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the dispersion relation that they obtain applies to free waves in 
a half-space. The relevant parameter in this case is the mean free 
path between intermolecular collisions A=c,,,/.fc, c,,• being the 
most probable speed of the molecules. For their analysis to be 
meaningful, the sound •vave must propagate over several of 
these mean free paths. 

In practice, experiments involve a vibrating surface (trans- 
mitter) and a receiver separated by a finite distance, say d. This 
separation distance is ultimately limited by either the size of the 
vacuum chamber or the distance over which a measurahle signal 
can be propagated. In the pressure range such that f/f•<<l, there 
is no difficulty in measuring propagation over many mean inter- 
molecular free paths. Data obtained in this manner can be used to 
test Sirovich and Thurber's theoretical predictions in this range. 
However, as the pressure is reduced (or the sound frequency in- 
creased) such that fifo becomes greater than unity, it is prac- 
tically impossible, with present-day techniques, to measure sound 
propagation over several mean intermolecular free paths. All 
known measurements •4 in this range of f/re have been carried 
out in the rdgime where the mean free paths of the molecules are 
limited by the separation d. Indeed, Meyer and Sessler, • whose 
data are used by Sirovich and Thurber, make a strong point of 
this in constructing their Fig. 13. Greenspan, whose data are also 
used by the authors, has informed us that data relating to propaga- 
tion over distances less than the gas mean free path were purposely 
excluded from his 1956 paper. = Data in this range were discussed 
and appropriately interpreted by Greenspan and coworkers in 
earlier presentations? ,• 

Sherman and TalboU and Maidanik, Fox, and Heckff also 
discuss this problem; one may define a new frequency fs=cm/d 
and consider the dispersion parameters in this region as functions 
of f/f•. That the experimental data produce attenuation and 
phase parameters that are constants with respect to changes in 
A when A>d is thus not relevant in testing theories that by defini- 
tion required propagation of sound over distances of at least 
several intermolecular mean free paths. Thus, the agreement that 
is obtained by Sirovich and Thurber in the r•gime defined by 
f/fo>_l must be viewed as fortuitous and their theory in this 
r•gime remains as yet unverified. 
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The comparison of theory with experiment for rarefied•gas sound propaga- 
tion is discussed. It is shown that the salient comments oœ Maidanik and 
Fox [J. Acoust. Soe. Am. 38, 477--478(L) (1965)] in connection with our 
paper [J. Acoust. Soe. Am. 37, 329-339 (1965)] are either incorrect or 
unfounded. It is shown by means of estimates on the percentage of inter- 
molecular collision• occurring in present-day high-Knudsen-number experi- 
ments that the plane-wave propagation described in our paper is still a 
significant effect. 

THE COMMENTS OF MAIDANIK AND lPOX • RAISE SEVERAl', INTER- 

esting questions in connection with the comparison of theory and 
experiment for forced sound-wave propagation in a rarefied 
medium. Before entering into a detailed discussion of these 
points, we first clarify two items brought up by Maidanik and Fox. 
ß In reference to our work, ' they state that "the theory does not 
describe the experimental situation." This is incorrect; the theor>, 
presented in Eq. 1 applies only to sound-waves (which we are 
careful to define as certain plane-wave solutions). As such, they 
are independent of geometry and are only a property of the 
equations. The pressure field (which presumably is measured in 
an experiment), on the other hand, does depend on geometry as 
well as the other modes of propagation. If in an experiment the 
pressure field departs from the sound field, it states simply that 
sound is not the major contribution. As yet, no experiment has 
this for a conclusion. 

ß It is stated in Ref. 1 that our "theory is [only-] appropriate to 
free waves, a propagating a distance that is large compared 
with the mean-free-path . . ." Our previous comment refutes 
this. However, by this remark Maidanik and Fox may mean that 
the sound-pressure field is dominant only at large distances (with 
respect to the mean free path) from the sound source. This too is 
without foundation. There are no analytical results to support 
this statement, nor do the experiments support it (if anything, 
they indicate the contrary). 

Before amplifying these, as well as other points raised, we 
briefly review the problem at hand. 

For the analytical treatment of a sound-propagation problem, 
it is convenient to regard a geometry in which the gas is restricted 
to a half-space and which is driven by a sinusoidally oscillating 
infinite plane. One then sees = that the solution of this problem 
depends on the dimenslonless parameter r = p/w• (p the pressure, 
w the frequency, and u the viscosity) introduced by Greenspan. • 
In particular, the sound characteristics, i.e., the dimensionless 
attenuation rate and sound speed, are functions of r only? The 
related experimental geometry consists of an emitter and receiver 
of sound waves separated by a distance d, say. A comparable 
theoretical problem is the study of a gas contained between two 
infinite parallel planes separated by a distance d, one plane of 
which is sinusoidally oscillating. A solution to the latter problem 
depends on the ratio of the mean free path l to d--i.e., the Knud- 
sen number Kn=I/d (Ref. 6), as well as the frequency ratio r. 
However the sound characteristics still remain functions of r alone. 

However, one measures pressure (more exactly, normal stress) at 
the receiving wall, and hence this measurement can depend on Kn. 
For small values of Kn, we can expect this dependence to be lost. 
On the other hand, for very large values of Kn it might be sup- 
posed that the mean-free-path dependence is lost (i.e., ta is no 
longer a parameter of the problem). Under this assumption, only 
the dimensionless parameter Ra = d/(hRT)I [-(hRT)t a mean mole- 
cular speed] enters. The comments of Maidanik and Fox = pertain 
to these points and, in particular, question the comparison of our 
results for the sound characteristics with experiment. This is 
certainly of importance in as much as the experiments of Maidanik 
and of Heckl, • Meyer and Sessler,* and Greenspan • are, for small 
values of r, in the Kn:>l range. (Greenspan, however, did not 
plot his Kn> 1 results.) 

Basing the mean free path on the hard-sphere definition for 
mean free path, 

I=2.5/o(RT)ita (1) 

one can show that the Knudsen number is given by, 

Kn = •.8/&•. (2) 

From the data furnished by Meyer and Sessler, 8 we have com- 
puted their value for Ra as being •8.25. (This is based on a value 
of wd=3X 10' cm/sec for argon, which they give.) This leads to a 
Kn•15. (In the work of Ref. 7, Kn was as high as 30.) 

In an attempt to depict the Kn> 1 range, Maidanik, Fox, and 
HeckP consider the free-flow equation for the distribution function 

(of/at) +,• (o f/ax) = 0. (3) 



(Earlier treatments using the same type of approach were given 
1)3' Meyer and Sessler 8 and Greenspan e! al. m) It is clearly seen 
that for Eq. 3 the only plane-wave solutions nmv are particle 
paths. In tile above technique, for the purl)ose of making an 
analogy with sound waves, the logarithmic deriwttive of p the 
pressure is taken 

- (•/•ol,• (o/,/ax)= (,•-i•)//s,,, (4) 

(where •0 is the value of • at adiabatic speed) and the real and 
imaginary parts of Eq. 4 are identified with the dimensionless 
attenuation rate and speed of sound, respectively. These quantities 
are functions of Ra=cod/(2RT)«. One then shows that fnr R•i htrgc 
(which is usually the case in an experiment) 
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(Maidanik, Fox, and Heckl t,?.ø suggest that Eq. 5. depicts Kn > 1 
region more appropriately than do our results. = ) More-precise 
results based on a numerical integration are given in Fig. 3 of 
Ref. 9. Using the value of R•=8.25 for the Meyer and Sessler ex- 
periment, we find using the Maidanik, Fox, Heckl ø results that 

[•-'•0.45. 
AND •ESSLER• •ø 

.NIEYER [• 0•0'2 (6) 
[The value of 3/•0 stays roughly constant for 3_< Rd <• 13.• These 
values are constants for an experimental run and one would 
expect to realize such values for relatively low values of r in any 
run. The value of a/t•0 is in good agreement with the Meyer and 
Sessler results for small r (Ref. 111. The value of/if/tom0.2, on 
the other hand, is lower than any experimental value found in the 
noble-gas experiments of Greenspan 4 and Meyer and Sessler? 
It is also roughly 20% below the value fotmd by our analysis (in 
the lower range), which does go through the experimental points. 

In the experiments of Maidanik and Heckl, 7 values of 
(and below) were found. However, their experiments were carried 
out in air. The air experiments of Greenspan •2 and Meyer and 
Sessleff also show such low values for the attenuation constant. 

Although we can expect high-frequency sound propagation to 
bellave qualitatively, as it would for a monatomic gas, the very 
fact that it leads to experimental values differing from those 
produced in llke noble-gas situations disqualifies it from com- 
parison with the theory under discussion. Both the free-flmv 
calculations of Maidanik, Fox, and Heckl a and the theory pre- 
sented by us apply to a simple monatomic gas. Air, being a mixture 
of gases with internal degrees of freedom, has a succession of mean 
free paths associated with it. These naturally complicate the 
transition rfigime. 

We have made several calculations that we believe explain, at 
least partially, the abovementioned failure of the free-flow calcula- 
tion in r•gimes for which the Knudsen number is relatively high. 
We consider the problem of determining the percentage of 
particles that leave a wall with a Maxwellfan distribution and 
lhat undergo a collision within a distance d of the emitting wall. 
For the sake of brevity, we outline only the method and give the 
results. We denote the collision frequency of the gas by v. This is, 
in general, taken to be velocity-dependent, 

where [,•i is tile molecule speed. For a particle of speed I•I, we 
assume that it undergoes a collision in a distance I•l/•. 
Maxwell molecules, v is a constant and the fraction ; of particles 
undergoing a collision in a distance d is given bv 

/__•Erf[ (9/4) (d/l) •. (8) 

'['herefore, even if the Knudsen number Kn =lid is as great as 
10, 24% of the particles experience a collision in traveling to d. 
One must exceed a Knndsen number of 20 to achieve a value of 

f as small as x•0. At the other extreme of collision-frequency func- 
tions is the case of rigid spheres, for which we took 

v-•-4[-(RT)/r• I[-1 q- ( i • [/ 4)[,r/ (2RT) q«•. (9) 

This is a patched collision ircqueucy, which agrees with the 
correct hard-sl/hcrc collisi(m frequency at high and low molecular 
speeds. In this case. wc lind that 

where 

. d 8d " /1 d \F--2a ,, 'q 

The mmmrical values for j' are essentially Ihe same as given above 
in tile Maxwell molecule case. We mention in passing that Eq. 10 
predicts that all hard spheres undergo a collision in a distance 
d=x21. This is in contrast to the Maxwell molecule case where 
d= z for the same result. 

These calculatinns point out clearly that the size o[ tim mean 
free paths should not be used cavalierly as a basis upon which to 
judge a flow as being collisionless. For as we have seen even at 
substantially high Knudsen numbers, a relatively large number of 
particles undergo collisions. This certainly offers an explanation 
of the failure of F,q. 5 to describe the experimental values. The 
large number of collisions therefore gives a possible explanation 
of why our forced-sound-wave analysis has such good agreement 
with experiment. In future sound experiments, it certainly would 
be of great value to vary R,• while holding r fixed. This would then 
give us a clear picture of the Knudsen effect. Some indication of 
this is already to be seen in the experiments of Maidanik and 
Heckl, * where two values of Ra are used. 

It is of some interest to explain why the free-flow calculation 
Eq. 5 and the calculation based on our approximate Boltzmann 
equati(ms produce qualitatively similar results. Some reflection 
on the mechanism of sound prol)agation indicates the reason for 
the increase of sound speed with increase in frequency. Slow- 
moving molechics, having a relatively small collision frequency, 
are nnable to transmit a relatively high-frequency signal. Hence 
only the fastest-moving molecules, having a relatively high 
collision frequency, transmit the signal. In the case of free flow, 
the same effect takes place, since the slow-moving molecules un- 
dergo phase mixing. Loosely speaking, the effect of phase mixing 
in free flow mimics the collision process in a gas. From the experi- 
mental view, it is of course unfortunatc that this occurs since 
the two effects become difficult to distinguish. 

To conclude, we wish to point out that our study • makes no 
claim at fitrnishing a solution of a tlow problem. It provides just 
the sound characteristics of a gas. A solution to the flow problem 
appropriate to the experimental situation must, especially in view 
of our above estimates, be based on a solution of the Boltzmann 
equations (or some model of it). Some progress in this connection 
has been made recentlyJ :•-•a but no results appropriate to the 
experimental situation are yet available. \Ve })elieve that, in view 
of our close agreement with experiment and the above estimates 
on the number of collisions in the Knudsen region, that such 
studies will show that plane-wave propagation is a significant 
effect even at the relatively high Knudsen numbers thns far 
achieved in experiment. 

• G. Maidunik and ] [, L, Fox. J, Acoust. Soc. AUl. 38, 477-478(L) (19651. 
'-' L. Sirovich and J. K. Tburber, J. ,\coust. Soc. Am. 37, ..t29-339 (19651, 
a A minor is•-ue is the question of •ernantics. %*,e us free waves to de- 

,scribe the waves occurring in an initial-value nroblem. See L. Sirovich and 
J. K. Thnrber, in Rarefied Gas Dynamics, J. H. deLeeuw, Ed. [Academic 
Press Inc., New York, 1965 (to be lmblished)•. Forced waves are reserved 
for the waves occurring in a boundary-value problem. 

• M. Greenspan, J. Acoust. Soe. Am. 22, 508-571 (19501; 28, 644-64g 
(1956). 

• Actually. the intermolecular force law enters but the results are rela- 
tively insensitive to this (see Eq. 1). Interpreted on a macroscopic level, 
this states that all nmnatomic gases have a Prandtl number very close to ], 



480 LET I'ERS TO THE E13fTOR 

? G. Maidanik and M. Heckl, Phys. Fluids 8. 266-272 (1965). From tile 
data [urnlshed by Maidanik and Heckl, we computed that the width of the 
receiver (I in.) is roughIF the same magnitude as d. This may possibly 
introduce 3-dimcosional effects. 

• E. Meyer and G. Sessler, Z. Physik 149, 1.5-•19 (1957). 
g G. Maidanik, H. Fox, and M. Heckl, Phys. Fluids 8, 259-265 (1965). 
l0 M. Greenspan and M. C. Thompson, Jr., J. Acoust. Soc. Am. 25, 

92 (1953); R. K. Gook, M. Greenspan, and M. C. Thompson, Jr., ibid. 25, 
192 (A) (1953). 

n Our rigid-sphere curve runs through this point when rmO.02. 
xa M. Greenspan, J. Aconst. Soe, Am. $1, 155-160 (1959). 
la H. XVeitzner, in Rare•sd Ga• Dynarai½•, J. H. deLeeuw, Ed. I-Academic 

Press Inc., New York. 1965 (to be published)]. 
x• H. Ostrowskor and D. J. Kleitman (1064; unpublished). 
• R. J. Mason. in Rarefied Gas Dynamics, J. H. deLeeuw, Ed. ['Academic 

Press Inc., New York, 1965 (to be published).] 

11.2, 11.5 Received 10 May 1965 

Nonlinear Interaction of Two Sound Beams 

I•. O. BERKTAY 

Departre*or o/ Electronic am• F•lectrical Engineering, The Unirersity of 
Birmir•gbam, Birmingham 15, England 

Extension of previous contributions by [Vestervelt [J. Acoust. Soc. Am. 32, 
954(•) (1960); 35, 535-537 (1963)] and by Bellin and Beyer •]. Acoust. 
Soc. Am. 34, 1051-1053 (1962)'] concerning the nonlinear interaction of two 
coincident sound beams to allow for cylindrical and spherical spreadin• is 
discussed; conclusions of Naze and Tj0tta [J. Acoust. $oe. Am. 37, 174- 
175(L) (1965)] are reviewed and commented upon. 

IN THEIR RECENT COM34['NIC•TION, I :•-•ZE AND TJ•TTA DISCUSS 
the effects of the finite aperture formed by a cophasal cross section 
of the virtual endfire arra.v on the problem of scattering of sound 
by sound as originally studied by Westervelt TM and Bellin and 
Beyer. 4 A similar approach has been developed quite independ- 
ently, but with experimental support, in the Department of Elec- 
tronic and Electrical Engineering at The University of Birming- 
ham. The experimental results obtained show good agreement with 
theory. • 

Naze and Tj½tta also extend the theory to the case where inter- 
action between the primary beams occurs in the Fraunhofer 
zones--i.e., when the primary beams are spreading spberically; 
with directivity patterns of the form 2]t(x)/x. The result, which 
is expressed in a closed form, gives an expression for the directivitv 
of the scattered waves in terms of the quantity IodR,•)/adR,O) f, 
where o•(R,•) Ls the density due to the scattered waves at a 
point (R,•) in the far field, while adR,O) is that at a point along 
the axis of symmetry of the configuration; p•(R,O) is said to h•ve 
the same value as that predicted for the case of collimated pri- 
mary beams. 

The conclusions were that (i) for kay< 1, one still obtains Ruther- 
ford scattering; (ii) for ka>l, a slightly sharper directlvity is 
predicted, as compared with that obtained in the case where the 
primary waves are collienoted. Here k is the wavenumber of the 
scattered sound and a is the radius of the circular sound source; 
(iii) the experimental results obtained by Bellin and Beyer lie 
between the directivity curves ohtained for the two cases com- 
pared in (ii) above. It is my object in this Letter to extend these 
conclusions to more-realistic practical conditions. 

When considering possible exploitation of interaction effects 
in acoustic waves, it is found necessary to study interaction 
between primary beams that spread cylindrically or spherically. 
The difficulties encountered in finding a complete solution can be 
overcome by considering the primary beams to be uniformly dis- 
tributed within a cylindrical sector (i.e., a fan beam) and a conical 
pencil beam, respectively.• 

In the case of cylindrically spreading prilnary heams, the direc- 
tivity pattern and the axial variation of pressure amplitude at tbe 
difference frequency were studied using the virtual-sources concept 
put forward by Westervelt. The results obtained by considering 
the acoustic power in the primary beams to remain constant while 
chan•ng the beam angles are shown in Fig. 1. The approximations 
used in the calculations make these results valid for slnall valueq 
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(a) (b) 

FIG. 1. hateraction between cylindriealty •preading primary waves. 
Variation of (a) the amplitude along the axis of symmetry of the configura- 
tion and (b) tile 3-dB beam containing the primary waves. Ordinates in 
relative units. •a defined in text. 

of ]f--•x[, where ½1 is as defined below, while • is the angular 
position of the observer with res•ct to the axis of the primary 

For the case of spherically spreading primary beams, o•y the 
variation of pressure amplitude along the axis of symmetry was 
computed. The results, which are shmvn in Fig. 2, are valid for 
small vMues of ½t such that 1•osf•¾2. 

In both the Figures, the abcissa is in terms of the nondimen- 
sional variable •a=½i/Oa, where 2• is the beam angle of the 
fan •am or of the (conical) pencil beam, respectively, and 20a is 
the 3-dB beam width at the d•erence f•quency in the case of 
Ruthedord •ttering and is Wen by 

20a•V(A/2k), (1) 

where A•a•+a:--a• and a• and a• •re the •bsorption c•cients 
at the primal- [requencies, a is the ab•tion c•cient at the 
difference f•quency, •nd f is the w•venumber at the difference 
frequency, • before. 

One c•n conclude from t•se new results that the simple plane- 
wave approach u•d by Westervelt c•n be extended to the cases 
of cylindricMly and spherically spreading beams •ro•d that 
tbe primw •m •ngle is of the s•me order • that p•dicted for 
the scattered component 20a in the case conside•d in Ref. 2•. If. 
however, the primary beam angle is inc•d, a loss of directi•ty 
(and a con•quent loss in the mggnitude of the eff•t along the 
axis of symmet•) results. 

I should now •ke to •e the fo•owing comments rearcling the 
conclusions reached by Na• and Tjftta: 

(•) In tbe c•e o[ spherically spreerig pfim•y • studi• 
by N• •nd Tjftm, the axial value of the •attered component 
of density, O,(R,0) would be expected to be, in general, a function 
of tbe primary beam angle, •nd not independent of it as stated 
by them. But their conclusion c• be just•ed, witch limits, by 
the following physicM ar•ment. In the case of interaction 
tween spherically spreading primaw w•ves, tM virtu•l-source 
function •t the intermodulation f•quency will have sphericM 

I • F•G. 2. Interaction •tw•n sphericM!y spre•ing 
I • waves. Variation of the amplitude •ong the axis of 
I X symmetr• of the configuration of the •attered 

•8{ • wav•. Ordinates are in relative units. •d defined in 
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