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Steady, inviscid, irrotational flow of a perfect gas in two dimensions is considered in the 
tangent gas approximation. A fast and accurate method of solution is proposed and solved 
numerically. Comparison of tangent gas and exact flows are presented. Tangent gas solutions 
when used as the first step in the iterative solution of the exact flowfield are shown to give 
substantial reduction in computational time. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

The computation of steady flow past an airfoil is crucial to the determination of 
aerodynamic characteristics such as lift, drag and moment coefficients. In many 
instances potential theory suffices. Neglecting viscosity it is exact for shockless flow 
and is a satisfactory approximation for transonic flow with weak shocks. For two 
dimensions the calculations are usually carried out in a conformally mapped plane, 
an approach used by Sells [l], Garabedian and Korn [2], and Jameson 131. 
Similar techniques have been used for multi-element airfoils [4, 51 and nacelles 
[6]. Three dimensional potential theory has been treated by Caughey [7]. 

Since the equations are nonlinear, the potential equation is usually solved 
iteratively. In some instances the potential equation does not admit unique 
solutions [S-lo] and in addition becomes a poor approximation for increasingly 
strong shock strengths. As a result more recent investigations treat the full Euler 
equations. Finite difference and finite volume methods have been successfully 
implemented by Jameson [ 1 l] and Lerat and Sides’ [ 121. Because of slow rates of 
convergence considerable effort has been directed towards accelerating these 
methods [13]. Convergence rates depend on factors such as the grid, initial guess, 
time stepping scheme and method of solution. 
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In this paper we present a set of flow dependent grid systems and initial flowfield 
guesses which substantially improve convergence rates when applied to the Euler 
equations for flows past an airfoil. These are based on solution of the tangent gas 
equations introduced by Chaplygin [14] and further developed by von K&-man 
and Tsien [15, 161. 

Woods [17], who extensively studied these equations, proposed certain iterative 
methods for solving both the analysis and design problems for flows past an airfoil. 
The methods developed in this paper are substantially different and offer a method 
for a fast and accurate solution to a problem. (We have also addressed the inverse 
problem and presented an exact method for its solution [18].) 

As will be seen the tangent gas solution lies close to the Euler solution even for 
high subcritical flows. This is used as a basis for iterative solution of Euler equation 
for flows past an airfoil by means of FL052S (written by A. Jameson, E. Turkel 
and M. Salas). The grid used is the natural one generated by the tangent gas 
equations and the starting guess is the tangent gas solution. As will be seen this 
results in substantial computational reduction even for supercritical flows. 

2. BASIC EQUATIONS 

Consider steady, inviscid, irrotational flow of a perfect gas in two dimensions, 
then in the usual notation 

V&)=0, vx;=o, p/p’= 1. ii) 

The variables are normalized by their free stream values and linear dimensions by 
an appropriate lengthscale. 

The stream function $ and potential 4 are introduced in the usual way 

p<=cVx (ijk), y=V$, (2) 

where k denotes a vector perpendicular to the plane of motion. The constant c has 
been introduced for later purposes. 

If s and n are local distances along streamlines and potential lines, respectively, 
(2) can be written as 

ds+idn=i(dqS+i$ d$) 

If equations can be derived that map the space of 4, li/ on to the space of the 
velocity magnitude and direction (q, 6), then one can take advantage of the fact 
that the tangent of the flow direction, tan 8, is the same as the slope of the airfoil 
surface where + = 0. Then if q vs. 0 can be found corresponding to $ = 0 on 4, $ 
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plane, the state of flow on the airfoil surface will be known. Toward this end, we 
write Eq. (3) alternatively as 

dZ=dX+idy=$(dqS+iid$), 

where x, y are Cartesian coordinates and 0 flow direction angle. With q and 0 as 
independent variables, it is easy to derive from (4) 

If dependent and independent variables are interchanged and the Prandtl Meyer 
function 

is introduced in place of q, then 

1 
e,-- 

K(v) 
vti = 0, 8, ) K(V) V4 = 0. 

The IfI sign refers to subsonic and supersonic conditions, respectively and 

K(v)=fi ' 
P(dW)' 

(6) 

(7) 

(8) 

where 

p2= 11 -M21. (9) 

Typical physical z( =x + iy) and potential w( = 4 + i$) planes are shown in Fig. 1. 
The airfoil maps into a slit in the w-plane. The gap BB' in the potential plane 
corresponds to r, where circulation about the airfoil is -r’. 

The system (7) should be solved subject to the density speed relation obtained 
from (1) and Bernoulli’s relation 

2 1 4+- 
s 

2 = constant. 
2 YM2, P 

3. TANGENT GAS APPROXIMATION 

(10) 

Equations (7) are nonlinear and are therefore difficult to solve. A good 
approximation to those equations under certain conditions can be obtained by 
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z-DlllrR 

w-plane 

FIG. 1. Airfoil in physical z-plane and potential w-plane. 

introducing the so-called “tangent gas approximation” [ 171, in which the isentropic 
relation between p and p given in Eq. (1) is replaced by a tangent to the curve of JJ 
vs. l/p. This approximation is then given by 

(p-l)=y 1-i. 
i 1 P 

(11) 

From (10) we obtain 

P=PIPZO. (121 

With the constant c in (8) taken as 

c= l/Pm, (131 

we obtain from (8) 

K(v) = 1. (141 

Then for subsonic flow (7) becomes the Cauchy Riemann equations 

8,-v*=o, 6)) + V$ = 0. (15) 

Equations (15) are exact for the tangent gas and also for incompressible flow 
(M = 0). In addition, it will be seen that it can be a very good approximation to the 
original equations. In the above formulation the tangency point has been taken to 
the freestream 

P,x = 1, p71=1. (16) 

‘81l62:2-IO 
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With this selection of tangency point the following relations hold for the tangent 
gas Cl71 

q = sinh v* cosech(v* - v), /I = tanh(v* - v), 
2 

CP=1-/J8,Cothv’ (17) 

where the contant v* is given by 

v* =ln 
M 

( 1 
m. 
1-P, 

(18) 

From (6) it is seen that v, = 0 and at stagnation points (denoted by zero subscript) 

2 
vg= -co, C&O = 1. (19) 

4. SOLUTION PROCEDURE 

It follows from (15) that 

z= -v+iB l-3)) 

is an analytic function of w. It will be useful to map the w( = q4 + i$) plane onto the 
plane of a new variable B = 101 eia such that the body in the w-plane which is a slit 
(a part of the line $ = 0) maps onto the unit circle Q = e”; 0 < a 6 271 and the rest of 
the w-plane maps onto the exterior of the unit circle. This is accomplished by 

~~=~(~e-‘~o + (t - ‘PO) + i2a sin a, In(cre ~ ““) (21) 

which allows for angle of attack and circulation about an airfoil surface, to be 
related to 1~1 = 1. Circulation -r is related to the constant a by 

r= 4na sin a,. (22) 

Here constants a and a, are as yet unknowns. 
From (21) one obtains 

dw 
do= --ae 

~jzO(l-o-l)(e-i~r-a-l)~ (23) 

On the body g = eta; O< a<2q 4 and $ are given by 

4(a) = 2a[cos(a - a,) - (a - cco) sin ~~1, $(Lx) = 0. 

CI, in (23) is given by 
a,=n+2a,. 

(24) 

(25) 
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Thus the rear and front stagnation points map into a = 1 and (T = e”“, respectively. 
Since z is an analytic function of 0, a convenient representation of z((T) is given 

by (see also Ref. [ 191) 

exp(z(a))= (1 - c-l)-6 (e-izJ- a--l))’ ev (z,! cd+, 

where 6 = or/n, f!It the trailing edge angle. The complex constants c, are represented 
by, 

c,=A,+iB,. (27) 

Note that (26) contains the Kutta condition. Two Schwarz-Christoffel factors 
appear in (26) because of the discontinuity in 0 at the two stagnation points 

From (26) the relationship between upstream flow direction 8, and a, is given 
by 

e,=B,+n+2a,. /28) 

The free stream condition is given by 

A,=O. 

On the unit circle, (26) reduces to 

exp(z(e’*)) = G(a) e’q(“’ exp (z, c,ePin’), 

where 

/2(sin czO + sin(ol- aO))l -I, 

U(a - a,) in (32) is the unit step function. The tangent angle 8, of the body is 
related to 0 by 

Separation of (30) into real and imaginary parts leads to 

V”(a) = 5 (A, cos m+ B, sin na) 
F?=O 

XI 
8(a)= c (B,cosna-A,sinna)+nfa, 

IT=0 

(34) 

(35) 
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where 

v”(a) = -V(R) -In G(a), (36) 

and 

The closure condition of the airfoil is related to the leading terms of the series by 
(Appendix A). 

A1=(l-6)-(l-fi,)2sin*a, (38) 

B, = (1 - p,) sin 2a,. (39) 

5. ANALYSIS (DIRECT) PROBLEM 

Here the flow past an airfoil is sought. An iterative method of solution similar to 
the one for incompressible flow (15) is found to converge with good accuracy. The 
method of solution goes as follows. 

An initial estimate of arclength as a function of circle angle, s(a), (e.g., of a flat 
plate in incompressible flow) is made. From the given contour e,(s), 0,(a) is 
estimated and &a) is calculated from (37). a, is obtained from (28). After the 
closure conditions (38) and (39) are imposed, a new form of &(a) is generated and 
then its conjugate C(a) is obtained from (34). v(u) is then obtained from (36) and 
speed q(a) is obtained from (17). The updated value of S(U) is now obtained from 
q(a) using the relation 

=2a 
s 

E lsin a, + sin(a - ao)l dol 
2 

0 4 
(40) 

where the constant a is now given by 

s(27c) = 1. (41) 

The above procedure is repeated until convergence is obtained. The criterion for 
convergence was taken to be that maximum difference in arc-length between suc- 
cessive iterations be 0(10P6). Typically the number of iterations required was no 
more than eight and the computation time was roughly one second on an 
IBM 3081 with 128 points taken on the unit circle. The actual numerical calculation 
is facilitated through the use of the fast fourier transform (FFT) and the fact that 
(34) and (35) are conjugate fourier series. The fourier constants, c,, are also 
obtained easily during FFT which are used for generating grids. 
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6. GRID GENERATION 

The physical plane is related to the circle plane through [17] 

407 

Here an overbar denotes complex conjugate. Note that for incompressible flow z is 
an analytic function of O, as it should be. 

From (21) and (26) it is easily seen that 

P; 
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0 0.2 0.4 0.6 0.8 1 

FIG. 2. Comparison of tangent gas solution and Euler solution over NACA 0012 Airfoil at 
Mach = 0.5 and angle of attack = 0.0. -, tangent gas solution; + + +, Euler solution. 
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and 

e 
--z dw -= --ae 

do 
+hl(l~,-~)~+~ (e-‘a”-~-‘)2exp 

Equations (42), (43) and (44) are used to map the circle plane into physical plane 
and the flowfield variables are obtained from (26), (17) and (18). 

Observe that the grid generated is flow dependent. Since the mapping from G 
plane to z-plane is not conformal except when A4 = 0, the grid generated in physical 
plane is not in general orthogonal. The grid produced by this method appears to be 
more natural than the incompressible conformal grid. 

-1.0 

1.0 
0 0.2 0.4 06 0.5 1 

0 0.2 0.4 0.6 0.0 1 

X 

FIG. 3. Comparison of tangent gas solution and Euler solution over NACA 0012 Airfoil at Mach 0.7 
and angle of attack = 0.0. -, tangent gas solution; + + +, Euler solution. 
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7. RESULTS 

Figures 2-5 compare the tangent gas solution with the converged Euler solution 
(as calculated by FL052S). The tangent gas solution is seen to be remarkably 
accurate even at the near critical case depicted in Fig. 3 and the slightly critical case 
shown in Fig. 4. Even when a clear shock is present as in Fig. 5, the tangent gas 
solution only fails in a relatively small neighborhood of the shock. 

Figures 6 and 7 indicate for two typical cases the number of iterative cycles to 
achieve a convergence criterion. The criterion used is the enthalpy error introduced 
by Sameson [20]. In each figure we indicate the number iterations required to 
reach the indicated criterion. The first column of each Figure refers to use of the 
tangent gas grid and the tangent gas solution as a starting flow. The second column 

4 

0 02 04 06 08 : 

FIG. 4. Comparison of tangent gas solution and Euler solution over NACA0012 Airfoil at 
Mach = 0.50 ‘and angle of attack = 5.0 degrees. -, tangent gas solution; + + +, Euler solution. 
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gives the analogous values using the conventional grid, viz., that generated by con- 
formal mapping and a uniform flowlield as the starting guess. (Little change in con- 
vergence was observed if incompressible flow was taken as the initial guess.) As is 
seen the reduction in cycles is substantial. In this same vein if the convergence 
criterion is reduced by a factor of 10 the comparison becomes more dramatic-the 
tangent gas approach leads to a lo-fold reduction in cycles over the usual approach. 

In order to distinguish whether the grid or the tangent gas approximation was 
more significant in speeding convergence, we also ran the programs using the 
tangent gas grid with a uniform first guess. Although some improvement resulted, 
the clear implication from this was that the tangent gas solution as a first guess was 
the most important factor. 

-1.0 

-0.5 

f5 0.0 

0.5 
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0.10 
0.05 
0.00 

-0.05 

0 0.2 0.4 0.6 0.0 1 

-0.10 ' I 
0 0.2 04 06 06 1 

X 

FIG. 5. Comparison of tangent gas solution and Euler solution over NACA 0012 Airfoil at 
Mach = 0.758 and angle of attack = 0.14 degrees. -, tangent gas solution; (+, 0) Euler solution; +, 
upper surface; 0, lower surface. 
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FIG. 6. Euler solution (FL052S) for near critical flow past an NACA 0012 Airfoil at Mach 0.50 and 
angle of attack = 5.0 degrees. (+, 0 ): grid, 64~ 32; grid type, tangent; initial guess, tangent; number of 
cyclces, 344. (--): grid, 64*32; grid type, conformal; initial guess, uniform; number of cycles 913. 
Average error in enthalpy, O.l385E-03. +, upper surface; 0, lower surface. 
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FIG. 7. Euler solution (FL052S) for supercritical flow past an NACA 0012 Airfoil at Mach 0.758 and 
angle of attack = 0.14 degrees. ( f , 0 ): grid, 64~ 32; grid type, tangent; initial guess, tangent; number of 
cycles, 381. (--): grid, 64*32; grid type, conformal; initial guess, uniform; number of cycles, 715. 
Average error in enthalpy, 0.2454E-03. + , upper surface; 0, lower surface. 

411 
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APPENDIX A: CLOSURE CONDITIONS 

If C is a closed contour around an airfoil, the the closure condition is 

4 dz=O. (AlI 
c 

Hence from (42) we obtain (see also Ref. [17]) 

(l+iK~)~,e’~d~=(l-B,)y e-$do. (A21 
c 

From (43) and (44) it follows 

1 
(A31 

(A41 

where 

Use of residue theorem, (A3) and (A4) reduces (A2) to 

(1 +p,) eiaoKl = (1 -pm) epia0E2. (A61 

Equating real and imaginary parts we obtain 

(A,+6-l)coscc,=B,sina,, (A,+6+1-2/?,)sina,=B,cosa,. (A7) 

From (A7) we obtain 

A,=(1-6)-(1-/?c0)2sin2a,, B,=(l--p,)sin2a,. 

For the incompressible case (p, = 1) this reduces to 

x4,=(1-6), B,=O. 

(-48) 

(A9) 
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