smoothing the population distribution. The displacement of the
peak toward a lower voltage occurs because the diffusion approximation,
obtained by a truncated Taylor series of the density ρ, does not correctly cap-
ture the boundary layer near V = Vθ unless the input current is close to the
threshold for tonic spiking. This issue, and others related to the equilibrium
profile for a population of integrate-and-fire neurons, has been explored
more extensively in Sirovich et al. (2000).

3.2.2 Burst Firing. For the population to exhibit continuous bursting
under statistically steady input, the driving must be small enough so that the
average neuron spends most of its time sufficiently hyperpolarized below
(or near) the Ca2+ activation threshold at V = Vh. This situation is achieved
when the input spike rate satisfies σ 0 <

gL
Cε (Vh − VL).

The representative features of a population in burst mode are illustrated
in Figure 5, which shows a numerical simulation of the population equation,
2.19, driven by random, finite voltage jumps. Most of the neuron density
equilibrates near the fixed point (Veq, heq) = (−63.6, 1) of the single-neuron
system under the driving condition of the same average current, but steady
instead of in jumps. Thus, in Figure 5, one sees the majority of neurons
residing in the upper-leftmost portion of the phase space, with deinactivated
calcium currents (h = 1) but not quite enough input to push them forward
through the activation threshold very often. However, because the input
is noisy, some cells may randomly walk past Vh. This is reflected in the
equilibrium profile by the faint stripes in the right half of the phase space
(compare with the single-neuron orbit, driven by DC input, of Figure 2).
These characteristic stripes indicate bursting cells with four spikes per burst.
As Figure 5 shows, a significant number of cells, after going through a burst
cycle, also temporarily get stuck in a calcium-inactivated state (h = 0) near
the activation threshold Vh, again owing to stochastic drift.

3.3 Stepped Input Current. An experiment that probes the dynamical
behavior of a neuron population involves the stimulation of cells by a step
input from one contrast level to another (Mukherjee & Kaplan, 1995). Such
experiments give insight into the approach to equilibrium and the degree of
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Figure 6: Firing-rate comparison of the direct simulation (solid jagged curve)
with population dynamics simulations (dashed and dotted curves) at various
grid resolutions in h for a mean current step from I = .4 to I = 1.2 µA

cm2 . The step
increase began at t = 200 ms and terminated at t = 400 ms.

nonlinear response under various changes in contrast. For LGN neurons, it
is of particular interest to understand the connection between the stimulus,
or the absence of one, and the extent to which visual input is faithfully
tracked by relay cell activity and sent forth to the cortex. In this section, we
examine the firing activity one might observe in such an experiment for a
population of LGN cells. The input is stochastic, with a mean driving rate
σ 0 that steps from one constant value to another. The population dynamics
for this sort of input to integrate-and-fire cells operating in tonic mode has
been explored in Knight et. al (2000).

3.3.1 Current Step Between Two Calcium Inactivated States. Figure 6 com-
pares the results of a direct numerical simulation with the IFB population
model for a mean current step from I = .4 to I = 1.2 µA

cm2 (the mean input
rate steps from σ 0 = .2 ms−1 to σ 0 = .6 ms−1). In this case, the prestep
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equilibrium potential of the average neuron is Veq ≈ −53.6 mV, which lies
several millivolts above the threshold Vh at which the calcium current is
deinactivated. Once the current jumps to 1.2 µA

cm2 , the neurons fire in tonic
mode since the associated equilibrium Veq ≈ −30.7 mV is well above the
sodium spiking threshold, Vθ = −35 mV.

The response to a range of step input that does not promote burst firing
is primarily linear. Upon activation of the step at t = 200 ms and after a
delay of about 30 ms while the membrane potential moves toward threshold,
the firing rate r(t) mimics the input with a step response, aside from a
minor overshoot at the peak firing rate. The linearity of the input-output
relationship of the tonic mode was verified by a spectral analysis; the transfer
function was approximately constant, with only slight deviations at lower
frequencies.

Further simulations at various input levels revealed that although the
input-output relation was not exactly linear, it was far more so than when
the population fired in burst mode (as discussed below). The three curves
generated by the population simulation correspond to varying grid resolu-
tion in the calcium coordinate h. The population model and the DNS achieve
increasing agreement as the resolution of the population simulation is in-
creased. The reason that the equilibrated firing rate of the population model
lies slightly above the mean of the DNS is attributable to finite grid effects,
which are further discussed in the appendix.

3.3.2 Current Step from Calcium Deinactivated State to Calcium Inactivated
State. In Figure 7 is a comparison of the firing rates of the population
model at various resolutions with the DNS for a current step from I = .1 µA

cm2

to I = 1.33. These current values correspond to an equilibrium potential
before the step of Veq ≈ −62.1 mV (in the absence of Ca2+ dynamics),
so the calcium channels are initially deinactivated, and a poststep equilib-
rium potential of Veq = −27 mV, which is well above the firing threshold.
Compared to the previous case, one expects much higher firing rates at
the onset of the current step because a large fraction of cells are poised to
burst. This is indeed reflected in the sharper firing-rate peak at the current
jump, relative to the equilibrium firing rate to which the population relaxes
(compare with Figure 6). Consistent with physiological experiments and
analysis of temporal modulation transfer functions (Mukherjee & Kaplan,
1995), the bursting LGN cells in the IFB population nonlinearly modify
retinal input and pass to the visual cortex a significantly altered rendi-
tion of the stimulus. Numerical simulations at different input levels, all
corresponding to the burst mode, verified that the transfer function was
not constant in each case. This behavior of the population activity reflects
that of the single-neuron IFB model, which Smith et al. (2000) have ex-
plored quantitatively for sinusoidal input; we refer to their work for the
details.
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Figure 7: Firing-rate comparison of the direct simulation (solid jagged curve)
with the IFB population model (dashed and dotted curves) at various grid res-
olutions in V for a current step from I = .1 µA

cm2 to I = 1.33. The onset of the step
occurred at t = 200 ms.

It is interesting to note that the agreement between the DNS and the
population simulation is less favorable for coarse grid resolutions (50 grid-
points in both V and h) than in Figure 6. This is a consequence of finite grid
influences that cause some of the population to drift spuriously through
the calcium activation transition at Vh, an effect that is much more manifest
whenever the equilibrium potential of a typical neuron in the population
initially lies near Vh. This issue is elaborated on in the appendix.

Figure 8 demonstrates the increase in accuracy when the prestep volt-
age equilibrium is well removed from Vh. Here, the input was a current
step from I = 0 µA

cm2 to I = 1.33, corresponding to a prestep equilibrium
point (Veq, heq) = (VL, 1) with I = 0. The neurons initially equilibrate in the
upper-left corner of the phase space, far enough away from Vh to preclude
significant finite-grid-influenced drift through the Ca2+ activation thresh-
old. As in Figure 6, the agreement between the direct simulation and the
population result is excellent at a moderate resolution.
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Figure 8: Comparison of firing rates for a step current from I = 0 µA
cm2 to 1.33. Solid

curve: Direct simulation with ε = 1 mV. Dashed curve: Population dynamics
simulation on a 200× 100 grid.

4 Discussion

To capture the dynamical range of LGN cells that may fire in a burst or tonic
mode, a neuron model of two or more state variables is required, since at
least two fundamental timescales comprise the intrinsic dynamics of the
burst mode: the relatively long interval between bursts (around 100 ms)
and the short interspike interval (about 4 ms) of sodium action potentials
that ride the low-threshold calcium spike. Using the single-cell IFB model of
Smith et al. (2000) as a springboard, this work presents the first simulation
of a population equation with a two-dimensional phase space. Most previ-
ous studies using the population method focused on the single state-space
variable integrate-and-fire model (Knight, 1972; Knight et al., 1996, 2000;
Nykamp & Tranchina, 2000; Omurtag, Knight, and Sirovich, 2000; Sirovich
et al., 2000). Here, the computationally efficient simulations of an LGN pop-
ulation under a variety of stimulus conditions were seen to be in excellent
agreement with direct numerical simulations of an analogous discrete net-
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work (see Figures 3, 6, 7, and 8), as well as with special analytical solutions
(see Figures 3 and 4).

Although the role of the intrinsic variability of LGN cells in visual pro-
cessing is still unknown, a large body of experimental evidence indicates
that the dual response mode—burst or tonic—has a significant effect on the
faithfulness with which a retinal stimulus is transmitted to cortex. This fact
may be related to attentional demands. In alert animals, the burst mode, be-
ing a more nonlinear response, could serve the purpose of signaling sudden
changes in stimulus conditions (Guido & Weyand, 1995; Sherman, 1996). The
tonic mode, a nearly linear response mode, presumably takes over when the
cortex demands transmission of the details.

The population model of IFB neurons mirrors these qualitative features
of the dual response modes. For a population initially hyperpolarized be-
low Vh, where calcium channels are deinactivated, the response to a step
input was large and nonlinear (see Figures 7 and 8). When the population
was initialized with inactivated calcium currents at membrane potentials
above Vh, the firing-rate response tracked the stimulus much more faithfully,
indicating a primarily linear response (which a spectral analysis verifies ex-
plicitly). Further, an initially hyperpolarized IFB population driven by a
large current (I > 1.05 µA

cm2 for the parameters of Table 1) will fire a burst
of calcium-activated spikes and then settle into a tonic firing mode. This
is consistent with the experiment of Guido and Weyand (1995), in which
relay cells of an awake cat fired in burst mode at stimulus onset during the
early fixation phase and then switched to a tonic firing pattern thereafter.
The IFB model, being of low dimension, thus shows great promise as an
efficient means of simulating realistic LGN activity in models of the visual
pathway.

Previous simulations of the early stages of visual processing (retina→
LGN → V1) typically did not incorporate LGN dynamics (however, see
Tiesinga & José, 2000). Typically, the LGN input used is a convolved version
of the retinal stimulus, which is then relayed to the cortex (McLaughlin,
Shapley, Shelley, & Wielaard, 2000; Nykamp & Tranchina, 2000; Omurtag,
Kaplan, Knight, & Sirovich, 2000; Somers, Nelson, & Sur, 1995). In such
simulations, no account is made of the intrinsic variability of the LGN cells
or the effects of feedback from the cortex or other areas. Because the con-
volution of retinal input with a filter is a linear operation, most models
effectively simulate LGN cells in their tonic mode. Yet the burst response
mode of relay cells is certainly an important feature of LGN cells whatever
the arousal level of the animal in question. Although this may be of less
concern in feedforward models used to study orientation tuning in V1, for
instance, it is a necessary consideration of any model of cortical activity
when stimulus conditions promote strong hyperpolarization for significant
durations, which may arise realistically from variable levels of alertness, or
for simulations in which the stimulus is weak.
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A dynamically faithful model of relay cell activity, dictated by experi-
ment, is likely needed to assess the role of the massive feedback connections
on the cortico-thalamic pathway. There is some evidence that feedback from
a layer 6 neuron in V1 to the LGN may play a role in orientation tuning by
synchronizing the spiking of relay cells within its receptive field (Sillito,
Jones, Gerstein, & West, 1994). This suggests the possibility that cortical
cells provide very specific afferent connections to reinforce the activity of
the LGN neurons that excited them in the first place. Anatomical support
for this has been provided by the experiments of Murphy, Duckett, and Sil-
lito (1999), who observed that the corticofugal axons, though sparse, exhibit
localized clustering of their boutons into elongated anatomical “hot spots”
that synapse upon a relatively large number of target cells in the LGN and
reticular nucleus. They also demonstrated a high correlation between the
major axis of the elongated array of boutons and the orientation preference
of the cortical cells from which they originated.

A plausible conjecture is that the cortico-thalamic feedback serves the
purpose of enhancing the response of salient features such as edge orienta-
tions in the retinal input. If so, then a more dynamically realistic LGN model
than those used to date is called for. In any event, the relative importance of
feedback to the LGN, as opposed to intracortical connectivity and feedfor-
ward convergence, say, in the tuning of cortical cells to various modalities
such as orientation and spatial frequency, is an important issue.

Future work with the population method is underway to simulate a sim-
plified version of the thalamocortical loop, with realistic dynamical models
for the LGN, layers 4 and 6 of the primary visual cortex, and the inhibitory
interneurons of the thalamic reticular nucleus. The aim will be to study the
functional nature of the circuitry that connects the various levels of the early
visual pathway and investigate in particular the role that feedback plays in
visual pattern analysis.

Appendix: Numerical Methods

A.1 Direct Simulation. The state variable v = (V, h) for each cell in the
network is governed by the ordinary differential equation (ODE),

dv
dt
= F(v)+ êVε

∑
k

δ(t− tk) , (A.1)

where êV is the unit vector in the V direction and F(v) is defined by equa-
tion 2.10.

The solution that corresponds to the streaming motion alone, dv/dt =
F(v) ≡ (FV(v, h),Fh(v, h)), is formally denoted by the time evolution opera-
tor eQ(1)(t):

v(t) = eQ(1)(t)v(0). (A.2)
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The solution that corresponds to the synaptic input alone similarly can be
written as

v(t) = eQ(2)(t)v(0) . (A.3)

Equation A.3 has a simple, explicit form for the case of fixed finite jumps:

eQ(2)(t)v(0) = v(0)+εn(t) . (A.4)

Here, n(t) is the number of impulses that have arrived during time t. It
is an integer chosen randomly from the nth Poisson distribution, Pn(t) =
(σ t)ne−σ t/n!, with mean arrival rate σ .

We are interested in solutions of the form

v(t) = e(Q
(1)(t)+Q(2)(t))v(0) . (A.5)

According to the Baker-Campbell-Hausdorff lemma (Sakurai, 1994), a
second-order accurate splitting of the exponential operator, equation A.5, is

v(t+1t) =eQ(1)(1t/2)eQ(2)(1t)eQ(1)(1t/2)v(t)+O(1t3) . (A.6)

We use a second-order Runge-Kutta method for the streaming operator
eQ(1)

. Thus, the above operator splitting method provides an efficient second-
order accurate numerical scheme for integrating equation A.1. However, the
streaming direction field of the IFB neuron contains discontinuous changes
in the voltage variable V due to the Heaviside calcium-channel activation
function, equation 2.4, and the pointwise (in h) reset condition. We now
describe how we handle these discontinuities numerically with the same
second-order accuracy.

Suppose the discontinuity occurs when v = vd. After a time step1t, if vd
is found to lie between v(t) and v(t+1t), then the integration is performed
from the current state up to the discontinuity. Let the state at time t be
denoted (v, h). Define v = 1

2 (vd + v), and let 1t denote the time it takes to
move from the present state (v, h) to the state (v, h), which lies between the
present state and the point where the trajectory crosses the discontinuity,
(vd, h∗). The time to reach the discontinuity is1t∗. By Taylor expanding the
direction field at (v, h) we find

1t = v− v
FV(v, h)

+O(1t2) . (A.7)

We remark that FV(v, h) = 0 almost never occurs in the phase plane for
the cases of interest. The solution for the calcium channel ODE, equation
2.5, is then written

h = eQ(2)
h (1t)h = eQ(2)

h (
1
2 (vd−v)/FV(v,h))h+O(1t2) . (A.8)
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Next, after the direction field is Taylor expanded about (v, h), one can show
that

vd = v+ FV(v, h)1t∗ +O(1t3) , (A.9)

whence

1t∗ = vd − v

FV
(

1
2 (vd + v), eQ(2)

h (
1
2 (vd−v)/FV(v,h))h

) +O(1t3) . (A.10)

Consequently, the point where the trajectory crosses the discontinuity is
found to be

(vd, h∗) = (vd, eQ(2)
h (1t∗)h+O(1t3)). (A.11)

A.2 Population Simulation. Equation 2.7 is linear in ρ. However, due
to the boundary conditions in the V-direction (population exiting the phase
space at threshold resurfaces in the middle of the grid) and the tendency
of the population to pile up at h = 0 and h = 1, it is necessary to use rela-
tively sophisticated methods to integrate the equations. In particular, if we
simply discretize the grid and expand the derivative terms to second order,
oscillations due to the discretization become amplified when the popula-
tion piles up at the h boundaries and population flux is reintroduced into
the grid by the reset boundary condition. The oscillations then cause the
population density to take on negative values in regions of the phase space.
For this reason, we employed a second-order total-variation-diminishing
(TVD) scheme.

The undesirable oscillations in finite difference-based schemes used to
evolve advection equations may be overcome by the TVD algorithm (Hirsch,
1992). The scheme that we use for the advective term in the population
equation 2.12 is a second-order upwind method, for which we describe
here the one-dimensional version. The evolution of the conserved variable,
ρ, is governed by

dρi

dt
= − δ

−

1x

[
f ∗ (R)
i+ 1

2
+ 1

2
ψ+

i− 1
2
( fi − f ∗ (R)

i− 1
2
)+ 1

2
ψ−

i+ 3
2
( fi+1 − f ∗ (R)

i+ 3
2
)

]
, (A.12)

where an i subscript indicates the ith grid zone, fi = (Fρ)i is a numerical
approximation of the streaming flux (where F is a component of the direction
field), and the difference operator δ−[ui] = ui − ui−1. The parameters ψ+
and ψ− are flux limiters that are dynamically adjusted to control spurious
oscillations arising from large, streaming flux gradients, which in our case
occur at lines of discontinuity (V = Vr and V = Vh) and along lines at which
the population tends to pile up (h = 0 and h = 1). The flux limiter used was
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Roe’s Superbee limiter, which is defined by

ψ+
i− 1

2
= ψ

 fi+1 − f ∗ (R)
i+ 1

2

fi − f ∗ (R)
i− 1

2

 , (A.13)

ψ−
i+ 3

2
= ψ

 fi − f ∗ (R)
i+ 1

2

fi+1 − f ∗ (R)
i+ 3

2

 , (A.14)

ψ[r] = max[0,min(2r, 1),min(r, 2)], (A.15)

where the first-order Roe flux is defined as

f ∗ (R)
i+ 1

2
= 1

2
( fi + fi+1)− 1

2

∣∣∣ai+ 1
2

∣∣∣ (ρi+1 − ρi) (A.16)

ai+ 1
2
= 1

2
(Fi + Fi+1) . (A.17)

This method eliminates undesirable oscillations due to discretization and
reduces negative densities to values on the order of the numerical round-off
error. We found one undesirable feature with this method. If the direction
field points in opposite directions between grid points n and n + 1, the
populations on either side diverge, one tending to∞ and the other to −∞.
To cure this problem, we set the Roe flux, equation A.16, to zero at the
grid boundary between grid points n and n + 1. With this modification,
the method works extremely well for the advective terms in equations 2.12
and 2.22.

The other terms of the population equation, corresponding to the stochas-
tic input, were also discretized to second order. For the finite-jump model,
equation 2.12, the source term σ(t)ρ(V − ε h, t) was discretized by linear
interpolation. The diffusion term in the diffusion approximation, equa-
tion 2.22, was discretized by a second-order central difference.

A.3 Discrepancies Between the Direct Simulation and the Population
Simulation. We commented in section 3.3 that the accuracy of the popula-
tion simulation with a step input current is sensitive to the prestep voltage
equilibrium of the neuron. In Figure 7, for example, we noted that a fine
resolution (300 grid points in V) was necessary to achieve reasonable agree-
ment in the firing rates of the direct simulation and the TVD simulation of
the population equation, 2.12. For other cases in which the prejump mem-
brane potential equilibrium was well away from Vh, we generally found
that the population simulation with roughly 100 grid points in each direc-
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tion converged to a direct simulation of sufficiently many neurons. We now
comment on why this is so.

In cases where the prejump state of the average neuron is far away from
Vh, the main source of numerical error arose from the resolution in the
recovery variable h. Since all the neurons equilibrate at h = 0 before the
current step, the TVD algorithm imposes large dissipation at the bottom
boundary of the phase space in order to avoid grid-scale oscillations in
the density ρ. As the grid becomes finer in the h-direction, corresponding to
diminished flux limiting and less numerical dissipation, the predicted firing
rates of the population model converge to that of the direct simulation (see
Figure 6). Population model firing rates err slightly on the high side owing
to the finite accuracy, as some neurons achieve their equilibrium at a value of
h slightly larger than zero. These neurons feel a slightly larger depolarizing
input, due to a nonvanishing T-channel current, and thus achieve the firing-
rate threshold at the onset of the current step faster than their counterparts,
which lie initially at h = 0.

When Veq ≈ Vh before the current step, the TVD simulations are more
sensitive to the resolution in the voltage variable. As seen in Figure 7, with
a coarse resolution of 50 grid points in V, the firing rate of the population
simulation is off by approximately 56% at peak firing. As the resolution is
increased to 300 grid points in V, the maximal error drops to about 8%.
These observations are attributable to the spurious drift of neurons through
Vh owing to finite grid effects, something from which the direct simulation
does not suffer. We also observed that the calculated firing rates were rel-
atively insensitive to the resolution in h, which here was chosen to be 50
grid points.

Comparison of the equilibrium profiles in Figure 9 gives a better un-
derstanding of the firing-rate discrepancies between the direct simulation
and the population dynamics simulation shown in Figure 7. In the direct
simulation, stochastic voltage jumps across Vh cause some neurons to equi-
librate at h = 0 and some at h = 1, as reflected in the top panel of Figure 9.
Similar peaks in the density arise in the population simulation. However,
as the lower panel of Figure 9 shows, many more neurons lie near h = 0
relative to the direct simulation. Consequently, more neurons are poised to
run through a burst cycle at the onset of the step current in the direct simu-
lation, which is why the peak firing rate associated with the bursting event
is greater than that calculated in the population model. This error decreases
as the V−direction mesh of the population code is made finer. Increases in
resolution beyond 50 grid points in the h-direction did not alter the results
significantly. To deal effectively with these finite grid issues, one option is to
employ a variable phase-space mesh that has finer resolution near points of
discontinuity along the voltage axis (at Vh and Vr), and near the grid lines
at h = 0 and h = 1 where the population tends to pile up. We leave such
refinements to future work.
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Figure 9: Equilibrium population distributions corresponding to a mean driv-
ing current I = .1 µA

cm2 . (Top): Direct simulation with stochastic driving (fixed
jumps of size ε = 1 mV). (Bottom): Population dynamics simulation (50 × 50
grid). Note that many more neurons equilibrate near h = 0 in the population
dynamics simulation relative to that of the direct simulation.
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