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We present a novel analysis technique for the extrac-
tion of neuronal activity patterns from functional
imaging data. We illustrate this technique on data from
optical imaging. Optical imaging of the mammalian
visual cortex probe the patterns in which the neuronal
responses to various aspects of the visual world, such
as orientation and color, are spatially organized within
the cortex. Recovering these patterns from the image
data is a challenging problem as the neuronal response
signal is extremely weak in comparison to the back-
ground vegetative processes (e.g., circulation and res-
piration). The proposed technique obtains the neuro-
nal activity pattern using a combination of principal
component analysis and statistical significance test-
ing. The performance of this method is compared with
the results of existing analysis techniques. The com-
parison shows the new method to be more sensitive
than previous methods.
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INTRODUCTION

Functional brain imaging methods such as positron
emission tomography (PET), functional magnetic reso-
nance imaging (fMRI), and optical imaging have pro-
vided a wealth of information on how the brain re-
sponds to external stimuli. Optical imaging, in
particular, has proven to be a fruitful probe for illumi-
nating the functional architecture of the mammalian
primary visual cortex having a superior spatial resolu-
tion to PET and fMRI. The spatial organization of the
neuronal response in various species has been investi-
gated with respect to ocular dominance and orientation
(Blasdel and Salama, 1986; Blasdel, 1992), motion
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direction (Weliky et al., 1996), and spatial frequency
(Shoham et al., 1997; Everson et al., 1998). In typical
optical imaging experiments, an animal is shown a
visual stimulus on a screen while monochromatic (red)
light shines on an exposed part of its cortex that is
being imaged by a CCD camera. The intrinsic optical
signal is an indirect measure of neuronal activity—
active regions of the cortex get darker as the result of
effects associated with increased metabolic demand,
such as changes in blood flow, oxygen consumption, and
cell swelling. This decrease in reflectance, however, is
very slight, approximately 0.01-0.1% and is dwarfed by
the variations in reflectance due to vegetative processes
such as circulation and respiration.

As a consequence of the weakness of the signal,
faithfully extracting the cortical response map is a
difficult task and many (typically thousands) of images
have to be taken to obtain good results. The simplest
and most common analysis procedure is to calculate the
difference between the two pictures that are the aver-
ages of the sets of images obtained under two different
stimulus conditions. We refer to the activity map
obtained in this manner as the “standard difference.”
The standard difference yields good results when the
optical response signal is relatively strong and/or a
sufficiently large amount of data has been taken. When
these conditions are not met, the resultant activity map
is a poor representation of the cortical response, often
heavily contaminated by vascular artifact or other
large spatial scale features that are usually not associ-
ated with the regions of neurons that preferentially
respond to a given stimulus. Since the amount of data
one can obtain from a given animal is limited, an
improved analysis method can produce a combination
of the following benefits: more accurate determination
of the activity maps; access to weaker activity maps;
and the use of a richer repertoire of stimulus conditions
in a given experiment.

Efforts to improve signal recovery beyond that of the
standard difference include Principal Component Analy-
sis (PCA) (Sirovich and Everson, 1992; Sirovich et al.,
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1996; Cannestra et al., 1996), the indicator function
approach (Everson et al., 1997), and the application of
independent component analysis (Bell and Sejnowski,
1995; Hyvérinen and Oja, 1997) and extended spatial
decorrelation (Molgedy and Schuster, 1994) to optical
imaging data (Schieffl et al., 1999). Carmona et al.
(1995) presented a method for the analysis of optical
imaging data that uses wavelets to clean the images of
vascular artifact in conjunction with PCA to obtain the
response region. While the time course of the intrinsic
signal seems to be captured by this technique, the
method is very computationally intensive and its abil-
ity to produce highly resolved activity maps such as
ocular dominance or orientation columns has not been
shown in the literature.

In this paper, we present a novel analysis technique
for activity map extraction, which we refer to as the
“truncated difference.” This technique is essentially a
combination of the standard difference and PCA in that
the activity map is determined by projecting the stan-
dard difference onto the basis spanned by the range of
principal components of highest statistical significance.
It will be seen that the truncated difference has the
merits of being conceptually and computationally simple
while still producing excellent results. The truncated
difference method is described under Analysis Meth-
ods, along with the standard difference, PCA, and the
indicator function. Its performance on an illustrative
artificial data set and on real data is shown under
Results, where it is compared with the other analysis
techniques.

ANALYSIS METHODS

The Standard Difference

We will take our experimental data to consist of two
sets of images, the “stimulated” data set and the
“reference” data set. The stimulated data set contains
images for which the animal was shown the stimulus of
interest and, for simplicity, the reference data is taken
to be the set of images where no stimulus was pre-
sented (in practice, the reference data set usually
corresponds to a second stimulus condition). Our goal is
to find the map that best characterizes the difference in
neuronal activity between the stimulated and reference
data.

Each image record consists of the intensity value of
light reflected off the cortex received by each pixel x in a
two-dimensional array of M pixels. We denote the
mean-subtracted reflectance recorded in pixel x for a
given image by f(x, t), where t is the index or time-
stamp of that image. The mean that is subtracted is the
average of all the image records obtained by grouping
together the stimulated and reference data. When a
distinction needs to be made, members of the stimu-
lated data will be denoted by T and reference set images
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by T. The total number of images is N, and, for conve-
nience, the number of images in each of the stimulated
and reference sets is taken to be N/2. The order in
which the stimulated and reference images are ar-
ranged is represented schematically by the stimulus
presentation sequence, w(t):

1 fort € {f)

YOS fortef

1)

This is a boxcar function with a mean of zero.

We suppose that there exists a true activity map p(x)
that we are trying to extract from the background. This
background is denoted by n(Xx,t) and is mean-sub-
tracted so that it's average over time is zero for each
pixel. We will make the assumption that the back-
ground and the signal of interest add linearly. This is
reasonable given the weakness of the signal relative to
the background. Accordingly, any image record can be
written

f(x, 1) = (x, 1) + % w(t) p(x). (@)

Note that the mean subtraction is responsible for the
appearance of p(x) in the reference data images. The
use of a boxcar function for w(t) assumes that the signal
is always at full or zero strength, which is a fair
approximation if one only uses data for which the
equilibrium signal is expected to be nearly attained.
Alternatively, if the typical time course of the signal is
known then that response can be incorporated into
w(t).

We can take the temporal inner product of both sides
of Eqg. (2) with the stimulus presentation sequence,
where the temporal inner product between two func-
tions, a(t) and b(t) is (a, b), = X;a(t)b(t) and the sum is
taken over all N times. Since the background is as-
sumed to be independent of the signal, their correlation
should vanish in the limit of an infinite amount of data,
so that (v, w); — 0 as N — o. This yields an expression
relating the activity map to the data,

2
P09 = lim = (F(x, ), WD), ®)

where we have used (w, w); = N. Given the particular
functional form, (1), for w(t), this expression can be
rewritten as p(x) = limy_.((f(x, T} — (f(x, 1)), where
(f(x, T)) denotes the image obtained by averaging over
all the records indexed by t that comprise the stimu-
lated data and (f(x, 1)) is the average over the index t
that denotes reference set images. As infinitely long
experiments are impractical, taking the difference be-
tween the means of the stimulated and reference data
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yields only an approximate answer for the activity map.
This is the standard difference which we write formally
as

bsp(x) = (f(x, D)) = (f(x, ). (4)

A rough calculation can now be made to illustrate
why the standard difference often performs poorly in a
typical experiment. Using Eq. (2) the standard differ-
ence becomes

dsp(X) = p(X) + An(x)), (®)

where Am(x)) = m(x, T)) — Mm(x, 1)) is the difference
between the means of the background over the stimu-
lated and reference data. The error in a measurement
of Aln(x)) is about 20,,/\N where o, is the standard
deviation of m(x). The ratio of the signal to the back-
ground standard deviation is | p(x)|/o, ~ 0.01. If we
take N = 2000, then the ratio of the signal strength at x
to the background fluctuation is

(PO | IPG)VN
A 20

0.2.

n

This shows that the contribution of the background to
the standard difference can be several times greater
than that of the signal.

Principal Component Analysis

Akey part of the truncated difference analysis scheme
is representing the standard difference in the basis
obtained by principal component analysis. PCA is a
scheme for compressing spatiotemporal data to provide
a basis where each element is ranked by its importance
in reconstructing the data. Compression is then
achieved by omitting less important elements in the
representation of the data (this compression is optimal
in a least mean squares sense). If one is dealing with
continuous functions rather than discrete data, then
the procedure analogous to PCA goes under the name of
the Karhunen—Loeve decomposition (see Sirovich and
Everson 1992).

In PCA, each image record t is represented by the
linear combination,

f(x, 1) = > an(t)n(X). (6)

(Recall that the notation f(x, t) is not a function of
continuous variables in space and time but rather of
discrete pixel locations x and image records t. If one is
more comfortable with matrix notation then one can
replace f(x, t) by the matrix f with elements f;, where i
indexes the pixels and j the times.) The [(s,} are images
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known as the principal components. We assume that
the number of images N is less than the number of
pixels M as is typical in optical imaging experiments.
Since the mean has been subtracted from the data, the
number of principal components will in general be
N — 1. They form an orthonormal basis for the data,

Wi (€), YO = 2 Y N (X) = Sy (7)

where the sum is taken over all M pixels. Any image
can be represented as a column vector in which the
pixels are components. The principal components are
then the eigenvectors obtained from the eigenvalue
equation,

Ky, = O-Enlbm ) (8)

where K is the covariance matrix whose elements are
given by

1
K(x,y) = NZ f(x, t)f(y, t). 9)

(In matrix notation this would be K = ffT/N.) Since N is
large we can ignore the distinction between N and N —
1. The |a,} are the coordinates corresponding to the
basis set {{s,]. Each coordinate for a given image is the
projection of that image onto the corresponding eigen-
vector,

am(t) = (f(X, 1), Ym(X))x (10)
From Egs. (8), (9), and (10) we find

1

N (am(t)v an(t))t = U%Smn- (ll)

This expression shows that the temporal activities of
different eigenvectors are uncorrelated and that the
eigenvalue o2 is the variance of the m™" mode. The
principal components are ranked in order of descending
eigenvalue, as modes that carry more variance are
more important in representing the data. The term
“power” is often used synonymously with variance.

In optical imaging data, the first few principal compo-
nents usually contain over 95% of the variance. They
generally correspond to so-called vegetative modes of
activity like circulation and respiration and have a
vascular appearance and/or large scale spatial struc-
tures that are not characteristic of neuronal response to
stimuli. Midrange principal components appear patchy
and the eigenvectors with the lowest power look like
pure pixel noise. Typically, only the first 200 or so
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principal components have useful information and the
rest can be discarded.

We note that the PCA eigenvalues and eigenvectors
can be efficiently computed using the snapshot method
(Sirovich, 1987). This method exploits the fact that the
eigenvalues of the covariance matrix K (size M?2) are the
same as those for the smaller matrix (size N?) with
elements given by

C(t,s) = %E f(x, t)f(X, S). (12)

The [a,| are eigenvectors of C and the principal compo-
nents can be calculated from

1
Um(X) = — (f(X, 1), an(0):. (13)

m

Since PCA decomposes the data into modes of uncor-
related activity, it is possible that the neuronal re-
sponse map is well-captured by one of the principal
components—the one that is most correlated with the
stimulus presentation sequence w(t). This is not usu-
ally the case, however, and even in the limit of infinite
data a single principal component will not, in general,
yield the true activity map p(x) as we now show. Using
Eq. (2) we can write the covariance matrix K as

1 1
K y) = g 2 (106 Dn(ys ) = 5 i Ow( p(y)

. L (14)
+ 50, OWO PO+ PEIPO).

Since the background is uncorrelated with the stimulus
presentation sequence, (v, w); — 0 as N — oo, the two
cross terms in (14) vanish and, in the infinite data limit,
K becomes

KX, y) = Ko(X, y) + ¥ p(x) p(Y), (15)
with K, defined as Ky(x, y) = N 13m(X, t)n(y, t). If p(x)
is an element of the null space of K, then 2/ K(X, y)
p(y) = p(x) making p(x) an eigenvector of K. Since the
principal components are also eigenvectors of the covari-
ance matrix then one of them will be identified with the
true activity map in the infinite data limit. This would
also be the case if p(x) were an eigenvector of K. In
general, however, p(x) could be some arbitrary map and
neither of the above two possibilities need pertain; in
which case, a lone principal component will not corre-
spond to the actual neuronal response map.

PCA has been used successfully to identify neuronal
activity maps with individual principal components
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(Sirovich et al., 1996). One can identify the appropriate
principal component by finding the one whose time
coordinate series is best correlated with the stimulus
presentation sequence. Cannestra et al. (1996) also
used a single principal component to effect improved
analysis of the time course of the intrinsic optical signal
and better noise reduction of reconstructed images. As
argued above, there is no mathematical reason for
restricting ourselves to a single principal component
and, indeed, experimentally weak signals such as ma-
caque orientation preference are usually not captured
well by just one component. This is also seen to be the
case for the test data set discussed under Results (see
Fig. 3b). This leads us to seek a linear combination of
principal components in recovering the neuronal re-
sponse map.

The Truncated Difference

The first step in obtaining the truncated difference
map is rewriting the standard difference in the basis of
principal components. Using the definition of the stan-
dard difference (4) and the expansion (6), we have

bsp(X) = X Alin(X), (16)

where A, is the difference in the means of the coordi-
nate a, over the stimulated and reference data sets,
An = (@ (®)) — (@n ()

As noted above, it is the strong background that is
responsible for the often poor quality of the standard
difference map. The higher power principal compo-
nents are typically associated with background pro-
cesses and these modes dominate the standard differ-
ence. Aremedy is to reduce or eliminate the contribution
of the high power background modes. Of course, this
truncation cannot be done capriciously and an objective
method for doing so is detailed below.

The truncated difference can be written,

bro(X) = > H(N)AL P, (X), 17)

where p(n) is the coefficient that reweights the contribu-
tions of the principal components. For example, we may
choose the hard truncation,

1 forL=n=<H

h(m) = | (18)

forn<Lorn>H.

Here, the truncated difference map is obtained by
projecting the standard difference onto the range of
eigenvectors with indices between the low cutoff L and
the high cutoff H. The goal is to remove principal
components that have little or nothing to do with the
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neuronal response signal and primarily represent back-
ground processes or noise.

The method used for selecting the truncation essen-
tially involves the application of statistical significance
testing to the modal coordinates {a,}. To calculate the
significance of the nt principal component, we first
make the null hypothesis that its coordinate series a,(t)
and the stimulus presentation sequence, w(t), are
uncorrelated. We denote by A the difference between
the means of the stimulated and reference data sets
that could be observed if the null hypothesis were true.
This is distinct from the actual measured difference A,,.
It is reasonable to take its probability distribution,
pn(4), to be a Gaussian centered about zero,

AZ
pn(d) = exp | — —2) : (19)
Y 2w 207}
The standard deviation is given by o, = /0% + 0%,

where o, and o, are, respectively, the standard
deviations one would find for the means of the stimu-
lated and reference data for the coordinate series a,(t).
However, the division of a,(t) into stimulated and
reference halves is irrelevant under the null hypothe-
sis and we expect the standard deviation of (a,) to scale
as o,/ /N and so O3, = Ola,) = onV'ZTN. This yields o, =
ZGn/\rN.

In assessing the significance of a principal compo-
nent, it is convenient to calculate its correlation, r,,
with respect to the stimulus presentation sequence,

a
(@, W) 1A, 0
lan [ lw®I 2o,
We see that apart from a numerical factor the correla-
tion is essentially the difference A, scaled by the square
root of the power in the n™™ mode. The probability
distribution can now be expressed more simply in
terms of the correlation,

B N
po(r) = 5 exP

and since N is typically on the order of a thousand, the
function is vanishingly small for r = 1 and can there-
fore be assumed to range over —o < r < o, So for a
given measured correlation r,, the probability, P,, =
P(| = |r,]), of observing a correlation whose absolute
value is equal to or larger than |r,| can be calculated
(assuming the null hypothesis):

e B N
Po=2 [ pandr=1-erf|\[Z . (2

1 2
—5 Nr?, (21)
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This probability tells us the likelihood that the mea-
sured correlation could have arisen simply by chance
due to the partition into two halves of a set of elements
picked from the same distribution. Taking the comple-
mentary probability yields the confidence level, P, =
1 — P,, which is a gauge of how assured we are that the
principal component under scrutiny is genuinely re-
lated to the stimulus. It is also possible to more directly
calculate the confidence levels by randomly shuffling
the data, measuring the correlation with respect to the
stimulus presentation sequence and then repeating
this many times to obtain the probability distribution.
For optical imaging data, the confidence levels obtained
with this much more time-consuming method are very
close to those that stem from Eq. (22), thereby validat-
ing the Gaussian assumption.

In optical imaging data, the principal components
that are most significant in representing the neuronal
response map often cluster near each other. When the
correlation magnitude, |r,|, is plotted as a function of
eigenvector index, this is seen as a hump of relatively
high correlations (see Fig. 5a). On a plot of the [P,} the
hump corresponds to a plateau of high confidence levels
(Fig. 5b). Accordingly, for the truncated difference (17)
with the hard truncation (18) we retain only those
eigenvectors within the range of the high confidence
level plateau whose edges are defined by the cutoff
points, L and H. The purpose of the low cutoff L is to
exclude high power principal components correspond-
ing to vegetative processes. It can be chosen by finding
the first principal component whose confidence level
exceeds some threshold value, say 0.99. As it is possible
that a given principal component could have a high
confidence level by chance, the plots of correlation and
confidence level should be visually inspected to make
sure that the principal component indeed marks the
start of the high confidence plateau. The upper cutoff H
serves primarily to smooth the response map as it
excludes low power principal components, which tend
to be noisy in appearance. As such, H should be chosen
liberally to ensure the inclusion of all the significant
principal components.

We note that the truncated difference method has the
desirable property of agreeing with the standard differ-
ence in the limit of N — «. As the number of image
records increases, we gain greater confidence in those
principal components whose correlation with the stimu-
lus presentation sequence happens to be small. The
range of retained eigenvectors increases until we re-
cover the standard difference. It is also worth recalling
that the principal components will themselves change
as more images are added to the data set.

One might wonder as to why a contiguous range of
principal components is chosen instead of simply screen-
ing for only those components whose confidence level
exceeds a threshold value. As there is no a priori
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method of setting the threshold confidence level, the
screening method involves the following tradeoff: select
a high threshold and exclude eigenvectors that are
genuinely related to the activity map; or select a lower
threshold and run the risk of including falsely corre-
lated eigenvectors some of which may be of high power,
thereby distorting significantly the recovered activity
map. By using a natural feature of the data, that is, the
clustering of significant principal components, the trun-
cated difference method helps avoid the accidental
inclusion of bogus, high power components as it is
highly unlikely that multiple high confidence eigenvec-
tors would be located near each other simply by chance.
By using all the eigenvectors between the cutoff indi-
ces, we avoid excluding those principal components
whose correlations with the stimulus presentation se-
quence happen to be low but genuine. We have tested
both methods on the artificial data set described under
Results and the truncated difference performs better
than the simple screening technique.

Rather than completely discarding the principal com-
ponents outside the cutoff limits as done in (18), it is
also possible to use a softer truncation, in which these
components are given a reduced but nonzero weight.
For instance, the differences, A,,, from principal compo-
nents before the low cutoff can be rescaled so that their
power is pegged to the power of the eigenvector at the
low cutoff, {5, . This corresponds to setting u(n) = o /o,
for n < L. As we have found that this method produces
at best minor improvements in activity map recovery,
and as there are cases in which the truncation points
can be set by criteria other than confidence level (see
Discussion), we will use the hard truncation (18) in the
results reported in this paper.

In summary, the truncated difference method for
obtaining the neuronal response map can be outlined
as follows:

1. Calculate the correlations and associated confi-
dence levels of the mode coordinates (a,} with the
stimulus presentation sequence w(t).

2. ldentify the eigenvector indices, L and H, that
form the lower and upper boundaries of the high
confidence level plateau.

3. Project the standard difference map onto the basis
composed of those principal components lying between
L and H.

The Indicator Function

When a set of data can be divided into two classes, an
indicator function can be used to indicate to which class
a given data element belongs. The application of indica-
tor functions in conjunction with PCA as a method of
obtaining activity maps in optical imaging data was
proposed by Everson et al. (1997). Here, the two classes
are the stimulated and reference data sets and we seek
an indicator function, ¢,(x), which attempts to satisfy
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the conditions?:

(Fx, 1), i) = 1L, t T

(f(X, 1), d1(X))x

(23)

-1, t e |i}.

The image &,(x) is determined by minimizing the
square difference between the left and righthand sides
of the above conditions summed over all times t. In
addition, ¢,(x) is calculated using the first T principal
components, where T is chosen to limit the influence of
noise and chance correlations between the stimulated
and reference data sets. The indicator function can
then be expressed in terms of the principal components,

o (an(t), w(n)),
%(@ZEM

n=1 (O

Un(X). (24)

Given that A, = 2(a,, w)/N, we see from Eq. (16) that
&1 (X) is not proportional to the standard difference as
N — o« and emphasizes low power principal compo-
nents. However, the indicator function method pro-
duces significantly improved performance over the
standard difference for typical signals of interest in
optical imaging experiments (Everson et al., 1997). A
similar technique for determining activity maps from
PET experiments, which uses PCA combined with the
Fisher linear discriminant rather than the conditions
(23), is described in Ardekani et al. (1998).

RESULTS

The true response map to a given stimulus in an
actual experiment is unknown, so in this section, we
assess the performance of the truncated difference as
well as the other analysis techniques on an artificial
data set. This test data set consists of a known test
pattern, the checkerboard of Fig. 1a, which is digitally
added to a data set of images taken from an actual
experiment on a macaque visual cortex. The test pat-
tern plays the role of the activity map which we attempt
to recover and is added at a very weak level in order to
mimic the low signal-to-noise ratios of real neuronal
response maps. This test data set is split into two
halves: the stimulated data consists of the half of the
background macaque cortex images to which the check-
erboard has been added; the reference data consists of
only the remaining half of the background images,
without the checkerboard. One can see from Figs. 1b
and 1c that the stimulated and reference images look

1 These are the conditions appropriate for mean-subtracted data.
For data that has not been mean-subtracted, the right-hand side
would be 1 for t € [t} and 0 for t € {t]. The intent is to find an image that
is most parallel with the stimulated data and most orthogonal to the
reference data.
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(a) (b)

FIG. 1.
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The test data set: (a) the test pattern, (b) a member of the stimulated data set, and (c) a member of the reference data set. The

grayscale in (a) is not the same as in (b) and (c). If it were, the checkerboard would visually appear to be a field of constant intensity.

virtually identical and, in particular, the test pattern
cannot be visually discerned in the stimulated picture.
This is because the difference in intensity between the
center of a light square and that of a dark square is
1/2000™ of the mean reflectance level of the back-
ground. The stimulated and reference sets each have
1080 frames.

After subtraction of the mean image from all the
records, the test data set is decomposed via principal
component analysis. The resulting spectrum of the first
250 eigenvalues (of 2159 total) is shown in Fig. 2. By
retaining only the first 250 eigenvectors in the PCA
representation of the image set, we capture 99.99% of
the variance in the data. The spectrum has been
labeled by three regions and its basic structure is the

same as that observed in unaugmented experimental
data. The early, high power principal components corre-
spond to vegetative effects such as those of circulation
and respiration. These eigenvectors are typically vascu-
lar in nature and contain relatively broad swaths of
high and low reflectance as can be seen in the first
principal component (Fig. 3a). The eigenvectors that
are of most consequence in representing the neuronal
activity map (the checkerboard in this case) lie within
the “response” region of the spectrum (although there
are eigenvectors here that are unrelated to the neuro-
nal response). They are usually patchy in appearance
and are not appreciably marked by blood vessels (Fig.
3b). As an indication of how weak the signal of interest
is, note that the beginning of the response range is

vegetative

TT T

response

BRI

fractional variance

Conl vl g

Ll

background, noise

LRI B R ALY

-7 i

v

0 50 100

150 200 250

eigenvalue index

FIG. 2.
eigenvalues. Only the first 250 eigenvalues are shown.

Eigenvalue spectrum of the test data set. On the vertical axis is plotted the ratio of the given eigenvalue to the sum of all the
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FIG. 3. Sample principal components and their associated time coordinates. (a) The highest power principal component, {51(x), (b) Y6(X),
the principal component best correlated with the stimulus presentation sequence, (c) a;(t), and (d) ass(t).

about four orders of magnitude lower in power than the
first principal component. The final zone of the spec-
trum consists of low power principal components that
correspond to background processes, chance correla-
tions of activity, and are increasingly marked by pixel
noise the deeper in the spectrum one goes.

In Fig. 3, along with the principal components them-
selves are shown their respective time coordinates (the
a,(t) of Eqg. (6)). The images are ordered so that the
stimulated data constitutes the first half of the records
and the reference data is the second half. The corre-
sponding stimulus presentation sequence, w(t), will be
a downward step function. Any principal component
that is associated with the neuronal response should
have a coordinate time series with a step function
appearance as is seen in Fig. 3d for ayg(t). In fact, {.6(X)
is the principal component that is best correlated with

w(t) and hence is the activity map we would obtain
from the application of PCA alone, although the check-
erboard is not discernible. Hence, we see that for this
test data set, a sole principal component is inadequate
to recover the activity map as is often the case experi-
mentally. It is clear from visual inspection that, given
the variance in the data, the size of the step in Fig. 3d is
much larger than one would expect merely by a chance
grouping of data points unrelated to the presence or
absence of the test pattern. On the other hand, the
difference between the stimulated and reference means
for a,;(t) indicated by the slight misalignment of the
dashed lines could easily have occurred by chance
(using Eq. (22), P; = 0.34). However, a glance at the
vertical scales of Figs. 3c and 3d alerts one to the fol-
lowing problem: the ratio |A,/A4| = 18.6, and so the first
principal component is a much greater contributor to
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the standard difference than is the principal component
most correlated with the stimulus presentation se-
gquence, even though the former’s contribution is essen-
tially determined at random.

The first principal component is not the only one that
is disproportionately represented in the standard differ-
ence map. A plot of the projections of the test pattern
and the standard difference onto the PCA basis shown
in Fig. 4 reveals that many of the early, high power
eigenvectors are overweighted in the standard differ-
ence relative to the values for the actual checkerboard
components. However, the agreement for eigenvectors
with indices larger than about n = 20 is good. We
therefore seek to eliminate the offending high power
principal components using the truncation procedure
described under The Truncated Difference.

The correlations of the eigenvector coordinates {(a,
with w(t) are calculated and the magnitudes plotted in
Fig. 5a. The plot displays a peak where principal
components with relatively high correlations cluster
together. On the associated confidence level plot, Fig.
5b, this peak manifests itself as a plateau of confidence
levels very near to one. The region between the dashed
lines is the basis of eigenvectors onto which the stan-
dard difference map is projected to obtain the truncated
difference map. The left truncation point is the first
principal component with P, > 0.99, which corresponds
nicely with the very beginning of the plateau, although
this need not always be the case. The plateau tapers off
towards the right and the righthand truncation point is
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chosen a little beyond the last clustering of high
confidence levels.

Having chosen our truncation points, the truncated
difference map can now be calculated and compared
with the actual test pattern. The result is shown in Fig.
6 along with the maps obtained using the standard
difference and indicator function methods. The trun-
cated difference reveals the cleanest checkerboard where
the checkers are very uniform and distinct. In the
standard difference map, the checkerboard is barely
perceptible and the blood vessels are the single most
dominant feature. In fact, the standard difference bears
a strong resemblance to the negative of the first princi-
pal component, (Fig. 3a), which is not surprising given
the discussion above. The test pattern is clearly visible
in the indicator function map but the checkers look
irregular and often not uniform. If these maps are
considered to be vectors by treating the pixels as
individual components, then the angle that each one
makes with respect to the test pattern can be calcu-
lated, providing a rough measure of the performance of
each method. An angle of 0° indicates identical maps.
The angles made by each map with the checkerboard
are: truncated difference, 17.3°; standard difference,
79.7°; indicator function, 31.7°. This confirms the visual
impression that the truncated difference most faith-
fully extracts the test pattern. The strength at which
the checkerboard is added to the background was
varied over a range spanning two orders of magnitude
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FIG. 4. Projection of the test pattern and the standard difference onto the basis of principal components. The arrow in the lower lefthand
corner indicates that the value for the coordinate of the first principal component in the standard difference (—1802) extends below the low

edge of the vertical scale.
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FIG.5. (a) Magnitude of the correlations of the principal component time coordinates with the stimulus presentation sequence and (b) the
associated confidence levels. The dashed lines indicate the truncation points.

and the truncated difference always yielded the best shown horizontally and vertically oriented luminance
map. gratings and we seek the activity map that represents

Figure 7 gives an example of the application of the the difference between the horizontal and vertical
analysis techniques to obtain activity maps for real responses. Similar features of activity appear in all
visual stimuli, in this case, oriented gratings. Acat was three maps in Fig. 7. The standard difference, however,

(b)

Truncated Diff. @ Standard Diff. Indicator Function

FIG. 6. Activity maps extracted from the test data by: (a) the truncated difference, (b) the standard difference, and (c) the indicator function.
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(b)

Truncated Diff.

Standard Diff.
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Indicator Function

FIG. 7. Activity maps corresponding to the difference between neuronal responses to horizontal and vertical gratings for a cat primary
visual cortex. (a) truncated difference, (b) standard difference, and (c) indicator function.

has a washed out appearance as the patches of activity
are indistinct. The indicator function has more well-
defined patches but the grainy appearance indicates an
excessive amount of noise. The truncated difference
captures the best of both worlds—it contains smooth
and distinct activity regions as one would expect of
orientation response maps.

DISCUSSION

We have applied the truncated difference method
towards obtaining various types of response maps from
optical imaging data such as ocular dominance, orienta-
tion, spatial frequency, and color and it has produced
excellent results. The correlation and confidence level
plots give a direct way of assessing the quality of the
data. If the signal is relatively strong, there will be a
clear peak in the correlation plot and a distinct plateau
of confidence levels close to unity. Poor signals gener-
ally will not have a distinct correlation peak and the
high confidence level principal components will be
scattered rather than clustered. We remark that sig-
nals of similar strength but different spatial frequen-
cies are not recovered with the same efficiency. Re-
sponse patterns characterized by low spatial frequencies
can be extracted more faithfully than those marked by
higher spatial frequency variations. This is due to the
fact that at high spatial frequencies there are a greater
number of modes at high spatial frequencies across
which the response can be distributed. This effect has
been verified in test data sets by varying the size of the
checkerboard squares.

As PCA forms the basis of our method, a cautionary
word about the sensitivity of PCA to outlying data
points is in order. It is observed that freak events that
perhaps are found in only one image record are some-
times allotted their own principal component. For
instance, due to a technical glitch, one or more camera
pixels may fail to record any reflected light for a given

image. After the dataset has been subjected to PCA, a
principal component with these blanked out pixels may
be generated. Supposing that this failure occurred
during either the stimulated or reference conditions
but not both, the time series of this principal compo-
nent will be highly correlated with the stimulus and
therefore, may be included in the truncated difference.
Those principal components whose genesis lies in one-
time events can be readily identified by examination of
the corresponding time series and thus can be screened
out if such freak events are of concern.

Optical imaging of high spatial resolution activity
maps generally requires the differential imaging of two
“orthogonal” stimulus conditions, i.e., conditions that
yield regions of cortical response that are roughly
complementary. For ocular dominance columns, these
conditions correspond to stimulus presentation to the
left or right eye individually. In the case of orientation
columns, the stimuli are a pair of gratings with orthogo-
nal orientations such as those used to obtain Fig. 7. The
use of orthogonal conditions is dictated by the physi-
ological processes underlying the intrinsic signal and
by the sensitivity of the imaging apparatus—one needs
to eliminate the diffuse, global response of the intrinsic
signal in order to reveal the “local” intrinsic signal
associated with the specific stimulus (Vanzetta and
Grinvald, 1999). The truncated difference method, how-
ever, is not bound by these orthogonal stimulus con-
straints, and so can be equally well used if greater
understanding of the intrinsic signal dynamics and
improved imaging techniques obviate the need for
orthogonal conditions. In this case, the reference dataset
would consist of the images taken just prior to stimulus
onset. As mentioned previously, the stimulus presenta-
tion sequence, w(t), need not be a simple step or boxcar
function but can be a smooth function intended to
mimic the time course of the intrinsic signal.

We note that in some experimental conditions it is
possible to observe multiple clusters of significant
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principal components. In this case the truncation cut-
offs should encompass the entire range including all the
clusters, although there are situations in which it is
desirable to exclude early, high power clusters of signifi-
cant principal components. This can occur when con-
trasting stimuli to which the cortex responds unequally
such as gratings of different spatial frequencies or
colors and is most likely related to the existence of local
and global components of the intrinsic signal as noted
above. In such cases, if one includes all the clusters of
significant principal component, the resulting activity
map is characterized by large regions of roughly con-
stant reflectance. This stands in contrast to the local,
patchy that one expects of a map which represents the
specific regions of neurons that respond to a given
stimulus. Fortunately, in such situations, the plot of
correlation magnitudes often displays two peaks—a
smaller, narrow one followed by a much stronger and
broader peak. The truncation point can be chosen at the
beginning of the second peak thereby eliminating the
contribution of the principal components located in the
first and weaker peak. If this is done, a map whose
appearance is in greater accord with what one expects
of a neuronal activity map is revealed. The origin of the
first peak is not well-understood and so one must have
a strong rationale for its elimination in calculating
response maps.

We have presented a technique for extracting neuro-
nal activity maps from optical imaging data which is
simple, intuitive, and effective. It teams PCA with
statistical significance testing in a straightforward way
and removes the deleterious effect of high power vegeta-
tive modes on the activity map. The use of significance
testing allows these modes to be eliminated in an
objective manner rather than by the arbitrary applica-
tion of high-pass spatial filtering to remove vegetative
artifacts from the standard difference map. PCA pro-
vides a natural basis for this technique in that it
decomposes the data into modes of uncorrelated activ-
ity that are ranked by power. It is the application of
PCA to the data that is the most time-consuming step
in this method, and this can be done in a computation-
ally efficient way.

We note that there is nothing in the truncated
difference technique that is specific to optical imaging
data and so the method is applicable to other functional
imaging techniques and other types of signals. In most
current fTMRI experiments, the signal is relatively
strong and results are primarily reported simply as
regions of activation or no activation so that the
truncated difference may be of only marginal benefit.
Recent work by Vanzetta and Grinvald (1998) shows
that the initial dip seen in some high field fMRI studies
(Yacoub et al., 1999) represents changes in the oxida-
tive metabolism that are colocalized with neuronal
electrical activity, thereby holding the promise of greatly
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improved fMRI spatial resolution, nearing that of opti-
cal imaging. Consequently, the signal processing issues
confronting high resolution fMRI experiments would be
similar to those found in optical imaging. This is so
because (i) the initial dip is relatively weak; and (ii) if
one desires to map out functional modules such as
hypercolumns, it is best to resolve the activity into finer
grades than binary on/off regions of activation. Accord-
ingly, as spatial resolution improves, the technique set
forth in this paper may be of great utility in the
analysis of fMRI data and perhaps PET data as well.
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