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We present a novel analysis technique for the extrac-
ion of neuronal activity patterns from functional
maging data. We illustrate this technique on data from
ptical imaging. Optical imaging of the mammalian
isual cortex probe the patterns in which the neuronal
esponses to various aspects of the visual world, such
s orientation and color, are spatially organized within
he cortex. Recovering these patterns from the image
ata is a challenging problem as the neuronal response
ignal is extremely weak in comparison to the back-
round vegetative processes (e.g., circulation and res-
iration). The proposed technique obtains the neuro-
al activity pattern using a combination of principal
omponent analysis and statistical significance test-
ng. The performance of this method is compared with
he results of existing analysis techniques. The com-
arison shows the new method to be more sensitive
han previous methods. r 2000 Academic Press

Key Words: optical imaging; functional imaging; prin-
ipal component analysis.

INTRODUCTION

Functional brain imaging methods such as positron
mission tomography (PET), functional magnetic reso-
ance imaging (fMRI), and optical imaging have pro-
ided a wealth of information on how the brain re-
ponds to external stimuli. Optical imaging, in
articular, has proven to be a fruitful probe for illumi-
ating the functional architecture of the mammalian
rimary visual cortex having a superior spatial resolu-
ion to PET and fMRI. The spatial organization of the
euronal response in various species has been investi-
ated with respect to ocular dominance and orientation
Blasdel and Salama, 1986; Blasdel, 1992), motion

1 Current Address: Information Systems Laboratories, 7047 Car-
oll Road, San Diego, CA 92121.

2 To whom correspondence and reprint requests should be ad-

sressed. Fax: (212) 426-5037. E-mail: chico@camelot.mssm.edu.
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irection (Weliky et al., 1996), and spatial frequency
Shoham et al., 1997; Everson et al., 1998). In typical
ptical imaging experiments, an animal is shown a
isual stimulus on a screen while monochromatic (red)
ight shines on an exposed part of its cortex that is
eing imaged by a CCD camera. The intrinsic optical
ignal is an indirect measure of neuronal activity—
ctive regions of the cortex get darker as the result of
ffects associated with increased metabolic demand,
uch as changes in blood flow, oxygen consumption, and
ell swelling. This decrease in reflectance, however, is
ery slight, approximately 0.01–0.1% and is dwarfed by
he variations in reflectance due to vegetative processes
uch as circulation and respiration.
As a consequence of the weakness of the signal,

aithfully extracting the cortical response map is a
ifficult task and many (typically thousands) of images
ave to be taken to obtain good results. The simplest
nd most common analysis procedure is to calculate the
ifference between the two pictures that are the aver-
ges of the sets of images obtained under two different
timulus conditions. We refer to the activity map
btained in this manner as the ‘‘standard difference.’’
he standard difference yields good results when the
ptical response signal is relatively strong and/or a
ufficiently large amount of data has been taken. When
hese conditions are not met, the resultant activity map
s a poor representation of the cortical response, often
eavily contaminated by vascular artifact or other

arge spatial scale features that are usually not associ-
ted with the regions of neurons that preferentially
espond to a given stimulus. Since the amount of data
ne can obtain from a given animal is limited, an
mproved analysis method can produce a combination
f the following benefits: more accurate determination
f the activity maps; access to weaker activity maps;
nd the use of a richer repertoire of stimulus conditions
n a given experiment.

Efforts to improve signal recovery beyond that of the
tandard difference include Principal Component Analy-

is (PCA) (Sirovich and Everson, 1992; Sirovich et al.,

1053-8119/00 $35.00
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314 GABBAY ET AL.
996; Cannestra et al., 1996), the indicator function
pproach (Everson et al., 1997), and the application of
ndependent component analysis (Bell and Sejnowski,
995; Hyvärinen and Oja, 1997) and extended spatial
ecorrelation (Molgedy and Schuster, 1994) to optical
maging data (Schieffl et al., 1999). Carmona et al.
1995) presented a method for the analysis of optical
maging data that uses wavelets to clean the images of
ascular artifact in conjunction with PCA to obtain the
esponse region. While the time course of the intrinsic
ignal seems to be captured by this technique, the
ethod is very computationally intensive and its abil-

ty to produce highly resolved activity maps such as
cular dominance or orientation columns has not been
hown in the literature.
In this paper, we present a novel analysis technique

or activity map extraction, which we refer to as the
‘truncated difference.’’ This technique is essentially a
ombination of the standard difference and PCA in that
he activity map is determined by projecting the stan-
ard difference onto the basis spanned by the range of
rincipal components of highest statistical significance.
t will be seen that the truncated difference has the
erits of being conceptually and computationally simple
hile still producing excellent results. The truncated
ifference method is described under Analysis Meth-
ds, along with the standard difference, PCA, and the
ndicator function. Its performance on an illustrative
rtificial data set and on real data is shown under
esults, where it is compared with the other analysis

echniques.

ANALYSIS METHODS

he Standard Difference

We will take our experimental data to consist of two
ets of images, the ‘‘stimulated’’ data set and the
‘reference’’ data set. The stimulated data set contains
mages for which the animal was shown the stimulus of
nterest and, for simplicity, the reference data is taken
o be the set of images where no stimulus was pre-
ented (in practice, the reference data set usually
orresponds to a second stimulus condition). Our goal is
o find the map that best characterizes the difference in
euronal activity between the stimulated and reference
ata.
Each image record consists of the intensity value of

ight reflected off the cortex received by each pixel x in a
wo-dimensional array of M pixels. We denote the
ean-subtracted reflectance recorded in pixel x for a

iven image by f (x, t), where t is the index or time-
tamp of that image. The mean that is subtracted is the
verage of all the image records obtained by grouping
ogether the stimulated and reference data. When a
istinction needs to be made, members of the stimu-

˜
ated data will be denoted by t and reference set images t
y t̃. The total number of images is N, and, for conve-
ience, the number of images in each of the stimulated
nd reference sets is taken to be N/2. The order in
hich the stimulated and reference images are ar-

anged is represented schematically by the stimulus
resentation sequence, w(t):

w(t) 5 5
1 for t [ 5t̃6

21 for t [ 5t̂6.
(1)

his is a boxcar function with a mean of zero.
We suppose that there exists a true activity map p(x)

hat we are trying to extract from the background. This
ackground is denoted by h(x, t) and is mean-sub-
racted so that it’s average over time is zero for each
ixel. We will make the assumption that the back-
round and the signal of interest add linearly. This is
easonable given the weakness of the signal relative to
he background. Accordingly, any image record can be
ritten

f (x, t) 5 h(x, t) 1 1⁄2 w(t) p(x). (2)

ote that the mean subtraction is responsible for the
ppearance of p(x) in the reference data images. The
se of a boxcar function for w(t) assumes that the signal

s always at full or zero strength, which is a fair
pproximation if one only uses data for which the
quilibrium signal is expected to be nearly attained.
lternatively, if the typical time course of the signal is
nown then that response can be incorporated into
(t).
We can take the temporal inner product of both sides

f Eq. (2) with the stimulus presentation sequence,
here the temporal inner product between two func-

ions, a(t) and b(t) is (a, b)t 5 Sta(t)b(t) and the sum is
aken over all N times. Since the background is as-
umed to be independent of the signal, their correlation
hould vanish in the limit of an infinite amount of data,
o that (h, w)t = 0 as N = `. This yields an expression
elating the activity map to the data,

p(x) 5 lim
N=`

2

N
( f (x, t), w(t))t, (3)

here we have used (w, w)t 5 N. Given the particular
unctional form, (1), for w(t), this expression can be
ewritten as p(x) 5 limN=`(7 f (x, t̃8 2 7 f (x, t̂)8), where
f (x, t̃)8 denotes the image obtained by averaging over
ll the records indexed by t̃ that comprise the stimu-
ated data and 7 f (x, t̂)8 is the average over the index t̂
hat denotes reference set images. As infinitely long
xperiments are impractical, taking the difference be-

ween the means of the stimulated and reference data
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315DETECTION OF NEURONAL ACTIVITY MAPS
ields only an approximate answer for the activity map.
his is the standard difference which we write formally
s

fSD(x) 5 7 f (x, t̃)8 2 7 f (x, t̂)8. (4)

A rough calculation can now be made to illustrate
hy the standard difference often performs poorly in a

ypical experiment. Using Eq. (2) the standard differ-
nce becomes

fSD(x) 5 p(x) 1 D7h(x)8, (5)

here D7h(x)8 5 7h(x, t̃)8 2 7h(x, t̂)8 is the difference
etween the means of the background over the stimu-
ated and reference data. The error in a measurement
f D7h(x)8 is about 2sh /ÎN where sh is the standard
eviation of h(x). The ratio of the signal to the back-
round standard deviation is 0 p(x) 0 /sh , 0.01. If we
ake N 5 2000, then the ratio of the signal strength at x
o the background fluctuation is

0 p(x)

D7h(x)80 ,
0 p(x) 0ÎN

2sh

, 0.2.

his shows that the contribution of the background to
he standard difference can be several times greater
han that of the signal.

rincipal Component Analysis

Akey part of the truncated difference analysis scheme
s representing the standard difference in the basis
btained by principal component analysis. PCA is a
cheme for compressing spatiotemporal data to provide
basis where each element is ranked by its importance

n reconstructing the data. Compression is then
chieved by omitting less important elements in the
epresentation of the data (this compression is optimal
n a least mean squares sense). If one is dealing with
ontinuous functions rather than discrete data, then
he procedure analogous to PCA goes under the name of
he Karhunen–Loeve decomposition (see Sirovich and
verson 1992).
In PCA, each image record t is represented by the

inear combination,

f (x, t) 5 o
n

an(t)cn(x). (6)

Recall that the notation f (x, t) is not a function of
ontinuous variables in space and time but rather of
iscrete pixel locations x and image records t. If one is
ore comfortable with matrix notation then one can

eplace f (x, t) by the matrix f with elements fij, where i

ndexes the pixels and j the times.) The 5cn6 are images p
nown as the principal components. We assume that
he number of images N is less than the number of
ixels M as is typical in optical imaging experiments.
ince the mean has been subtracted from the data, the
umber of principal components will in general be
2 1. They form an orthonormal basis for the data,

(cm(x), cn(x))x ; o
x

cm(x)cn(x) 5 dmn, (7)

here the sum is taken over all M pixels. Any image
an be represented as a column vector in which the
ixels are components. The principal components are
hen the eigenvectors obtained from the eigenvalue
quation,

Kcm 5 sm
2 cm, (8)

here K is the covariance matrix whose elements are
iven by

K(x, y) 5
1

N o
t

f (x, t) f (y, t). (9)

In matrix notation this would be K 5 ff T/N.) Since N is
arge we can ignore the distinction between N and N 2
. The 5an6 are the coordinates corresponding to the
asis set 5cn6. Each coordinate for a given image is the
rojection of that image onto the corresponding eigen-
ector,

am(t) 5 ( f (x, t), cm(x))x (10)

From Eqs. (8), (9), and (10) we find

1

N
(am(t), an(t))t 5 sm

2 dmn. (11)

his expression shows that the temporal activities of
ifferent eigenvectors are uncorrelated and that the
igenvalue sm

2 is the variance of the mth mode. The
rincipal components are ranked in order of descending
igenvalue, as modes that carry more variance are
ore important in representing the data. The term

‘power’’ is often used synonymously with variance.
In optical imaging data, the first few principal compo-

ents usually contain over 95% of the variance. They
enerally correspond to so-called vegetative modes of
ctivity like circulation and respiration and have a
ascular appearance and/or large scale spatial struc-
ures that are not characteristic of neuronal response to
timuli. Midrange principal components appear patchy
nd the eigenvectors with the lowest power look like

ure pixel noise. Typically, only the first 200 or so
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316 GABBAY ET AL.
rincipal components have useful information and the
est can be discarded.
We note that the PCA eigenvalues and eigenvectors

an be efficiently computed using the snapshot method
Sirovich, 1987). This method exploits the fact that the
igenvalues of the covariance matrix K (size M 2) are the
ame as those for the smaller matrix (size N 2) with
lements given by

C(t, s) 5
1

N o
x

f (x, t) f (x, s). (12)

he 5an6 are eigenvectors of C and the principal compo-
ents can be calculated from

cm(x) 5
1

sm
2

( f (x, t), am(t))t. (13)

Since PCA decomposes the data into modes of uncor-
elated activity, it is possible that the neuronal re-
ponse map is well-captured by one of the principal
omponents—the one that is most correlated with the
timulus presentation sequence w(t). This is not usu-
lly the case, however, and even in the limit of infinite
ata a single principal component will not, in general,
ield the true activity map p(x) as we now show. Using
q. (2) we can write the covariance matrix K as

K(x, y) 5
1

N o
t
5h(x, t)h(y, t) 5

1

2
h(x, t)w(t) p(y)

1
1

2
h(y, t)w(t) p(x) 1

1

4
p(x) p(y).

(14)

ince the background is uncorrelated with the stimulus
resentation sequence, (h, w)t = 0 as N = `, the two
ross terms in (14) vanish and, in the infinite data limit,
becomes

K(x, y) 5 K0(x, y) 1 1⁄4 p(x) p(y), (15)

ith K0 defined as K0(x, y) 5 N 21Sth(x, t)h(y, t). If p(x)
s an element of the null space of K0 then SyK(x, y)
(y) ~ p(x) making p(x) an eigenvector of K. Since the
rincipal components are also eigenvectors of the covari-
nce matrix then one of them will be identified with the
rue activity map in the infinite data limit. This would
lso be the case if p(x) were an eigenvector of K0. In
eneral, however, p(x) could be some arbitrary map and
either of the above two possibilities need pertain; in
hich case, a lone principal component will not corre-

pond to the actual neuronal response map.
PCA has been used successfully to identify neuronal
ctivity maps with individual principal components c
Sirovich et al., 1996). One can identify the appropriate
rincipal component by finding the one whose time
oordinate series is best correlated with the stimulus
resentation sequence. Cannestra et al. (1996) also
sed a single principal component to effect improved
nalysis of the time course of the intrinsic optical signal
nd better noise reduction of reconstructed images. As
rgued above, there is no mathematical reason for
estricting ourselves to a single principal component
nd, indeed, experimentally weak signals such as ma-
aque orientation preference are usually not captured
ell by just one component. This is also seen to be the

ase for the test data set discussed under Results (see
ig. 3b). This leads us to seek a linear combination of
rincipal components in recovering the neuronal re-
ponse map.

he Truncated Difference

The first step in obtaining the truncated difference
ap is rewriting the standard difference in the basis of

rincipal components. Using the definition of the stan-
ard difference (4) and the expansion (6), we have

fSD(x) 5 o
n

Dncn(x), (16)

here Dn is the difference in the means of the coordi-
ate an over the stimulated and reference data sets,
n 5 7an(t̃)8 2 7an(t̂)8.
As noted above, it is the strong background that is

esponsible for the often poor quality of the standard
ifference map. The higher power principal compo-
ents are typically associated with background pro-
esses and these modes dominate the standard differ-
nce.Aremedy is to reduce or eliminate the contribution
f the high power background modes. Of course, this
runcation cannot be done capriciously and an objective
ethod for doing so is detailed below.
The truncated difference can be written,

fTD(x) 5 o
n

µ(n)Dncn(x), (17)

here µ(n) is the coefficient that reweights the contribu-
ions of the principal components. For example, we may
hoose the hard truncation,

µ(n) 5 5
1 for L # n # H

0 for n , L or n . H.
(18)

ere, the truncated difference map is obtained by
rojecting the standard difference onto the range of
igenvectors with indices between the low cutoff L and
he high cutoff H. The goal is to remove principal

omponents that have little or nothing to do with the
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317DETECTION OF NEURONAL ACTIVITY MAPS
euronal response signal and primarily represent back-
round processes or noise.
The method used for selecting the truncation essen-

ially involves the application of statistical significance
esting to the modal coordinates 5an6. To calculate the
ignificance of the nth principal component, we first
ake the null hypothesis that its coordinate series an(t)

nd the stimulus presentation sequence, w(t), are
ncorrelated. We denote by D the difference between
he means of the stimulated and reference data sets
hat could be observed if the null hypothesis were true.
his is distinct from the actual measured difference Dn.
t is reasonable to take its probability distribution,
n(D), to be a Gaussian centered about zero,

rn(D) 5
1

sDÎ2p
exp 12 D2

2sD
22 . (19)

he standard deviation is given by sD 5 Îs7ãn8
2 1 s7ãn8

2 ,
here s7ãn8

and s7ãn 8
are, respectively, the standard

eviations one would find for the means of the stimu-
ated and reference data for the coordinate series an(t).
owever, the division of an(t) into stimulated and

eference halves is irrelevant under the null hypothe-
is and we expect the standard deviation of 7an8 to scale
s sn/ÎN and so s7ãn 8

5 s7ân8
5 snÎ2/N. This yields sD 5

sn/ÎN.
In assessing the significance of a principal compo-

ent, it is convenient to calculate its correlation, rn,
ith respect to the stimulus presentation sequence,

rn 5
(an(t), w(t))t

\an \ \w(t) \
5

1

2

Dn

sn
. (20)

e see that apart from a numerical factor the correla-
ion is essentially the difference Dn scaled by the square
oot of the power in the nth mode. The probability
istribution can now be expressed more simply in
erms of the correlation,

rn(r) 5 ÎN

2p
exp 121

2
Nr22 , (21)

nd since N is typically on the order of a thousand, the
unction is vanishingly small for r 5 1 and can there-
ore be assumed to range over 2` , r , `. So for a
iven measured correlation rn, the probability, Pn 5
( 0 $ 0rn 0 ), of observing a correlation whose absolute
alue is equal to or larger than 0rn 0 can be calculated
assuming the null hypothesis):

Pn 5 2 e`
rn(r)dr 5 1 2 erf ÎN

0rn 0 . (22)

0 rn 0 1 2 2 e
his probability tells us the likelihood that the mea-
ured correlation could have arisen simply by chance
ue to the partition into two halves of a set of elements
icked from the same distribution. Taking the comple-
entary probability yields the confidence level, Pn 5
2 Pn, which is a gauge of how assured we are that the
rincipal component under scrutiny is genuinely re-
ated to the stimulus. It is also possible to more directly
alculate the confidence levels by randomly shuffling
he data, measuring the correlation with respect to the
timulus presentation sequence and then repeating
his many times to obtain the probability distribution.
or optical imaging data, the confidence levels obtained
ith this much more time-consuming method are very

lose to those that stem from Eq. (22), thereby validat-
ng the Gaussian assumption.

In optical imaging data, the principal components
hat are most significant in representing the neuronal
esponse map often cluster near each other. When the
orrelation magnitude, 0rn 0 , is plotted as a function of
igenvector index, this is seen as a hump of relatively
igh correlations (see Fig. 5a). On a plot of the 5Pn6 the
ump corresponds to a plateau of high confidence levels

Fig. 5b). Accordingly, for the truncated difference (17)
ith the hard truncation (18) we retain only those
igenvectors within the range of the high confidence
evel plateau whose edges are defined by the cutoff
oints, L and H. The purpose of the low cutoff L is to
xclude high power principal components correspond-
ng to vegetative processes. It can be chosen by finding
he first principal component whose confidence level
xceeds some threshold value, say 0.99. As it is possible
hat a given principal component could have a high
onfidence level by chance, the plots of correlation and
onfidence level should be visually inspected to make
ure that the principal component indeed marks the
tart of the high confidence plateau. The upper cutoff H
erves primarily to smooth the response map as it
xcludes low power principal components, which tend
o be noisy in appearance. As such, H should be chosen
iberally to ensure the inclusion of all the significant
rincipal components.
We note that the truncated difference method has the

esirable property of agreeing with the standard differ-
nce in the limit of N = `. As the number of image
ecords increases, we gain greater confidence in those
rincipal components whose correlation with the stimu-
us presentation sequence happens to be small. The
ange of retained eigenvectors increases until we re-
over the standard difference. It is also worth recalling
hat the principal components will themselves change
s more images are added to the data set.
One might wonder as to why a contiguous range of

rincipal components is chosen instead of simply screen-
ng for only those components whose confidence level

xceeds a threshold value. As there is no a priori
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318 GABBAY ET AL.
ethod of setting the threshold confidence level, the
creening method involves the following tradeoff: select

high threshold and exclude eigenvectors that are
enuinely related to the activity map; or select a lower
hreshold and run the risk of including falsely corre-
ated eigenvectors some of which may be of high power,
hereby distorting significantly the recovered activity
ap. By using a natural feature of the data, that is, the

lustering of significant principal components, the trun-
ated difference method helps avoid the accidental
nclusion of bogus, high power components as it is
ighly unlikely that multiple high confidence eigenvec-
ors would be located near each other simply by chance.
y using all the eigenvectors between the cutoff indi-
es, we avoid excluding those principal components
hose correlations with the stimulus presentation se-
uence happen to be low but genuine. We have tested
oth methods on the artificial data set described under
esults and the truncated difference performs better

han the simple screening technique.
Rather than completely discarding the principal com-

onents outside the cutoff limits as done in (18), it is
lso possible to use a softer truncation, in which these
omponents are given a reduced but nonzero weight.
or instance, the differences, Dn, from principal compo-
ents before the low cutoff can be rescaled so that their
ower is pegged to the power of the eigenvector at the
ow cutoff, cL. This corresponds to setting µ(n) 5 sL /sn
or n , L. As we have found that this method produces
t best minor improvements in activity map recovery,
nd as there are cases in which the truncation points
an be set by criteria other than confidence level (see
iscussion), we will use the hard truncation (18) in the

esults reported in this paper.
In summary, the truncated difference method for

btaining the neuronal response map can be outlined
s follows:
1. Calculate the correlations and associated confi-

ence levels of the mode coordinates 5an6 with the
timulus presentation sequence w(t).
2. Identify the eigenvector indices, L and H, that

orm the lower and upper boundaries of the high
onfidence level plateau.
3. Project the standard difference map onto the basis

omposed of those principal components lying between
and H.

he Indicator Function

When a set of data can be divided into two classes, an
ndicator function can be used to indicate to which class
given data element belongs. The application of indica-

or functions in conjunction with PCA as a method of
btaining activity maps in optical imaging data was
roposed by Everson et al. (1997). Here, the two classes
re the stimulated and reference data sets and we seek

n indicator function, fI(x), which attempts to satisfy r
he conditions1:

( f (x, t), fI(x))x 5 1, t [ 5t̃6

( f (x, t), fI(x))x 5 21, t [ 5t̂6.
(23)

The image fI(x) is determined by minimizing the
quare difference between the left and righthand sides
f the above conditions summed over all times t. In
ddition, fI(x) is calculated using the first T principal
omponents, where T is chosen to limit the influence of
oise and chance correlations between the stimulated
nd reference data sets. The indicator function can
hen be expressed in terms of the principal components,

fI(x) 5 o
n51

T (an(t), w(t))t

sn
2

cn(x). (24)

iven that Dn 5 2(an, w)t/N, we see from Eq. (16) that
I(x) is not proportional to the standard difference as
= ` and emphasizes low power principal compo-

ents. However, the indicator function method pro-
uces significantly improved performance over the
tandard difference for typical signals of interest in
ptical imaging experiments (Everson et al., 1997). A
imilar technique for determining activity maps from
ET experiments, which uses PCA combined with the
isher linear discriminant rather than the conditions

23), is described in Ardekani et al. (1998).

RESULTS

The true response map to a given stimulus in an
ctual experiment is unknown, so in this section, we
ssess the performance of the truncated difference as
ell as the other analysis techniques on an artificial
ata set. This test data set consists of a known test
attern, the checkerboard of Fig. 1a, which is digitally
dded to a data set of images taken from an actual
xperiment on a macaque visual cortex. The test pat-
ern plays the role of the activity map which we attempt
o recover and is added at a very weak level in order to
imic the low signal-to-noise ratios of real neuronal

esponse maps. This test data set is split into two
alves: the stimulated data consists of the half of the
ackground macaque cortex images to which the check-
rboard has been added; the reference data consists of
nly the remaining half of the background images,
ithout the checkerboard. One can see from Figs. 1b
nd 1c that the stimulated and reference images look

1 These are the conditions appropriate for mean-subtracted data.
or data that has not been mean-subtracted, the right-hand side
ould be 1 for t [ 5t̃6 and 0 for t [ 5t̂6. The intent is to find an image that

s most parallel with the stimulated data and most orthogonal to the

eference data.
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319DETECTION OF NEURONAL ACTIVITY MAPS
irtually identical and, in particular, the test pattern
annot be visually discerned in the stimulated picture.
his is because the difference in intensity between the
enter of a light square and that of a dark square is
/2000th of the mean reflectance level of the back-
round. The stimulated and reference sets each have
080 frames.
After subtraction of the mean image from all the

ecords, the test data set is decomposed via principal
omponent analysis. The resulting spectrum of the first
50 eigenvalues (of 2159 total) is shown in Fig. 2. By
etaining only the first 250 eigenvectors in the PCA
epresentation of the image set, we capture 99.99% of
he variance in the data. The spectrum has been
abeled by three regions and its basic structure is the

FIG. 1. The test data set: (a) the test pattern, (b) a member of th
rayscale in (a) is not the same as in (b) and (c). If it were, the checker

FIG. 2. Eigenvalue spectrum of the test data set. On the vertica

igenvalues. Only the first 250 eigenvalues are shown.
ame as that observed in unaugmented experimental
ata. The early, high power principal components corre-
pond to vegetative effects such as those of circulation
nd respiration. These eigenvectors are typically vascu-
ar in nature and contain relatively broad swaths of
igh and low reflectance as can be seen in the first
rincipal component (Fig. 3a). The eigenvectors that
re of most consequence in representing the neuronal
ctivity map (the checkerboard in this case) lie within
he ‘‘response’’ region of the spectrum (although there
re eigenvectors here that are unrelated to the neuro-
al response). They are usually patchy in appearance
nd are not appreciably marked by blood vessels (Fig.
b). As an indication of how weak the signal of interest
s, note that the beginning of the response range is

timulated data set, and (c) a member of the reference data set. The
rd would visually appear to be a field of constant intensity.

xis is plotted the ratio of the given eigenvalue to the sum of all the
e s
l a
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320 GABBAY ET AL.
bout four orders of magnitude lower in power than the
rst principal component. The final zone of the spec-
rum consists of low power principal components that
orrespond to background processes, chance correla-
ions of activity, and are increasingly marked by pixel
oise the deeper in the spectrum one goes.
In Fig. 3, along with the principal components them-

elves are shown their respective time coordinates (the
n(t) of Eq. (6)). The images are ordered so that the
timulated data constitutes the first half of the records
nd the reference data is the second half. The corre-
ponding stimulus presentation sequence, w(t), will be

downward step function. Any principal component
hat is associated with the neuronal response should
ave a coordinate time series with a step function
ppearance as is seen in Fig. 3d for a46(t). In fact, c46(x)

FIG. 3. Sample principal components and their associated time c
he principal component best correlated with the stimulus presentatio
s the principal component that is best correlated with p
(t) and hence is the activity map we would obtain
rom the application of PCA alone, although the check-
rboard is not discernible. Hence, we see that for this
est data set, a sole principal component is inadequate
o recover the activity map as is often the case experi-
entally. It is clear from visual inspection that, given

he variance in the data, the size of the step in Fig. 3d is
uch larger than one would expect merely by a chance

rouping of data points unrelated to the presence or
bsence of the test pattern. On the other hand, the
ifference between the stimulated and reference means
or a1(t) indicated by the slight misalignment of the
ashed lines could easily have occurred by chance
using Eq. (22), P1 5 0.34). However, a glance at the
ertical scales of Figs. 3c and 3d alerts one to the fol-
owing problem: the ratio 0D1/D46 0 5 18.6, and so the first

dinates. (a) The highest power principal component, c1(x), (b) c46(x),
equence, (c) a1(t), and (d) a46(t).
oor
rincipal component is a much greater contributor to
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321DETECTION OF NEURONAL ACTIVITY MAPS
he standard difference than is the principal component
ost correlated with the stimulus presentation se-

uence, even though the former’s contribution is essen-
ially determined at random.

The first principal component is not the only one that
s disproportionately represented in the standard differ-
nce map. A plot of the projections of the test pattern
nd the standard difference onto the PCA basis shown
n Fig. 4 reveals that many of the early, high power
igenvectors are overweighted in the standard differ-
nce relative to the values for the actual checkerboard
omponents. However, the agreement for eigenvectors
ith indices larger than about n 5 20 is good. We

herefore seek to eliminate the offending high power
rincipal components using the truncation procedure
escribed under The Truncated Difference.
The correlations of the eigenvector coordinates 5an6
ith w(t) are calculated and the magnitudes plotted in
ig. 5a. The plot displays a peak where principal
omponents with relatively high correlations cluster
ogether. On the associated confidence level plot, Fig.
b, this peak manifests itself as a plateau of confidence
evels very near to one. The region between the dashed
ines is the basis of eigenvectors onto which the stan-
ard difference map is projected to obtain the truncated
ifference map. The left truncation point is the first
rincipal component with Pn . 0.99, which corresponds
icely with the very beginning of the plateau, although
his need not always be the case. The plateau tapers off
owards the right and the righthand truncation point is

FIG. 4. Projection of the test pattern and the standard difference
orner indicates that the value for the coordinate of the first principa

dge of the vertical scale.
hosen a little beyond the last clustering of high
onfidence levels.
Having chosen our truncation points, the truncated

ifference map can now be calculated and compared
ith the actual test pattern. The result is shown in Fig.
along with the maps obtained using the standard

ifference and indicator function methods. The trun-
ated difference reveals the cleanest checkerboard where
he checkers are very uniform and distinct. In the
tandard difference map, the checkerboard is barely
erceptible and the blood vessels are the single most
ominant feature. In fact, the standard difference bears
strong resemblance to the negative of the first princi-
al component, (Fig. 3a), which is not surprising given
he discussion above. The test pattern is clearly visible
n the indicator function map but the checkers look
rregular and often not uniform. If these maps are
onsidered to be vectors by treating the pixels as
ndividual components, then the angle that each one

akes with respect to the test pattern can be calcu-
ated, providing a rough measure of the performance of
ach method. An angle of 0° indicates identical maps.
he angles made by each map with the checkerboard
re: truncated difference, 17.3°; standard difference,
9.7°; indicator function, 31.7°. This confirms the visual
mpression that the truncated difference most faith-
ully extracts the test pattern. The strength at which
he checkerboard is added to the background was
aried over a range spanning two orders of magnitude

o the basis of principal components. The arrow in the lower lefthand
omponent in the standard difference (21802) extends below the low
ont
l c
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322 GABBAY ET AL.
nd the truncated difference always yielded the best
ap.
Figure 7 gives an example of the application of the

nalysis techniques to obtain activity maps for real
isual stimuli, in this case, oriented gratings. A cat was

FIG. 5. (a) Magnitude of the correlations of the principal compone
ssociated confidence levels. The dashed lines indicate the truncation
FIG. 6. Activity maps extracted from the test data by: (a) the truncated
hown horizontally and vertically oriented luminance
ratings and we seek the activity map that represents
he difference between the horizontal and vertical
esponses. Similar features of activity appear in all
hree maps in Fig. 7. The standard difference, however,

ime coordinates with the stimulus presentation sequence and (b) the
nts.
nt t
difference, (b) the standard difference, and (c) the indicator function.
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323DETECTION OF NEURONAL ACTIVITY MAPS
as a washed out appearance as the patches of activity
re indistinct. The indicator function has more well-
efined patches but the grainy appearance indicates an
xcessive amount of noise. The truncated difference
aptures the best of both worlds—it contains smooth
nd distinct activity regions as one would expect of
rientation response maps.

DISCUSSION

We have applied the truncated difference method
owards obtaining various types of response maps from
ptical imaging data such as ocular dominance, orienta-
ion, spatial frequency, and color and it has produced
xcellent results. The correlation and confidence level
lots give a direct way of assessing the quality of the
ata. If the signal is relatively strong, there will be a
lear peak in the correlation plot and a distinct plateau
f confidence levels close to unity. Poor signals gener-
lly will not have a distinct correlation peak and the
igh confidence level principal components will be
cattered rather than clustered. We remark that sig-
als of similar strength but different spatial frequen-
ies are not recovered with the same efficiency. Re-
ponse patterns characterized by low spatial frequencies
an be extracted more faithfully than those marked by
igher spatial frequency variations. This is due to the
act that at high spatial frequencies there are a greater
umber of modes at high spatial frequencies across
hich the response can be distributed. This effect has
een verified in test data sets by varying the size of the
heckerboard squares.
As PCA forms the basis of our method, a cautionary
ord about the sensitivity of PCA to outlying data
oints is in order. It is observed that freak events that
erhaps are found in only one image record are some-
imes allotted their own principal component. For
nstance, due to a technical glitch, one or more camera

FIG. 7. Activity maps corresponding to the difference between n
isual cortex. (a) truncated difference, (b) standard difference, and (c)
ixels may fail to record any reflected light for a given p
mage. After the dataset has been subjected to PCA, a
rincipal component with these blanked out pixels may
e generated. Supposing that this failure occurred
uring either the stimulated or reference conditions
ut not both, the time series of this principal compo-
ent will be highly correlated with the stimulus and
herefore, may be included in the truncated difference.
hose principal components whose genesis lies in one-

ime events can be readily identified by examination of
he corresponding time series and thus can be screened
ut if such freak events are of concern.
Optical imaging of high spatial resolution activity
aps generally requires the differential imaging of two

‘orthogonal’’ stimulus conditions, i.e., conditions that
ield regions of cortical response that are roughly
omplementary. For ocular dominance columns, these
onditions correspond to stimulus presentation to the
eft or right eye individually. In the case of orientation
olumns, the stimuli are a pair of gratings with orthogo-
al orientations such as those used to obtain Fig. 7. The
se of orthogonal conditions is dictated by the physi-
logical processes underlying the intrinsic signal and
y the sensitivity of the imaging apparatus—one needs
o eliminate the diffuse, global response of the intrinsic
ignal in order to reveal the ‘‘local’’ intrinsic signal
ssociated with the specific stimulus (Vanzetta and
rinvald, 1999). The truncated difference method, how-
ver, is not bound by these orthogonal stimulus con-
traints, and so can be equally well used if greater
nderstanding of the intrinsic signal dynamics and

mproved imaging techniques obviate the need for
rthogonal conditions. In this case, the reference dataset
ould consist of the images taken just prior to stimulus
nset. As mentioned previously, the stimulus presenta-
ion sequence, w(t), need not be a simple step or boxcar
unction but can be a smooth function intended to
imic the time course of the intrinsic signal.
We note that in some experimental conditions it is

onal responses to horizontal and vertical gratings for a cat primary
icator function.
eur
ind
ossible to observe multiple clusters of significant
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324 GABBAY ET AL.
rincipal components. In this case the truncation cut-
ffs should encompass the entire range including all the
lusters, although there are situations in which it is
esirable to exclude early, high power clusters of signifi-
ant principal components. This can occur when con-
rasting stimuli to which the cortex responds unequally
uch as gratings of different spatial frequencies or
olors and is most likely related to the existence of local
nd global components of the intrinsic signal as noted
bove. In such cases, if one includes all the clusters of
ignificant principal component, the resulting activity
ap is characterized by large regions of roughly con-

tant reflectance. This stands in contrast to the local,
atchy that one expects of a map which represents the
pecific regions of neurons that respond to a given
timulus. Fortunately, in such situations, the plot of
orrelation magnitudes often displays two peaks—a
maller, narrow one followed by a much stronger and
roader peak. The truncation point can be chosen at the
eginning of the second peak thereby eliminating the
ontribution of the principal components located in the
rst and weaker peak. If this is done, a map whose
ppearance is in greater accord with what one expects
f a neuronal activity map is revealed. The origin of the
rst peak is not well-understood and so one must have
strong rationale for its elimination in calculating

esponse maps.
We have presented a technique for extracting neuro-

al activity maps from optical imaging data which is
imple, intuitive, and effective. It teams PCA with
tatistical significance testing in a straightforward way
nd removes the deleterious effect of high power vegeta-
ive modes on the activity map. The use of significance
esting allows these modes to be eliminated in an
bjective manner rather than by the arbitrary applica-
ion of high-pass spatial filtering to remove vegetative
rtifacts from the standard difference map. PCA pro-
ides a natural basis for this technique in that it
ecomposes the data into modes of uncorrelated activ-
ty that are ranked by power. It is the application of
CA to the data that is the most time-consuming step

n this method, and this can be done in a computation-
lly efficient way.
We note that there is nothing in the truncated

ifference technique that is specific to optical imaging
ata and so the method is applicable to other functional
maging techniques and other types of signals. In most
urrent fMRI experiments, the signal is relatively
trong and results are primarily reported simply as
egions of activation or no activation so that the
runcated difference may be of only marginal benefit.
ecent work by Vanzetta and Grinvald (1998) shows

hat the initial dip seen in some high field fMRI studies
Yacoub et al., 1999) represents changes in the oxida-
ive metabolism that are colocalized with neuronal

lectrical activity, thereby holding the promise of greatly
mproved fMRI spatial resolution, nearing that of opti-
al imaging. Consequently, the signal processing issues
onfronting high resolution fMRI experiments would be
imilar to those found in optical imaging. This is so
ecause (i) the initial dip is relatively weak; and (ii) if
ne desires to map out functional modules such as
ypercolumns, it is best to resolve the activity into finer
rades than binary on/off regions of activation. Accord-
ngly, as spatial resolution improves, the technique set
orth in this paper may be of great utility in the
nalysis of fMRI data and perhaps PET data as well.
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