
Proc. Natl. Acad. Sci. USA
Vol. 95, pp. 8334–8338, July 1998
Neurobiology

Representation of spatial frequency and orientation in the
visual cortex

R. M. EVERSON,† A. K. PRASHANTH,‡ M. GABBAY,† B. W. KNIGHT,§ L. SIROVICH,† AND E. KAPLAN‡¶\

†Laboratory for Applied Mathematics and Departments of ‡Biophysics and ¶Ophthalmology, The Mount Sinai School of Medicine, New York, NY 10029;
§Biophysics Laboratory, The Rockefeller University, New York, NY 10021

Communicated by Russell L. DeValois, University of California at Berkeley, Berkeley, CA, May 12, 1998 (received for review December 22, 1997)

ABSTRACT Knowledge of the response of the primary
visual cortex to the various spatial frequencies and orienta-
tions in the visual scene should help us understand the
principles by which the brain recognizes patterns. Current
information about the cortical layout of spatial frequency
response is still incomplete because of difficulties in recording
and interpreting adequate data. Here, we report results from
a study of the cat primary visual cortex in which we employed
a new image-analysis method that allows improved separation
of signal from noise and that we used to examine the neu-
rooptical response of the primary visual cortex to drifting sine
gratings over a range of orientations and spatial frequencies.
We found that (i) the optical responses to all orientations and
spatial frequencies were well approximated by weighted sums
of only two pairs of basis pictures, one pair for orientation and
a different pair for spatial frequency; (ii) the weightings of the
two pictures in each pair were approximately in quadrature
(1y4 cycle apart); and (iii) our spatial frequency data revealed
a cortical map that continuously assigns different optimal
spatial frequency responses to different cortical locations over
the entire spatial frequency range.

The primary visual cortex has the apparatus to sort out the
ingredients needed to perform a variety of visual functions. An
important example is that of perceptual invariance: the ability
to recognize a pattern as itself after its size or orientation have
been changed. It has long been known from single-cell record-
ings that cortical neurons are selective for both orientation and
spatial frequency. Hubel and Wiesel (1, 2) first reported the
systematic arrangement of neurons with similar orientation
preference, and subsequent optical imaging studies (3, 4) have
reported consistent results about the cortical layout of orien-
tation-selective cells. Studies of the primate visual cortex led
DeValois and DeValois (5) to propose a polar architecture of
spatial frequency selectivity (see also ref. 6) tied to the
cytochrome oxidase blobs. The issue has been re-examined in
recent optical imaging work (7, 8), but no consensus has been
reached.

Here, we address these issues with two new technical
developments. The first is the use of the recently published
method of indicator functions (9). Our second technical de-
velopment is the extraction of a small basis set of images from
a collection of optical response pictures taken under a variety
of stimulus conditions. To this end, we ask if there is a small
set of images that could serve as a set of coordinates in the
sense that, added together in appropriately weighted combi-
nations, they can be used to reconstruct the response images
obtained from the various stimuli. In the present study, we find
that two basis pictures suffice essentially to reconstruct the
orientation response when spatial frequencies are pooled, and

another set of two pictures reconstructs the spatial frequency
response when orientations are pooled. This approach yields a
compact quantitative description of the optical response of
cortex to both orientation and spatial frequency. Our method
confirms the consensus of previous studies (3, 4) regarding
cortical response to stimulus orientation and does so without
recourse to the implicit assumption that lies in the method of
vector summation. However, our method directly applies also
to the response of primary visual cortex to various spatial
frequencies, where it provides an additional insight.

METHODS

Surgery and Imaging. The experiments were carried out on
six adult (2–5 kg) cats (Felis domestica). Anesthesia was
induced with i.m. injections of Xylazine [Rompun (Miles), 2
mgzkg21] and Ketamine [Ketaset (Fort Dodge Laboratories,
Fort Dodge, IA), 10 mgzkg21] and later was maintained with
i.v. infusion of Pentothal (Astra, Westborough, MA) (1–3
mgzkg21zhr21). Muscular paralysis was induced by i.v. infusion
of Pancuronium bromide (Abbott) (1.3 mgzkg21zhr21). The
state of anesthesia was monitored and maintained carefully in
accordance with the National Institutes of Health guidelines.
The animals were respired mechanically and the end-
expiratory concentration of CO2 was kept at 3.5–4%. Blood
pressure, electroencephalogram, electrocardiogram, and core
body temperature were monitored and maintained within
normal physiological ranges. The eyes were protected with
gas-permeable, hard contact lenses, and corrective lenses were
used to focus the eyes at the distance at which the cathode ray
tube monitor was placed, usually 57 cm. Each eye viewed the
stimuli through a 3-mm artificial pupil, and translucent shut-
ters permitted presentation of either a pattern or diffuse
illumination to either eye. A craniotomy and durotomy ex-
posed a region of V1 corresponding to 2–8° eccentricity in the
visuotopic representation. A cylindrical, stainless steel, glass-
topped chamber was attached to the skull with screws and
plumbers epoxy (Propoxy 20, Hercules, Passaic, NJ), and was
filled with inert silicone oil. The cortex was illuminated
uniformly with 600 nm light and imaged through a tandem-lens
configuration (10) by using a cooled 12-bit charge-coupled
device (PXL, Photometrics, Tucson, AZ, 536 3 389 pixels)
that was synchronized to the cardiac and respiratory cycles (4).

Visual Stimuli. All stimuli consisted of drifting sinusoidal
gratings of spatial frequencies between 0.02 and 2.28 cycles per
degree, each presented at four orientations (0°, 45°, 90°, and
135°) in a pseudo-random sequence. The six spatial frequen-
cies we used were 0.07, 0.14, 0.28, 0.57, 1.14, and 2.28 cycles per
degree for the data in Fig. 1 Left and 0.033, 0.067, 0.135, 0.27,
0.54, and 1.08 cycles per degree for the data in Fig. 1 Right. The
gratings drifted at a temporal frequency of 2 Hz and were of
100% contrast. Each stimulus was repeated 20 times. The
cathode ray tube subtended 20–28° of visual angle.
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FIG. 1. (Left and Right) Data from two anesthetized cats. (a) Exposed visual cortex; the region used for detailed analysis is outlined. (b and c) The two ‘‘basis’’ pictures
cn(x) that generate the averaged orientation optical responses. (d) Weighting coefficient curves, an(u), which weight basis pictures b and c to yield the orientation
response at a given angle. (e) Locus of orientation optical response ‘‘vectors’’ in two-dimensional section through pixel space. ( f ) Pattern of orientation pinwheels; color
indicates preferred angle in degrees. (g) Strength of ‘‘orthogonal orientation difference response’’ vs. spatial frequency; the two curves are vertical–horizontal (solid)
and diagonal (dashed) differences. Logarithmic cycles-per-degree scale also appears in j below. (h and i) The two basis pictures cn(x) that generate the averaged spatial
frequency response. (j) Weighting curves, an(n), which weight h and i to yield optical spatial frequency response. (k) Locus of spatial frequency optical response vectors
in two-dimensional section through pixel space. (l) Patterns of spatial frequency pinwheels; color indicates preferred spatial frequency in cycles per degree.
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Image Analysis. We briefly describe the mathematical pro-
cedures used in the data analysis. The discussion is phrased in
terms of orientations, but exactly analogous procedures were
used for the spatial frequency data.

Indicator functions. We used indicator functions, which
constitute a recent improvement in the extraction of weak
image changes (9). This method exploits conditional averaging
along with the fact that an orderly picture exhibits substantial
interpixel correlations, which are absent from disorderly noise.
As an initial step in the data processing, from each frame
recorded after a presentation of a stimulus we subtracted the
average reflectance of three response images collected just
before the presentation of that stimulus. Next, we performed
principal components analysis (11) on the entire data set,
which typically exceeded 10,000 images, taken under all stim-
ulus conditions. Only the first 50–100 principal components
contained information related to the visual response, and a
linear combination of these relevant principal components was
used to construct the indicator function. As in the difference
of averages method (4), the generation of indicator functions
depends on a comparison of images collected during two
contrasting stimulus conditions. An indicator function is a new
picture generated from the raw images such that its inner
product (which is proportional to correlation) with images
from a particular orientation, say, u1, is as close as possible to
11, and its inner product with images from the contrasting
orientation, say, u2, is as close as possible to 21. In other words,
if we denote by ƒ(t, x, u) images (with prestimulus frames
subtracted) collected in response to orientation u, where x is
a pixel location and t indexes the images, then the indicator
image, f(x), is the image that best satisfies, in a variational
sense, the following criteria:

~ƒ~t , x, u1!, f~x!! 5 11

~ƒ~t , x, u2!, f~x!! 5 21,

where (ƒ, f) is the spatial inner product (summed products of
pixel values) of images ƒ and f.

We performed extensive image-extraction experiments on
simulated data sets in which we buried known images under
sequential frames of noisy laboratory data, and we confirmed
the ability of our technique to extract a quality approximation
of the input image under signal-to-noise conditions in which
the usual methods fail (9, 12). Under sufficiently clean signal-
to-noise conditions, our method and the usual methods give
similar results. Because the indicator function method depends
on contrasting responses to stimuli that are similar in all
respects except for the variable under investigation and be-
cause it gives similar results to differential imaging when the
signalynoise ratio is large, it is convenient to think of the
method as an enhanced differencing procedure.

Pairwise indicator functions. Each of our 24 stimuli (four
orientations, each at six spatial frequencies) was presented 20
times. The resulting data, for each cat, were divided into four
subsets according to orientation. These four subsets were
paired in all six possible pairs; then, indicator functions fij(x)
were found for all pairs of stimulating angles ui and uj, i Þ j.
In an exactly analogous manner, pairwise indicator functions
were generated to contrast all 15 possible pairs of the six spatial
frequency responses. All pairs were differenced, rather than
just orthogonal pairs. This was done (i) to avoid the introduc-
tion of a possible artifact through orthogonal selection; and (ii)
to follow a procedure that can be applied when spatial
frequency, rather than orientation, is the variable. Although
stimuli with different orientations elicit strongest responses at
different locations on the cortex, the magnitude of the overall
response is approximately the same for all orientations. How-
ever, the magnitude (as well as the location) differs for stimuli
of different spatial frequencies because very low and very high

spatial frequencies elicit little response (Fig. 1 panels g). The
even-handed use of all difference pairs avoids some artifacts
that arise, for example, when both strong and weak individual
responses are differenced against a single ‘‘cocktail’’ superpo-
sition of strong and weak responses; in such differences, the
weakest responses are overwritten by the negatives of the
strongest contributors to the cocktail.

A second principal components analysis. The question of
‘‘how many pictures are required to generate all pairwise
average difference images or indicator images’’ was addressed
by a second principal components analysis, this time applied to
the set of pairwise images (11). More specifically, we sought
basis functions or images cn(x), that span the subspace of the
neurooptical responses. In a least-squares sense, the optimal
bases are generated by this principal components analysis.

RESULTS

We studied six adult cats and illustrate our results with data
from two cats. The results from the remaining cats were
consistent with these. Fig. 1 is divided into two panels that
show data from the two cats. Fig. 1 panels a show a region of
primary visual cortex, including blood vessels, and, within the
outline, the area of detailed analysis. To explain the present
technique we will first discuss its application to orientation
response, and we then will apply it to the spatial frequency
response.

Orientation. Principal components analysis found two prin-
cipal components or basis images, cn(x), that contributed
significantly to the generation of the six pairwise difference
images or indicator functions. Therefore, the cortical response
to any oriented stimulus may be described in terms of just these
two basis pictures. Fig. 1 panels b and c are the two basis
pictures, color-coded to show both positive and negative
values, and which resemble the orientation columns imaged by
other investigators (3, 4).

In order to find out how much each basis picture (principal
component) contributes to the response at a particular stim-
ulus orientation, we carried out the following procedure. At
each stimulus orientation, u, we ‘‘projected’’ (or ‘‘correlated’’)
each response image against each of the two basis pictures
c1(x) and c2(x) (that is, we multiplied each pixel in a response
image by the corresponding pixel in a basis picture and
summed over pixels). We then averaged over response pictures
at that orientation to find the corresponding two average
weighting coefficients a1(u) and a2(u) of the basis picture in
the orientation response at that orientation. Thus, an(u) 5
(F(x, u), cn(x)), where F(x, u) is the average of all images
collected at orientation u. The data points on the two smooth
curves in Fig. 1 panels d show the values that these coefficients
have for stimulus orientations of u 5 0°, 45°, 90°, 135°, and 180°
(the data points for 0 and 180° are the same). The smooth
curves have been interpolated through those points; the in-
terpolated curves in Fig. 1 panels d and j prove insensitive to
the interpolation method. As a consequence of our construc-
tion, at any orientation where one of these curves passes
through zero, the spatial distribution of the optical orientation
response is proportional to the complementary basis picture;
at intermediate orientations, the response is the sum of the
basis functions weighted by the coefficients an(u).

As we noted above, two principal components or basis
pictures are sufficient to represent the orientation response.
The two principal components together account for 89% (cat
I) and 84% (cat II) of the variance in all of the pairwise
difference images. The third principal component accounts for
only 6.5% (cat I) and 7% (cat II) of the variance and makes no
significant difference to the conclusions below. However, both
of the first two basis functions are essential for a faithful
representation of the orientation response. Using either one
alone completely misses the intrinsically two-dimensional na-
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ture of the response. Previous work (3, 4) has tacitly assumed
this two-dimensionality; here, we provide direct evidence that
the cortex is so organized.

Fig. 1 panels b and c are each constructed from a list of
numerical pixel values, and they may be regarded as two
vectors in a space whose dimension is equal to the number of
pixels. As principal component vectors, they have the property
that they are orthogonal vectors in the sense that the summed
product of their pixel values is zero (their cross-correlation is
zero). Together, they define a two-dimensional plane within
the high-dimensional pixel space. The orientation-response
images, as weighted combinations of the two basis pictures,
correspond to points in that plane. Representing Fig. 1 panels
b and c by horizontal and vertical vectors in the plane of Fig.
1 panels e, we use the two weighting curves a1(u) and a2(u) of
Fig. 1 panels d to construct (on the plane of Fig. 1 panels e) the
locus of orientation–response images represented as vectors in
that plane. Thus, as the stimulus orientation sweeps clockwise
through 360°, the orientation response is represented as trav-
eling twice around the locus. The locus is circle-like, with data
points almost equidistantly spaced along it; these conditions
would be fulfilled exactly if the two curves of Fig. 1 panels d
were exactly sine and cosine. It is the neural organization of the
visual cortex that both has restricted the optical response
images, conceived of as vectors in pixel space, to a two
dimensional plane, and has produced the simple geometric
relation in that plane shown in Fig. 1 panels e. This result is
independent of the particular choice of orientations, as con-
firmed by other experiments.

The data we show here permit us to find the stimulus
orientation that elicits the best response at each cortical
location. Fig. 1 panels b and c assign to each pixel two response
intensity values whose weighted sum, taken from the curves of
Fig. 1 panels d, states the response amplitude for that pixel as
a function of orientation angle. This information, in turn, tells
us the orientation angle at which that pixel gives its maximum
response. In Fig. 1 panels f, we have color-coded the best
response angle at each cortical location, and we see an orderly
progression with changing cortical position. The ‘‘pinwheel
axles,’’ where all colors come together, are the locations where
the response amplitudes in Fig. 1 panels b and c go through
zero.

Our analysis is quite different from the commonly applied
procedure of ‘‘vector summation,’’ which is used to extract
orientation ‘‘pinwheels’’ from image data (3, 4) (see also ref.
13). The application of vector summation to our starting
orientation responses gives a picture in good agreement with
Fig. 1 panels f. We observe that, in form, the two curves in Fig.
1 panels d together bear a striking resemblance to sine and
cosine; indeed, to a fair approximation where either curve
crosses zero its companion achieves an extremum. This result
is a consequence of the nature of the orientation response and
has not been imposed by our data analysis. Vector summation
assumes a priori that the cortical response conforms to a
two-dimensional model in which the weighting curves are sine
and cosine, so that the locus (Fig. 1 panels e) would be a circle.
It is not hard to argue from the natural periodicity of grating
stimuli, with increasing angle, that something qualitatively like
this should occur, and that the good fit of data to maps
generated by vector summation provides additional evidence
for the two-dimensional model. Here, we provide direct evi-
dence of the validity of the assumptions implicit in vector
summation.

Spatial Frequency. The same analysis procedure that we
have applied to orientation can also address changes in the
spatial frequency of the visual stimuli. To confirm that our data
contain effects of such change, in Fig. 1 panels g, we show, at
several spatial frequencies, the amplitude of the optical re-
sponse in the indicator image from stimuli at right-angles.
There are two curves: One shows vertical vs. horizontal stimuli,

and the other shows the difference of opposite diagonal
stimuli. The two experiments shown in Fig. 1 panels g, covered
somewhat different spatial frequency ranges, but both in-
cluded a maximum responsiveness at essentially the same
spatial frequency near 0.15 cycles per degree [a reasonable
maximum for cats (14)].

In the analogous manner to the analysis of orientation data,
we paired the six data sets at different spatial frequencies in all
15 possible pairs and derived their 15 pairwise indicator
images. A principal components analysis of those pairwise
images once again yields two dominating basis pictures, which
account for 74% and 63% of the variance in the 15 difference
images. These spatial frequency columns, which are shown in
Fig. 1 panels h and i, are fairly similar to the orientation
columns of Fig. 1 panels b and c. Although it is a consequence
of our analysis that the images in Fig. 1 panels h and i are
mutually orthogonal to (uncorrelated with) each other, each of
them is also almost orthogonal (the closest correlation is '0.1)
to images in Fig. 1 panels b and c, and that is a consequence
of cortical organization.

As we did with orientation, we calculated the weighting
coefficients for the admixtures in Fig. 1 panels h and i in the
optical response at each spatial frequency, and these are shown
in Fig. 1 panels j. The fact that the two basis pictures, Fig. 1
panels h and i, suffice to span the averaged spatial frequency
responses again implies that these responses lie in a two-
dimensional plane in pixel space. Their locus in that plane is
shown in Fig. 1 panels k; increasing spatial frequencies move
counterclockwise on the curve. Once again, we emphasize that
two basis pictures are necessary for a faithful description of the
cortical response to spatial frequency. Adding a third basis
function makes only a small difference in our results, in effect
bending the locus of responses slightly out of the plane. On the
other hand, using only one basis picture gives a severely
distorted reproduction of the response.

At very low and very high spatial frequencies, the visual
system is unresponsive and, as Fig. 1 panels g show, the cortical
response falls off. One could hardly expect, therefore, that the
curves of Fig. 1 panels j would be sinusoidal. Nonetheless, we
again see that, where either curve crosses zero, its companion
tends to have a nearby extremum. In fact, in the locus-plot of
Fig. 1 panels k, the part of the curve defined by the four
midrange data points, which spans a factor of 8 in spatial
frequency, may be described as roughly an arc of a circle, and
the data points (which correspond to equal logarithmic steps
in stimulus magnification) cut the arc into three segments of
about equal length.

The optimal spatial frequency at each pixel is color-coded in
Fig. 1 panels l. Here, unlike Fig. 1 panels f, where the continuity
in orientation induces a smooth change of color everywhere,
the low-frequency (deep blue) and high frequency (deep red)
ends of the spatial frequency range lead to discontinuities.
Spatial frequency pinwheel axles appear again where the
response goes through zero in Fig. 1 panels h and i. We
recorded from cortical neurons in the regions that we imaged
and validated the spatial frequency selectivity of the clusters
our analysis here identified (A.K.P., R.M.E., B.W.K., L.S., and
E.K., unpublished material).

DISCUSSION

Our data (Fig. 1 panels g) show non-zero responses over the
full range of spatial frequencies used in our study. Currently,
there are two contrasting views of the representation of spatial
frequency in the primary visual cortex. One holds that there
are two complementary cortical regions, one selective for low
and the other for high spatial frequency (8, 15). The other view
suggests that all spatial frequencies are separately represented,
in a graded fashion, across the cortex (for example, refs. 16, 17,
and 18). Tootell et al. (6) nonjudgmentally present evidence in
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support of both views. Based on 2-deoxyglucose data, DeVa-
lois and DeValois (5) proposed a radial arrangement of spatial
frequency selectivity related to the CO blobs. Evidence from
psychophysics (19) and from electrophysiology (14) indicates
that all spatial frequencies are represented continuously in the
cortex. Our study also supports the continuous representation
view because the two-stream alternative would yield only a
single significant basis picture, and the locus in Fig. 1 panels k
would be reduced to a horizontal straight line. We emphasize
that, like the orientation response, the spatial frequency
response requires at least two dimensions for its representa-
tion. An attempt to reconstruct spatial frequency data from
one basis picture, rather than two, leads to major degradation
in the accuracy of the reconstruction and fundamentally
changes the nature of the modeled response. The recent report
of Shoham et al. (8), which supported the two-stream hypoth-
esis, used mainly data from kittens; the difference between
their observations and what we report here may reflect
postnatal developmental changes in the cat visual cortex.

The major share of variance in our data is accounted for by
a two-dimensional subspace, but the remaining variance still
may be of significance. However, in all instances, we found the
signal corresponding to the additional variance to be contam-
inated heavily by noise. We may speculate that other dimen-
sions could fine tune and sharpen the curves of the orientation
and spatial frequency responses.

A comment is in order concerning the mathematical struc-
ture of the cortical organization that has been shown here, in
as much as mathematical structure often has proven a valuable
guide to understanding neural function. The set of changes in
stimulus orientation, and the set of changes in stimulus scale,
may each be regarded as a one-parameter symmetry group of
transformations. Our analysis has exploited the fact that a
change in stimulus induces a change in an optical response
image that may be regarded as a vector in a conceptual ‘‘pixel
space.’’ Such an action of a symmetry group on vectors (if some
consistency demands are fulfilled) is known as a group rep-
resentation. The simplest of nontrivial group representations
are two-dimensional,* which conforms to what we have pre-
sented here. To the extent that the curves in Fig. 1 panels d are
sine and cosine, the locus in Fig. 1 panels e technically displays
the action of a mathematically familiar two-dimensional rep-
resentation of the one-parameter rotation group. In the case
of stimulus rotations, this bit of group representation theory
simply formalizes data manipulations to which investigators
already have been led by good common sense. Some elemen-
tary arguments have been given (20) that indicate that we may
indeed expect the cortex to have a layout that conforms to a
two-dimensional representation of the rotation group.

In the case of scale-changes, what we should expect to find
in the cortex is less evident, and the mathematical structure
may be helpful for understanding function. In fact, the group
of scale changes likewise has two-dimensional representations,
in which the action of its elements carries a vector around the
plane in a circular locus. The angle change induced by a group
element is proportional to the logarithm of its scale change. In
the midrange of grating sizes, we see that the same features
emerge from our data analysis (Fig. 1 panels j). For the data
of either cat shown in the figure, a half cycle is achieved with
about a factor of 16 in scale change. Roughly speaking, an
immediate physiological implication is that, if a visually cen-

tered object is presented at two scales that lie within the
midrange here, equal areas of cortex (whose locations serve to
index the different size scales) will be activated. This fact is also
apparent from the approximately equal numbers of pixels
devoted to logarithmic spatial frequency in Fig. 1 panels l. We
note that Fig. 1 panels f and l together assign two colors to each
pixel, which implies an assignment of both orientation and
scale to each cortical location.

In a more speculative vein, we note that the primary visual
cortex has sorted out the raw materials needed to perform a
very important visual function. When a portrait (or the page
before the reader) is rotated through a modest angle, it is
immediately recognized as the same portrait. Subjectively, its
sameness stands out far more than the fact of its changed
orientation; this is the phenomenon of perceptual rotation
invariance. If the portrait is moved away by a modest factor
(two or three), again its sameness is subjectively more salient
than its reduction in size; this is perceptual scale invariance.
These two cases of the separation of the intrinsic features of the
observed object itself from the variables of viewing condition
are substantial challenges in pattern recognition, which some-
how the visual cortex solves well. Our study shows that neurons
that deal with these two elements of perceptual invariance are
clustered in similar spatial arrangements and that the primary
visual cortex represents orientation and spatial frequency in
ways that are mathematically and structurally similar.
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