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Abstract. The method of empirical eigenfunctions is developed in a general framework. In particular it is shown 

that the method of snapshots leads to the determination of the empirical eigenfunctions in any number of 

dimensions in terms of an equivalent one-dimensional problem. The methodology is discussed within the 

framework of some turbulent simulations and it is shown how this facilitates the flow analysis. In another vein it 

is demonstrated that the empirical eigenfunctions lead to a generalization of the Kolmogorov inertial range 

theory. Finally we discuss the application of the empirical eigenfunctions to the dete~nation of low-dimen- 

sional dynamical systems. Some speculations on future directions are also mentioned. 

1. Introduction 

In keeping with the theme of the workshop I will discuss noLIe! ~n~rneric~i~ experiments and 

data processing for the better understunding of turbulence. At the heart of the following 
presentation is the Karhunen-Lo&e [1,2] (KL) procedure for generating the empirical eigen- 
functions. In a well-defined sense these functions lead to an optimal description of turbulent 
flows. They also provide a system of coordinate functions which are intrinsic to the particular 
flow geometry and regime. 

Lumley [3] suggested more than twenty years ago that the KL procedure #-’ should be used 
to unambigously and rationally extract coherent structures in a turbulent flow. (Also see refs. 
[4,5].) While this use of the empirical eigenfunctions still needs to be established [6], the 
procedure is of unquestioned value in treating and analyzing turbulent flows. Since Lumley’s 
original paper the KL procedure has figured in a number of studies [7-91, however it is only in 
recent times that the KL procedure has begun to realize its full potential for dealing with 
turbulent flows as generated in the laboratory or on the computer. One of the reasons for the 
long delay is that only in recent times have we been able to create data bases massive enough to 
satisfy the appetite of the KL procedure. Another, and perhaps more compelling reason was the 
erroneous notion that the method could not be extended beyond one-dimensional data bases or 
their equivalents. However, this misconception was dispelled by the method of snapshots 

[lo-121 which demonstrated that the empirical eigenfunctions of fully three-dimensional flows, 
of arbitrary resolution, could be calculated essentially without approximation. We begin in the 
next section with a presentation of these ideas. 

*’ Lumley, following Lo&e, referred to this as the proper orthogonal decomposition (POD). 
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2. The method of snapshots 

Since the KL procedure is textbook material [13-151 no attempt will 
procedure in detail. Nevertheless the presentation which follows is 
represents a point of view not fully recognized in the literature. 

Imagine a flow characterized by a vector 

v=u(x, t), 

be made to derive the 
somewhat novel and 

(1) 
which may be the three components of velocity or a more complicated field vector including for 
example temperature, salinity and so forth if required. Further we assume an inner product, (u, 

u’), for example 

(u. u’) =@u,(x, t)u;.(x, t) dx, 

where I’ is the volume of the domain of interest. We also assume a norm, which for 
convenience we take to be based on the inner product (2) 

II ul12 = (07 0) (3) 

and, finally, we assume the existence of an averaging process ( ), which for example might be 
given by the time average, 

(+>, = $ j_T;;2+(t) dt. 

Now that the three forms (2), (3) and (4) have been defined, we emphasize that these specific 
forms need not be employed in the following, and that the results that are presented depend 
specifically on the inner product, norm and averaging procedure which have been adopted. 

In order to characterize or represent the flow (1) in general, one can employ an admissible 
complete orthonormal basis set { 9’“‘). By admissible we mean that the +““(x) satisfy 
boundary and other possible conditions, e.g., if the flow is incompressible we require that 

v .+(,1) = () 
(5) 

for admissibility. On practical grounds we can represent a flow, eq. (l), only in terms of a finite 
set of functions. 

u=uN=PNu= ; uk(t)p(X). (6) 
k=l 

In geometrical terms, u is being approximated by a point uN lying in an N-dimensional 
hyperplane. As is easily seen the best approximation in the sense of the norm, eq. (3), is 
obtained when the time dependent coefficients are the Fourier coefficients, 

a, = (+Ck’, u). (7) 

In other words, when uN lies at the foot of the perpendicular from u to the hyperplane. This is 
already implied by the use for the projection operator PN in eq. (6) The representation (6) and 
in particular the error 

6 N= 11~--~112= 11412- lI%vl12 (8) 
depend on the particular choice of the basis set { c#J(“) }. In general there exist an infinite variety 
of admissible basis sets. According to the KL theorem there exists a unique basis set (up to 
choices within degenerate invariant subspaces) such that 

(9) 
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is a minimum for any N. With this basis the N-dimensional hyperplane, on average, is the most 

proximate to u. The distinguished set of functions is termed the empirical eigenfunctions. It 

should be emphasized again, that this choice of a basis set depends on the selection of inner 
product, norm and average. However in order to avoid the complications of a general 
presentation, in what follows we use eqs. (2) (3) and (4) for these quantities. 

Since cN in eq. (9) is a quadratic form, it follows that the empirical eigenfunctions are given 
by a linear integral equation, viz. 

where the components of the matrix kernel K are given by, 

(11) 

K is a non-negative, hermitian kernel which on physical grounds can be expected to be square 
integrable. [Here, and in the following we avoid the additional notation of taking the limit as 
T t co, since in actual practice this is never carried out.] 

It is worth pausing at this point to comment briefly on the nature of the empirical 
eigenfunctions. We see that these furnish an optimal set of fitting functions for the phenome- 
non in the sense that the averaged error, eq. (9) is minimal for all N. This property is achieved 
by generating functions that are intrinsic to the details of the problem, and that depends on 
knowing the flow. It is also worth commenting on the fact that although in general u arises 
from a nonlinear process, eq. (10) appears to reformat the description in terms of a basis set 
{(p(“)} generated by a linear process. This should not convey to the reader the notion that the 
problem has in any way been linerarized. For the kernel K from which the eigenfunctions have 
been obtained is itself the result of a nonlinear process. In geometric terms, eqs. (6) and (7) 
state that the best approximation to u in terms of an N-dimensional hyperplane is gotten by 
orthogonal projection. The empirical eigenfunctions then furnish, on average, the closest 
hyperplane to 0. 

To solve for the eigenfunctions we observe that K, eq. (11) bears a formal resemblance to a 
degenerate kernel and hence we can seek a solution in the form 

(12) 

i.e. an admixture of the instantaneous flow fields in the interval (- T/2, T/2), as determined 
by the relative strengths, (Y(S). As a result we have referred to this as the method of snapshots 
[lo]. From this it easily follows that a necessary condition for solution is 

J _ _r;;qC(t, s)a(s) ds = ha(t), (13) 

where 

C(t, s) = C(s, t) = T-‘(u(s), u(t)). (14) 

On a practical note eq. (13) is solved numerically by sampling the flow at discrete times so that 
eq. (13) reduces to the eigentheory of a symmetric matrix gotten from sampling C( t, s) in s 
and t. As a rule it is prudent to sample C at uniform times which are comparable to or larger 
than the autocorrelation time. 

In regard to the autocorrelation it is important to observe that C(t, s) is not the autocorrela- 
tion. In particular, consider eq. (14) and imagine that u(x, t) explores a chaotic attractor. Then 
for s fixed and f increasing, the value of C(t, s) tends to zero and remains near zero for the 
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most part since eq. (14) represents the inner product of uncorrelated fields. However under the 
assumption of boundedness and ergodicity, v(x, t) will come arbitrarily close to U(X, s) as 
time evolves. At such times (14) is relatively large. Thus unlike the autocorrelation, %(r - s), 
which can be obtained by taking the ensemble average of (14) C( t, s), does not vanish for 
1 t - s ( large. Analytically the difference is seen in the two following forms, 

%?(t-.r)=/exp[io(t-s)](S(w), Z(~))~dw, (15) 

and 

C(t, s) = j- do d 0’ exp(iwt - io’s)( f5( o), i?( w’)) (16) 

in terms of the Fourier transform 

a(w) = / exp(-iwt)u(x, t) dt. (17) 

In eq. (15) the subscript e indicates that a suitable ensemble average has been performed. 
Another observation is that the Fourier coefficients ak, eq. (7), and the eigenfunctions (Y, eq. 

(13) are simply proportional to one another, 

(Ye = a,/h,T. (18) 

To see this we formally write 

u(x, t) = &r&)$J’“‘(~), (19) 

where a, is given by eq. (7). If we denote by (Y~( t) the functional form in eq. (13) that 
corresponds to $ (k) in eq. (12) then eq. (19) yields 

f;;,ak(t)u(x, t) dt=+'"'(x) = ~j_;;;2ak(t)a,(t) dt +‘“‘(x) 

from which eq. (18) directly follows. 
It follows from the symmetry of C(t, s), (14) and (18) that 

(a&r,,) = ((P), +P)? u)) = h,%,. (20) 

Thus the effect of utilizing the empirical eigenfunctions is to produce a representation in which 
the Fourier coefficients are decorrelated. On average the Fourier modes do not interact 
(although short-term interaction, in general, is to be expected). In this regard the empirical 
eigenfunctions are unique (up to fine print about invariant subspace) amongst all admissible 
orthonormal systems. It may be shown that eq. (20) is a necessary and sufficient condition for 
the error, eq. (9) to be a minimum. 

3. Rayleigh-BCnard convection-a brief summary 

The method of empirical eigenfunctions, as described in the previous section, has been 
applied to computational simulations based on the Ginzburg-Landau equation [16], Rayleigl- 
BCnard convection [17-211, channel flow [22] as well as to an experimental investigation of the 
turbulent jet [23]. 

The most thoroughly investigated case is that of RayleighBen&d convection. The case 
considered was that of a fluid contained between infinite parallel planes, perpendicular to the 
vertical or z-direction. The temperature is prescribed on the bounding planes which are taken 
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Fig. 1. (a) Streamlines (continuous curves) and isotherms (dashed curves) for c#$‘, (b) Same as (a) for $I\‘,), but viewed 
on a diagonal of the square plane form. 

to be stress free. Periodicity is assumed in the horizontal or x, y-directions. As a result of the 
homogeneity of the problem in the horizontal directions the eigenfunctions are factorable, 

$I = !I$‘( Z) exp[i2T( kx + ly )/L] = $jj), (21) 

where L is the aspect ratio, width to height. [In order to increase the symmet~es the planform 
was taken to a square.] k and I are horizontal wavenumbers and q denotes the vertical quantum 
number. 

In fig. 1 we show the first two most energetic eigenfunctions. Figure la shows &’ which is a 
two-dimensional rolling motion, indicated by the streamlines, which lifts heated fluid and drops 
cooled fluid, as indicated by the isotherms. This mode is four-fold degenerate - the eigenfunc- 
tion may be displaced by a quarter wavelength in the horizontal and also rotated by a/2 about 
a vertical axis. The second eigenfunction +,i , (‘) the streamlines of which are indicated in fig. lb, 
is composed of four rolls aligned along a diagonal, and for the reasons already given, it too is 
four-fold degenerate. 

All calculations have been based on simulations of the Boussinesq equations [24]. Two cases 
have received the most thorough study Ra/Ra, = 70 [17] and Ra/Ra, = 9800 [l&19]. The first 
lies in the soft turbulence regime and the second in the hard turbulence regime as defined by 
the Chicago group [ZS]. (For a parametric study of the eigenfunctions and related questions, at 

Table 1 

Ra = 70Ra, Ra = 9.8 x 103Ra, 

n 4 kx k” deg % energy n 4 k, k, deg 580 energy 

1 1 0 1 4 41.04 1 1 0 1 4 24.56 

2 1 1 1 4 8.87 2 1 1 1 4 3.23 

3 2 0 1 4 4.23 3 2 0 1 4 2.00 

4 1 0 0 2 1.67 4 1 1 2 8 0.95 

5 1 0 2 4 2.82 5 1 0 2 4 0.71 
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in 

P 
0 40 80 120 160 200 

Fig. 2. (a) Time histoties of the amplitudes of the (&), +&‘L,) roll (continuous curve) and (+\g, +‘l’,,) roll (dashed 
curve). (b) Same as (a) for the case corresponding to fig. lb. 

low Ra see refs. [26,27].) Table 1 indicates the average energy of the first 5 modes for each of 
the two cases. 

At the lower Rayleigh number more than 40% of the energy is taken up by the roll motion 
depicted in fig. 1. Even at the very high value of Ra almost 25% of the energy is still in this 
mode. [We see that mode crossing first occurs at n = 4.1 Both instances strongly underline the 
fact that the empirical eigenfunctions optimally organize the data. The fact that even in the 
hard turbulence regime a quarter of the energy, on average, is in the form of a simple rolling 
motion may be helpful in understanding this complicated flow. 

Figure 2 shows the time course of the corresponding coefficients a&i’ and ujf’. [As shown in 
the previous section these coefficients are eigenfunctions of the kernel (14).] The rolls seemingly 
at random times rotate about the vertical axis by ?s/2. They also undergo sidewise shifts, or 
jitter, in addition to these rotations. 
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The results indicated in the table are also significant for the purpose of data compression. 
For example for Ra = 70RaC, 80% of the average energy is captured by 106 terms, 90% by 289 
terms and 95% by 608 terms. This is summarized in fig. 3 for Ra/Ra, = 70. 

4. Inertial range theory for inhomogeneous turbulence 

Kolmogorov [28] introduced the concept of an inertial range in turbulence as being that purr 

of the energy spectrum neither directly affected by the external sources creating the flow nor by 

viscous dissiputio~. In the course of developing his theory it was necessary for Kolmogorov to 
require that the turbulence be homogeneous and isotropic at least in some sense. For purposes 
of exposition we briefly review Kolmogorov’s development. 

If we consider the average energy e, then we can write, 

e=+jV(f12)CdX=j&(k) dk=Jb(k)4~k2 dk=/E(k) dk. (22) 

The second integral, which defines energy per volume of wavenumber space, b(k), is a 
consequence of homogeneity. The third and fourth integrals which define the energy in a 
spherical shell of wavenumber space, E(k), is a consequence of isotropy. To obtain the 
Kolmogorov result characterizing the energy spectral density in the inertial range we note that 
the full functional dependence of E is 

E= E(k, H, U, Y), (23) 

where H and U are the integral length and velocity scales and v the kinematical viscosity. [If 
we turn our back, for the moment, on the assumptions of homogeneity and isotropy then for 
channel flow H is the channel height and U = (H 1 i3P,/tix l/p)‘/*, where W&x is the 
external pressure gradient.] If we define 

f = U3/H, K = ( </P~)*‘~ = l,$, 

where e is referred to as the energy flux and 11 as the Kolmogorov microscale [29], it then 
follows from the Buckingham IT-theorem [30] that 

E 
f 2/3k - 5/3 =f(k’(b’ff)~ k/K)- 
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[Note that the Reynolds Re number is still present since the ratio of the first to the second 
argument of f gives HK = Re 3/4.] Next, under the inertial range limit, defined by 

l/H -=s< k -K K, (26) 

provided f is well behaved, it follows that, 

E c( C2/3k-5/3 , (27) 

which is the famous Kolmogorov result. Kolmogorov next invokes the concept of local 

homogeneity and isotropy in order to apply eq. (27) locally, to flows at sufficiently high Re. [It 
should be noted that Kolmogorov’s argument was originally presented within the framework of 
physical space [28].] 

This theory was later amended by Kolmogorov [31] in response to the criticism that it did 
not account for intermittency. The effect of intermittency was also considered by Mandelbrot 
[32] and Frisch et al. [33]. The consequences of intermittency has been reviewed by Frisch [34]. 
Although this issue plays no essential role here, we point out that its affect can be included 
within the framework of dimensional reasoning. If intermittency is factored into the argument 
then one obtains instead of eq. (27) 

(28) 

[See Frisch [34] for an interpretation of 6.1 In order to arrive at eq. (27) it was assumed that f 
in eq. (25) is non-singular under the limit (26). Thus, to obtain eq. (28) it is only necessary to 
suppose that the limit is appropriately singular in one or both of the arguments. For example, if 
the inertial range is to be free of viscosity the likely singular limit is in the first argument of 
(25). Nevertheless, the Kolmogorov argument is still marred by the fact that the integral scale 
then has to appear in eq. (28) and the italicized phrase at the outset of this section is not 
strictly valid. 

In order to relax the assumptions of homogeneity and isotropy we require a generalization of 
the energy densities that appear in eq. (22). This can be done within the framework of the 
empirical eigenfunctions [35]. As a starting point we return to the definition (11) of the kernel 
K(x, y). In terms of the empirical eigenfunctions the kernel has the spectral representation 

K(x, _v> = CL&‘(x) @ G’“‘( Y), (29) 

where @ signifies the outer product. From this we can complete 

/ 
(u’),dx=e^=TrK=zh,, 

V n 

(30) 

which is the average energy 

dim[ Z] = dim[ X,] = 15/t2. (31) 

[Note that in case of Rayleigl-BCnard convection the energy also includes the square of the 
perturbed temperature.] From the discussion in section 2, in particular eq. (20), it follows that 
an eigenvalue X, represents the average part of the energy of the flow in the direction c#B(~). The 
summation (29) is therefore a natural generalization of the energy integral in Fourier space for 
homogeneous turbulence, and the eigenvalues are the counterparts to B(k), the energy density 
per unit volume in wavenumber space that appears in eq. (22). 

For plane channel flow, unbounded in the horizontal directions, the eigenfunctions take on 
the same form, eq. (21) as those mentioned in the previous section for RB convection. The 
corresponding eigenvalues, which are now regarded as the discrete version of the energy 
density, have the form (L is a spanwise length scale) 

h=ACq)(kx, k,, U, L, H, v). (32) 
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Fig. 4. AC4’( k,, k.,) WIWS k I = (k2 + k,;)“* for the Kim, Moin and Moser [36] simulation of channel flow. The heavy 
contikous line represents a k;“‘3 dependence (set! text). 

Application of the II-theorem yields 

x(4) 

c2/3k--11,‘3 = F,(b/b’ff)> k,/K., k,/k,, H/L), 
.I_ 

where 

(33) 

k,=@+k;. (34) 

Note that the denominator in eq. (34) is different than in eq. (25) because of eq. (31). Under the 
inertial range limit (26) we obtain 

(35) 

[The geometric factor H/L has been suppressed in eq. (39.1 In writing eq. (35) we have not 
assumed that isotropy is approached when k./H-’ + co. In fig. 4 we examine the database 
generated by Kim et al. [36] for the modest value of Re = 3300, based on channel half width. 
Only the first quantum number is considered and a sequence of orientations. A relatively small 
but definite inertial range is seen to be present. On the other hand the original one-dimensional 
spectra in ref. 1361 shows no indication of an inertial range. Figure 4 also implies that isotropy 
is not being approached. The case r = 1 is a factor of 8 greater than r = 0, with no indication 
that the two curves converge. 

For the case of the RB convection, considered in section 3, it follows from dimensional 
reasoning that an eigenvalue has the form 

X = XCq)(k,, k_,; a, y, k, g, H, L), (36) 

where L is the diameter of the cell, H is the height of the convection cell, g is the gravitational 
constant, k is the thermal diffusivity, Y is the kinematical viscosity and (Y = AT/T, is the 
temperature ratio indicating the level of incremental heating of the convection cell. To facilitate 
use of the II-theorem we introduce 

6 = H/Rarj3 = l,/'~, (371 
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Fig. 5. Same as fig. 4 but for the case of RB convection in the hard turbulence regime [18,19]. 

which is an estimate of the thermal sublayer thickness and is the analogue of the Kolmogorov 
scale, 9, in eq. (24). The relevant velocity of the flow is then given by 

U=Jorg. (38) 

From this and H and C, eq. (24) is defined and if we proceed as before, then the II-theorem 
yields 

x(4) 

c2/3k-11/3 =&(k,/(l/H), kL/K, k.,Jk,, Pr, a, H/L). 
I 

(39) 

Under the inertial range limit the dependence on r = k,/k, dissapears since there is now no 
preferred horizontal direction and we obtain 

x(4, a e2/3k~11/3 
I 1 (40) 

where the dependence on geometry, H/L, on the Prandtl number and CX( JO) have been 
suppressed. 

In fig. 5 we plot ti4) versus k, for the hard turbulence calculation described in section 3. 
The straight line is the - 11/3 power law predicted by (40). A sensible inertial range appears to 
exists, in spite of the fact that 

Re r” 50, (41) 

i.e. the Taylor based Reynolds number Re, is relatively small. The corresponding one-dimen- 
sional Fourier spectrum which is plotted in fig. 6 shows no indication of an inertial range. 

At this point it is unclear why the empirical eigenfunctions appear to play such an essential 
role in describing the inertial range. To underline this concern we observe that for any 
admissible set of orthonormal functions, say {#‘“‘(x)}, we can write 

u = ~bnlp(x) (42) 

and from this 

e^= C&3 
n 

(43) 
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Fig. 6. (a) One-dimensional x-spectra. Long-short dashed curve is temperature. Continuous curve is u-velocity. 

dash o-velocity and dots the w-velocity. (b) Same as (a) for z-spectra. 

where 

Pn = (h,2)e = W”‘> 4’x. (44) 

Thus, p,, can be interpreted as the average energy in the J/ (‘) direction, in anology with our 

remarks about the meaning of A,,. In particular, products of sinusoidal functions could be used 
for the { Jl’“‘(x)}. In that case pU is just b(k) and as already indicated this does not give rise 
to an inertial range. The empirical eigenfunctions therefore appear to perform a better job in 
organizing the spectra. 

To gain some insight on a possible reason for this we note that Z/H3 defines an average rms 
velocity for the fluctuating flow. Therefore E/Hv2 is the square of a Reynolds number. Thus, 

Re2 = ~p,,/v2H = c Rei, (45) 
n n 

i.e. we can interpret each energy p,, in terms of a corresponding Reynolds number. 
On general principles we should expect an inertial range only when the relevant Reynolds is 

large enough. The KL procedure maximizes the energy in the principal modes thereby 
maximizing their corresponding Reynolds numbers, and leading to a relatively early inertial 
range. If we carry this line of reasoning further we might speculate that for any admissible basis 
set the corresponding CL,, will lead to an inertial range but only when the underlying Reynolds 
number of the problem becomes sufficiently high. 

5. Approximate dynamical systems 

To conclude this article, we show, at least briefly, how the empirical eigenfunction may be 
used to generate a low-dimensional dynamical description. In the notation of section 2 we write 

UN = ; u,(t)~‘“‘(X) = PNV. (46) 
n=l 

If the fluid equations ar formally written as 

du/dt = P(U), (47) 

then the Galerkin procedure, 

(@, dv,,,/dt) = (+‘k’, F(uN)), k = 1,. . ., N, (48) 

furnishes a straightforward means for generating a dynamical description. 
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This procedure has been applied to the Ginzburg-Landau (GL) equation [16,37,38] with 
remarkable success. Relatively few ordinary equations are able to faithfully describe the 
complex sequence of transitions to and from chaos found in the case of the GL equation. This 
material recently has been reviewed and [39] we do not survey it here. A similar approach was 
adopted for the Rayleigh-BCnard problem and is discussed in the dissertation of Tarman [40]. 
In this instance it was necessary to introduce an eddy viscosity, in the form of an added 
dissipation for the higher-order modes, to keep the number of equations down to a managable 
size. Aubry et al. [41] used a similar device, based on Heisenberg’s eddy viscosity [42], in their 
model system for the boundary layer (also based on the empirical eigenfunctions). 

A systematic development which leads to a generalized eddy viscosity follows from the 
method of slaved variables [43]. In this method a portion of the system of governing dynamical 
equation is replaced by algebraic equations, thus slaving (in time) certain of the dependent 
variables to the others, which are governed by the prescribed evolutionary equations. A 
mathematical framework for rigorously treating these ideas is contained in the study of inertial 

manifolds [44-471. By definition an inertial manifold is one towards which solutions tend 
exponentially. In the remainder of this section we discuss recent work connecting empirical 
eigenfunctions and inertial manifolds [37]. More specifically we deal with the idea of approxi- 
mate inertial manifolds (48,491. 

If we write 

l&=(1-P,)“, (49) 

then 

v=v,+v;.. (50) 

The dynamical system (47) may be divided in a corresponding fashion, 

dv,Jdt = P,F( v,+vC,)=Q,(u,+f&), (51) 

dv’,/dt=(l-P,)&,(v,~+v~)=&,(v,,,+v’,). (52) 

Inspection of this system leads us to the following heuristic argument: We can seek a basis 
{#“‘} such that R, + 0 as t + co. In this case we might hope that by taking the asymptotic 
initial data 

U’N I r=(J = 0, (53) 

then vh = 0, so that 

du,\/dt = Q.v(u,). (54) 

The last system is equivalent to eq. (48) i.e. the Galerkin procedure. 
In order to attempt to implement such a program we can start with the identity 

II 0 II 2 = II UN II * + II U’N II23 (55) 

and then search for a basis set { +‘“‘} which minimizes the error, II& (I 2. More precisely, we 
want to minimize the ensemble average of this quantity, 

(56) 
The solution to the posed problem, viz. that the basis be optimal in the sense that (56) is 
minimized, is precisely the criterion leading to the empirical eigenfunctions, developed in 
section 2, as the required basis set. 

In general, one might hope to improve on this procedure by retaining the influence of the 
neglected variables. Instead of neglecting v& we can solve 

R,&+v+v;~)=O (57) 
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for 

and substitute into eq. (51) to obtain, 

dv,v/dl= Q&/v+ S(4). (59) 

This is the essence of the slaved variable method [43], and results in an approximation to the 
inertial manifold. In the course in doing this we are also introducing an added dissipation, or 

eddy viscosity, to the system. 
Examination of the above discussion reveals that the strategy implicit in arriving at a 

reduced system has changed in passing from eq. (54) to eq. (59). In the first instance we sought 
a basis system, { +(“)}, which minimized the average error (56). On the other hand to arrive at 
eq. (59) we impose the condition (57). The latter implies that we should attempt to minimize 
11 R, 11 or, equivalently, I] 6; ]I instead of (56). 

To develop this idea into a specific criterion, consider 

II fi II * = II 4v II * + II f% II*. 

The desired criterion is that ( II lj”N I] ‘) be minimized, or 

E = ( II 6~ II ‘> 
be maximized. The objective is sufficiently close to the 

(60) 
equivalently, that 

(61) 

usual KL formulation so that we can 

state the procedure to follow in order to solve the new optimization problem. First, form the 

acceleration covariance [37] 

L=(dc+fi). (62) 

The solution to the stated optimization problem is given by the eigenfunctions of L, i.e. { 4”“) 

such that, 

LIC, = A#. (63) 

The operator can be shown to be hermitian, non-negative and in certain cases can be proven 
to be square integrable. It then follows from Mercers theorem [50] that { +‘“‘} form a complete 
orthonormal basis. We can then appeal to the Karhunen-Lo&e framework to show that 

d = c b,,+“, b,, = (#‘“‘, u) (64) 
n 

almost everywhere. 
The basis set derived in this way, { #““}, is optimal, by the above criterion, for use in the 

slaving method. To summarize, we split the system (b,, b,, . . .) into 

o,,+-+b= (bi,...,bN), (65) 

~;++b’=(b~+~, . ..). 

according to some a priori criterion error bound, 

0I~“11*)<~. 
The underlying dynamical system then may be written, in this notation, as 

db/dt = T(b, b’), db”/dt = T=(b, b’). 

(66) 

(67) 

(68) 

This splitting depends on the error criterion (67). The slaved system (approximate inertial 
manifold) is then obtained by neglecting the time derivative in the second part of (68) 

db/dt= T(b, b”), 0= T”(b, 6”). (69) 
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The above illustrates a somewhat different approach to the use of the empirical eigenfunc- 

tions. It has been applied to the GL equation [37], with an encouraging degree of success. Its 
application to other, more demanding cases, is an area of research. 

6. Further comments 

The use of the empirical eigenfunctions has been developed in a more or less a straightfor- 
ward manner. But as implied in section 2 other weight functions, and more generally other 
norms, generate other basis sets of function. [Similar remarks apply to the averaging procedure.] 
An example of another norm appears in the previous section in which we discuss how one 
might optimally use the method of slaved variables to obtain an approximate inertial manifold. 
In this instance it is the norm of 6, instead of the velocity norm, eq. (3) which is used. Clearly 
there are limitless possibilities. In order to emphasize the smaller scales one might consider the 
eigenfunctions of the eutrophy kernel 

fi,, = ++>~,( Y)>? (70) 

where w is the vorticity. A referee suggested that the Reynolds stress be used to provide the 
eigenfunctions. [This then leads to a fourth-order tensor kernel.] Another, simpler, possibility 
which would emphasize the stress producing events would be the conditional sampling of 
snapshots at instants when the Reynolds stress meets some criterion threshold level. The 
velocity eigenfunctions would then be weighted to the events which lead to large Reynolds 
stresses. 

It is possible to continue in this vein with many other possibilities. There is always a tradeoff 
between simplicity and the special requirements of a particular situation. The plan adopted 
here has been based on the straightforward approach, with the idea that this provides a 
framework which can be altered to suit some special needs. 

While empirical eigenfunctions do lead to low-dimensional systems, certain somewhat 

technical problems do arise. Since the empirical eigenfunctions are non-local in space, non-lin- 
earities can lead to considerable interaction amongst modes. [In finite difference schemes 
interaction is limited since the Navier-Stokes equations are local.] This is also true for 
trigonometric expansions, however in this instance the fast Fourier algorithm greatly facilitates 
the calculations which arise. No comparable algorithm is known for the empirical eigenfunc- 
tions. The main thrust thus far in using the empirical eigenfunctions in simulations has been to 
use them to account for the large scale motions, i.e. for large eddy simulation. The small scales 
can then be treated in a variety of ways; say by the introduction of an eddy viscosity [Sl] or by 
a procedure such as EDQNM [52]. Ideally one would like to employ deliberations such as those 
discussed in section 4 in order to model the small scale behavior in a turbulent flow. This is a 

subject for future research. 
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