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The rnapshot method is used to analyze a large eddy simulation of axisymmetric jet flow. 
An ensemble of realizations is collected using a sampling condition that corresponds to the 
passage of a large scale vortex at a position six diameters downstream from the nozzle. The 
analysis is performed separately on a variable composed of the primitive flow quantities and 
the mass fraction of the material originally emerging from the jet nozzle. The fraction of the 
energy contained by the first ten eigenfunctions in each case is 94% and 80%. A lo-term 
expansion captures the large scale features of an arbitrary flow. ‘e 1990 Academic Press, Inc. 

1. INTRODUCTION 

Numerous investigations, beginning with the work of Townsend [l] and 
Theodorsen [2] in the mid 1950s have clearly established the existence of coherent 
large-scale motions in transitional and turbulent flows. Brown and Roshko’s well- 
known result for the plane mixing layer [3] provides a striking example of this. The 
articles of Cantwell [4], Hussain [S, 61, and Feidler [7] examine and review the 
role of coherent structures in turbulent flows and attempt to incorporate them into 
turbulence theory. Studies investigating the nature of laboratory jet flow 
corroborate the existence of large-scale structure, e.g., [S-12]. The presence of these 
highly organized patterns suggests the possibility that a reduced parametrization, or 
amount of information, can be used to quantify the flow. 

In this investigation we examine the application of the snapshot method [ 13-161 
to an ensemble of conditionally sampled flow realizations produced by a large eddy 
simulation of an axisymmetric jet. The analytical methods based on the proper 
orthogonal decomposition (known in pattern theory as the Karhunen-Loeve (K-L) 
expansion) are especially useful for efficiently characterizing an ensemble of 
inhomogeneous patterns which possess a high degree of organized structure. 
Lumley proposed the proper orthogonal decomposition [17-191 as an unbiased 
method for extracting coherent structures, however, the degree to which the resulting 
structures correspond to those found in experiment is largely unconfirmed. An 
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application of Lumley’s decomposition to estimated cross-spectra in laboratory jet 
flow found that several modes were necessary to realistically capture the flow 
structure [20]. 

The K-L expansion, outlined in Section 4, provides a low-dimensional represen- 
tation of a characteristic large scale structure by decomposing it into a set of 
uncorrelated, data-dependent components. These components are the eigenfunc- 
Cons of a two-point correlation tensor and they frorm an optimal basis in several 
senses. For instance, the K-L eigenfunctions minimize the mean-square error of the 
expansion, maximize the total energy captured in each coordinate direction, subject 
to orthogonality constraints and form a complete basis with which to represent the 
flow. Also, while the method is optimal with respect to second order moments, 
there is no loss of higher order moment information as the basis is complete. 
However, in general the efficiency with which higher order information is captured 
is not optimized by the K-L expansion. For a full discussion of these and other 
properties of the K-L expansion there exist many detailed references [21-261. 

This approach provides a concrete mathematical framework in which to discuss 
the high-energy components of the flow and may potentially provide a reduced 
dynamical model. The expansion allows the characterization and data compressed 
representation of a flow realization in terms of a fixed set of eigenflows. While these 
eigenflows are not in general solutions of the flow equations they can clearly be 
viewed as corresponding to mechanical motions and as such provide insight into 
the relative make up of each flow realization in terms of its eigenstructure. When the 
flow is decomposed in this manner, pictorially we see that its large-scale features are 
captured using a small number of eigenfunctions. 

Appropriate methods for extracting, or educing, coherent structure from tur- 
bulent flow- is an area of active research. Early visualization techniques have been 
supplanted by more objective statistical or feature based approaches. For example, 
the VITA technique of Blackwelder and Kaplan [27], the quadrant analysis of Lu 
and Willmarth [28], and Adrian’s application of stochastic estimation [29]. Also, 
in the case of jet flow, structures have been induced by periodic forcing which 
excites a preferred mode [S]. The number of methods for educing coherent 
structures reflects the lack of a generally accepted rigorous definition of what they 
are. A better understanding of the composition of observed structures is clearly 
necessary for any such deliberations to proceed. With this as a goal, our study 
focuses on large-scale vortices and their composition in terms of the K-L eigen- 
functions. In this spirit, we apply the conditional sampling procedure, described in 
Section 3, which eliminates the shifting of experimental data used to condition the 
ensemble for the randomly timed snapshots in [30]. 

One potential side benefit of this study is the comparison of the low-dimensional 
representations of experimental and computational flows. In Section 6 we consider 
the results of an analogous study of a qualitatively similar laboratory flow [30]. In 
general, this type of comparison promises to be highly complimentary for the 
following reasons: It is typical of a numerical simulation to obtain highly detailed 
data but over limited time intervals; experiments, on the other hand, produce data 
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for much longer time periods but generally with limited detail. Clearly, any connec- 
tions or relationships we can infer between the mechanical motions provided by the 
machine flow and the concentration fields of the experiment may serve to mutually 
benefit each approach. 

With this goal in mind, we computed not only the primitive flow variables for the 
jet, but also the mass fraction, a variable analogous to the gas concentration fields 
produced by the experiment previously mentioned. Clearly this is an idealization, as 
the experiment produces 2D slices of a truly 3D flow while the simulation is 
axisymmetric. However, data for the experimental jet, as well as the simulation, 
were collected in the transition region where 2D effects are dominant. 

It is well known that the method employed here requires abundant data to 
provide sufficient statistics for the computation of the eigenfunctions. The axisym- 
metric jet was modeled using an highly efficient large eddy simulation based on an 
optimized FCT algorithm [3 1 ] which was completely vectorized/parallelized. This 
enabled the generation of a reasonably sized ensemble of flow realizations, each 
member of which satisfies a sampling condition. Details of the simulation are given 
in Section 2. In theory it is a simple matter to extend all of the techniques applied 
here to 3D flows; currently however, this would be an expensive proposition in light 
of the fact that the approach requires a statistically large database. Yet, large eddy 
simulations of 3D shear flows have previously been carried out for a small number 
of realizations using FCT, e.g., [32]. 

2. NUMERICAL SIMULATION 

Air at standard temperature and pressure is passed through a cylindrical jet with 
a velocity of 150 m/s and nozzle diameter 5 cm into background air (also at STP) 
initially at rest. This corresponds to a Reynolds number, based on the jet diameter, 
of 0( IO’). Typical flow realizations produced by the simulation are shown in Figs. 1 
and 2. The axis of symmetry is the bottom edge of the flow. The numerical simula- 
tion generates the pressure p, internal energy E, density p, and horizontal and 
vertical momentum densities pu as the primitive variables along with one derived 
variable, i.e., the mass fraction cr. To make the analysis convenient we will inter- 
changeably consider the flow variables to be either scalar functions of x, or arrays 
defined on a discrete computational grid. 

The numerical simulation solves the time-dependent compressible conservation 
equations for an ideal gas in axisymmetric geometry, 

8~ a 
z+z (PU~)+:$ (rpu,)=O, 

i (pu,)+i (pu,u=)+i$ (rpu,u,)+$=O, 



FIG. 1. T ‘op: Instantaneous streamlines of a typical flow realization. Center: Correspon 
field. Bottom I: Mass fraction. This snapshot is included in the ensemble. 
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FIG. 2. Top: Instantaneous streamlines of a second typical flow realization. Center: Corresponding 
pressure field. Bottom: Mass fraction. This snapshot is nor included in the ensemble. 
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(1.3) 

(1.4) 

The energy is E = P/(7 - 1) + $p(u,’ + u:), where 1’ denotes the ratio of specific 
heats. The flow is assumed to be inviscid and non-heat conducting. The mass 
fraction g is computed at each time step by 

(1.5) 

As mentioned earlier, the mass fraction is analogous to the concentration field 
measured in the seeded jet experiment [30] and is obtained by tagging particles 
that make up the jet material and applying a conservation law which allows us to 
follow their progress. The computations are carried out on a 240 by 80 grid, corre- 
sponding to 12.4 jet diameters length of flow. The computational grid is uniform for 
the first 7.2 diameters after which it is stretched to take advantage of the fact that 
fewer cells are required to describe the evolution of the large-scale structure. 
Two-dimensional solutions are constructed using direction splitting and time step 
splitting with a one-dimensional, fourth-order, phase accurate flux-corrected 
transport (FCT) algorithm [31]. No explicit subgrid turbulence model is included 
because the FCT algorithm acts effectively as a high-frequency filter which diffuses 
the smallest scale structures which are not adequately described with the grid 
resolution chosen. The numerical viscosity inherent in the algorithm mimics the 
behavior of small scale turbulent diffusion at high Reynolds numbers by smoothing 
small scale structures on the order of a few computational cells [33]. 

3. PRELIMINARIES: SAMPLING, MEAN SUBTRACTION 

In order to obtain independent events representing the same type of coherent 
structure we select only snapshots that satisfy a predetermined strobe condition. The 
sampling condition is specified as follows: the radial distance from the axis of the 
jet, at a position six diameters downstream of the nozzle, to the point where the 
value of the mass fraction one-half is measured; when this distance passes through 
a maximum the flow is sampled. The condition corresponds to the passage of a 
large scale vortex. Since the actual strobing of the flow took place at unequal inter- 
vals we infer, as expected, that the flow is not periodic. The computer simulation 
was carried out for 2 x IO5 timesteps giving 58 snapshots that satisfied the ensemble 
strobe condition. This corresponds to 100 to 150 vortex sheddings at the nozzle lip 
since some merging has taken place at the strobe location. The sampling began 
after the flow was fully initialized, i.e, after about 40,000 time steps. The region of 
our analysis will be 4.2 to 12.4 diameters downstream. 
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Ensemble averages are computed according to, e.g., 

$+; f cP)(X) = (fP’(x)), 
PI= I 

where M is the number of snapshots in the ensemble. Throughout the rest of 
this paper we focus on the fluctuating quantities of the flow variables, e.g., the 
fluctuating mass fraction is given by 

cJ’(x)=o(x)-G(x). (3) 

However, for convenience we drop the primed notation. 

4. KARHUNEN-LO~VE EXPANSION 

4.1. Formulation 

The Karhunen-Loeve expansion is based on representing a typical realization of 
a flow in terms of the eigenfunctions of the integral equation 

&(x, x’j w;~‘(x’) = A(n) M.;(X), (4) 

where summation and integration conventions are assumed. The two point 
covariance tensor is defined by 

where 

u = iP4 Pt’, P) (6) 

and the brackets indicate the ensemble average. 
The analysis for the derived variable, i.e., the mass fraction, is carried out 

separately and parallels the above discussion. In this case (4) becomes 

K(x, x’) oP’(X’) = AIW’ oP(X), (7) 

where K is given by 

K(x, x’) = (c(x) a(~‘)). (8) 

In each case the kernel K is symmetric and nonnegative thus we have orthogonal 
eigenfunctions and non-negative eigenvalues. The kernels are also degenerate, a fact 
which greatly simplifies the actual computation of (4) and (7). In addition, the cost 
of the calculation increases only linearly with the number of flow variables 
concatenated in (6). 
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Once we have computed the eigenfunctions, we can reconstruct a member of the 
ensemble by an N term expansion with 

.\ 
u.2’= c aik+gkl, 

k-1 

where 

a, = (U, w’“‘), (10) 

under the normal Euclidean inner product. 
When N= A4 this reconstruction is exact, since in this case the expansion is 

equivalent to a linear change of basis. The error introduced when the series is 
truncated must be interpreted carefully since in practice it is improbable that an 
ensemble will be large enough to characterize, to arbitrary accuracy, all possible 
flows that satisfy the strobe condition. Since we do not know in advance how large 
an ensemble will be large enough, this error is underestimated and hence of limited 
value. More importantly, we can estimate the error of the approximation of a 
snapshot that satisfies the strobe condition but which was not included in our 
original ensemble. The degree to which we are successful in approximating these 
flows will tell us to what extent our optimal basis actually spans our solution set 
c341. 

We use the Euclidean distance between the exact fluctuating flow field 4 and its 
N term expansion U’“, 

E 
.v 

= /Iu”-ull 
IlUll 

(11) 

as a quantitative measure of the error of the approximation, 

4.2. Scaling 

Since we have concatenated variables measured in different units with different 
variances we must introduce appropriate scale factors to prevent the domination of 
any one flow variable in the computation of the eigenfunctions. With this in mind 
we determine three scale factors which force the magnitude of the fluctuating 
variables to be, on average, 0( 1). For example, we compute the pressure scale 
factor by 

sp = l/(,,‘( l,‘N,IN,.) x7” pi,+‘). (l-2) 

Here N, = 115 and N,, = 70 represent the grid resolution in the horizontal and 
vertical directions, respectively (for the region 4.5 to 12.4 diameters downstream). 
Similar scale factors are computed for the momentum density components. 
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5. RESULTS 

5.1. Ensemble Averages and Fluctuating Quantities 

The ensemble averages of the momentum density, pressure, and mass fraction are 
shown in Fig. 3. We see that there is indeed a well-resolved vortex at the strobe 
location and a corresponding minimum in the pressure distribution. Also, the 
strobe condition manifests itself in the ensemble average of the mass fraction as we 
see the mass fraction contour of D = 0.5 is in fact a well defined peak. 

Examining the fluctuating fields of the flows shown in Figs. 4 and 5 it is apparent 
that they have well defined, distinguishing large-scale structure. For instance, the 
fluctuating momentum density field shown in Fig. 4 consists of a complicated 
pattern of vortices, one of which is significantly stronger than the others. The 
momentum density field shown in Fig. 5 has four well defined vortices of 
approximately the same strength. Corresponding differences are exhibited in the 
other flow variables. Thus it is established that the flows represent widely different, 
complex behavior and the degree to which they can be accurately represented will 
provide a good test for the method. 

5.2. Eigenvalues 

The eigenvalues (normalized by the total sum of the eigenvalues) resulting from 
Eqs. (4) and (7) are shown in Fig. 6. The conventional global Karhunen-Loeve 
estimate of the dimensionality [16] of the set of snapshots, i.e., the index i of the 
eigenvalue for which D”’ = 1”‘/&,,, = 0.01, is 15 for the composed variable. The 
dimensionality estimate for the mass fraction is 31. This should be compared with 
an estimate of 41 for the concentration fields of the seeded jet [30]. From this we 
can infer that the structure of the particle paths is more complicated than that of 
the velocity and pressure fields. Also, it follows that the information describing the 
particle paths is spread over a larger range of scales. 

It is useful to consider the fraction of variance 4,” contained, on average, in the 
expansion for a given number of terms, where 

(13) 

This gives us information that Dci’ does not, since it tells us how much information 
is contained in the tail of the expansion. 

The quantity qN is plotted versus N for the eigenvalues of both (4) and (7) in 
Fig. 7. We see that for the composed variable five terms contain 85 % of the 
variance and for the mass fraction 65% of the variance. These figures are up to 
94% and 80% by 10 terms. However, it should be kept in mind that these figures 
will probably go down if we had more realizations in the ensemble. This is to be 
expected, since we have not completely spanned our space of admissible solutions 
by our limited data set. Ideally, if we kept adding snapshots the quantity q: would 
tend to a limit as M goes to infinity. In the case of the seeded jet, where we had 
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FIG. 3. Top: Instantaneous streamlines of ensemble averaged velocity field. Center: Ensemble 
averaged pressure field. Bottom: Ensemble averaged mass fraction. Ensemble size = 55. 
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.4 

FIG. 4. Top: Fluctuating momentum density field for Fig. I. Center: Corresponding fluctuating 
pressure field. Bottom: Fluctuating mass fraction. 



EIGENFUNCTION ANALYSIS OF JET FLOW 

! 4.7 5.1 5.6 6.0 b.5 7.0 7.5 8.4 10.1 12.4 

109 

FIG. 5. Top: Fluctuating momentum density lield for Fig. 2. Center: Corresponding fluctuating 
pressure field. Bottom: Fluctuating mass fraction. 
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INDEX 

FIG. 6. Normalized eigenvalue i”‘/zL I”’ versus i for the concantenated variable (solid 
mass fraction (dashed curve 1. 

curve) and 

220 snapshots, the values of qz decreased only a couple of percent for fixed N as 
we increased the ensemble from 70 to 220. The quantity 1 - qN corresponds to the 
mean square error of the expansion, for snapshots belonging to the ensemble. 

The number of terms retained in an eigenfunction expansion depends largely on 
the degree of accuracy required. However, this decision should be made keeping the 
behavior of the above two figures in mind, since they indicate that there is a 
identifiable trade-off between accuracy and efficiency. Specifically, consider the solid 

INDEX 

FIG. 7. Fraction of total energy q,* as a function of N for concatenated variable (solid curve) and 
mass fraction (dashed curve). 
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FIG. 8. Eigenfunctions corresponding to largest eigenvalue. Top: Momentum density component. 
Center: Pn :ssure field component. Bottom: Mass fraction eigenfunction. 
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curve in Fig. 7. It can be roughly approximated as two piecewise linear segments 
that join when the eigenvalue index is between 5 and 15. From this we see that it 
is most efficient to truncate the expansion at the point where the rate of capture of 
the variance falls off, corresponding to roughly a 5 to 15 term expansion for the 
composed variable. The error E, averaged over three flows taken from outside of 
the ensemble (but still satisfying the strobe condition) supports this interpretation, 
see upper dashed line in Fig. 10 (top). The slope of the error curve is steep initially 
and then flattens out at a point corresponding to about 10 terms. There is an 
analogous behavior for the rate at which the mass fraction expansion captures 
information. However, the transition region between fast and slow convergence 
occurs between 10 and 20 terms. 

5.3. Eigenjlows 

Interpreting the eigenflows is facilitated since we have knowledge of several flow 
variables. It should be kept in mind that they are not solutions of the flow, in fact, 
in general they do not even satisfy the continuity equation (l.l), as in the case of 
incompressible flow. Hence, while we attribute physical meanings to them, they do 
not in fact represent physics per se. 

The first eigenfunction of the composed variable, shown in Fig. 8, contains 35 % 
of the statistical variance of the flow. The dominating feature is a large vortex struc- 
ture bounded on either side by a weaker vortex. These weaker vortices are the 
manifestation of the vortex mergings occurring in the vicinity of the strobe location 
whose phase with respect to the strobe condition is variable. The centers of the 
vortices correspond to extrema of the pressure field component of the eigenfunction. 
Also, the vortex strength is proportional to the magnitude of the corresponding 
pressure extremum. The first mass fraction eigenfunction contains 24% of the total 
variance. The extrema located on the interface between the jet and background air 
correspond to centers of vorticity in the momentum density component. 

The second eigenfunction of (4), shown in Fig. 9, containing 21% of the 
variance, has one dominant vortex, and an associated pressure extremum, located 
at roughly 4.2 to 5.5 diameters downstream. The corresponding mass fraction 
eigenfunction has 15% of the variance. There does not appear to be any direct 
correspondence between this eigenfunction and its counterpart from (4). One 
might speculate that this might change if there we considered statistically larger 
ensembles. 

Later eigenfunctions are seen to consist of much smaller scale features and 
possess only a small fraction of the total variance. For example, the 40th eigenflow 
for the composed variable possesses only 0.03% of the total variance. The 
associated mass fraction eigenfunction has appreciably larger scale structures, 
possibly a sign that an ensemble size of 55 for a derived flow variable has deficient 
statistics. It accounts for 0.10% of the variance. This deficit is probably related to 
the fact that an interface is particularly difftcult to represent by this procedure 
because it has a continuum of possible locations but is sharp in any one realization. 
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FIG. 10. Top: Approximation errors E, for composed variable. Lower dashed curve represents error 
averaged over 11 realizations belonging to ensemble; upper dashed curve represents error averaged over 
three arbitrary flows not used in the computation of the covariance matrix. The solid curves represent 
the errors for Fig. 4 (lower) and Fig. 5 (upper). Bottom: Same errors for mass fraction. 
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5.4. Reconstructions and Approximations 

To test the extent to which the above procedure results in a low-dimensional 
description of the flow we project two realizations onto the basis. One, shown in 
Fig. 4, is used in computing the eigenfunctions. The second, shown in Fig. 5, is not. 

In the first case, the reconstruction errors for the composed flow variable are 
28% and 16% for 5 and 10 terms, respectively (with respect to the fluctating field). 
In the second example the approximation errors are 36%, 26%, and 14% for 5, 
10, and 55 terms. The errors for the mass fraction are 63 % and 40% for the 5 and 
10 term reconstruction of Fig. 4 (bottom) and 81%, 67%, and 51% for the 5, 10, 
and 55 term reconstruction of Fig. 5 (bottom). These numbers are seen to be typical 
when compared to errors averaged over several flows, see Fig. 10 (note that the 
errors are considerably smaller when measured with respect to the mean flow field). 
As might be anticipated from the corresponding eigenvalue spectrums, the 

4.2 4.7 5.1 5.6 6.0 6.5 7.0 7.5 8.4 10.1 

FIG. 11. Reconstruction of the momentum density component of Fig. 3. Top: Five terms. Bottom: 10 
terms. 
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approximation of the mass fraction is not as successful as that for the composed 
variable. This should be expected in view of the larger estimate of the dimen- 
sionality given in 5.2. In this instance the ensemble size is really too small to 
accurately capture the wide variety of flows described by the mass fraction. In fact 
a modified procedure might be considered based on the 1D interface location rather 
than a 2D representation of it. 

For flows that belong to the ensemble used in computing the eigenfunctions the 
errors are relatively small and the contour plots of the reconstructions reflect this, 
see Figs. 11-13. A more demanding test of the method is the approximation of 
arbitrary flows that satisfy the strobe criterion. In this case, we saw that quan- 
titatively the errors were reasonable for the composed variable but rather large for 
the mass fraction. Pictorially, see Fig. 14, the five term reconstruction does a 
remarkable job in capturing the location and strength of the vortices. The pressure 

4.2 4.7 5.1 5.6 6.0 6.5 7.0 7.5 8.4 10.1 1 .4 

FIG. 12. Reconstruction of the pressure field component of Fig. 4. Top: Five terms. Bottom: 10 terms. 
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field is similarly well captured (Fig. 15). Despite the fact that the quantitative error 
of the mass fraction is large, the large scale features are still captured, at least 
visually. 

6. COMPARISON TO THE ANALYSIS OF EXPERIMENTAL DATA 

One of the major drawbacks of the application of the snapshot method to 
numerical data is that the cost of the computations required to obtain sufhcient 
statistics is significant. This is not the case with experimental data obtained for a 
seeded jet where thousands of realizations may be captured in a matter of seconds 
[35]. Here the disadvantage is that the type information is limited to concentration 
fields. In this section, we speculate on the connections between the experimental 
and machine flow studies. For details of the experiment, see [30]. 

M . . , 1 . . . . I . . , . ( 
4.2 4.7 5.1 5.6 6.0 6.5 7.0 7.5 8.4 I 

FIG. 13. Reconstruction of the mass fraction component of Fig. 4. Top: Five terms. Bottom: 10 terms. 
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We show for comparison the first eigenfunction computed from a set of 220 
pattern recognized coherent structures obtained for a seeded jet at a Reynolds 
number of 0( 103), see Fig. 16. The frame of this eigenfunction sits from 5.25 to 8.75 
diameters downstream, compared to 4.5 to 12.4 diameters for the numerical data. 
There are three large scale structures, situated roughly on the edge of the material 
interface, i.e., a high with a low on either side. This might be optionally interpreted 
as a low and two highs, since an eigenfunction is only determined to within an 
arbitrary multiplicative constant. We see this same kind of structure on the material 
interface of the first mass fraction eigenfunction. The numerical eigenfunction differs 
in that it has internal structure, largely absent in the experimental eigenfunction. It 
is tempting to infer from the numerical study that these high-low regions can be 
directly associated with vortices found in the first eigenfunction. 

Obviously, the above results may be important in establishing a connection 
between the numerical and experimental study, but the analogy suffers from some 

I. CL> 

2 4.7 5.1 5.6 6.0 6.5 7.0 7.5 8.4 10.1 12.4 

FIG. 14. Approximation of the momentum density component of Fig. 5. Top: Five terms. Bottom: 
10 terms. 
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deficiencies. Differences in the acquisition and sampling of the data (the experiment 
applies a template fitting procedure), necessarily mean that we are looking at 
different, although possibly related, large-scale structures. The numerical simulation 
must be run longer to generate more reliable statistics for the higher order 
eigenfunctions. Also, as mentioned earlier, we are comparing slices of a fully three 
dimensional flow (although dominated by 2D effects) at a moderately low Reynolds 
number to a relatively fast 2D Euler simulation. Nevertheless, the potential of this 
approach is such that these inferences are reasonable to consider. 

7. DISCUSSION 

In this study we propose a low dimensional characterization of large scale 
coherent structures obtained using a conditional sampling procedure. We see that 

FIG. 15. Approximation of the pressure field component of Fig. 5. Top: Five terms. Bottom: 10 terms. 
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the large scale features of an arbitrary structure are captured using a small number 
of terms in a characteristic expansion. The results indicate that the most economic 
expansions can be determined by the average error slopes which represent the rate 
of convergence. The importance of the later eigenfunctions is related to the smaller 
scales of the flow. 

The decomposition of the composed variable led to a more accurate description 
of the primitive variables than the corresponding analysis of the mass fraction. The 
relative magnitude of the eigenvalues tells us that the mass fraction is exhibiting 
more complicated behavior than the primitive variables probably because of the 
physically discontinuous interface involved. Thus a larger ensemble size is required 
to achieve a more accurate expansion in this case. 

We see that the comparison to the experimental data yields positive results but 
admit that the differences between the two flows and a lack of numerical statistics 

FIG. 16. Approximation of the mass fraction component of Fig. 5. Top: Five terms. Bottom: IO terms. 
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FIG. 17. First eigenfunction of the experimental jet data. Ensemble size=210, Reynolds 
number = 1150. field location is 5.25 to 8.75 diameters downstream. 

should promote a certain amount of circumspection. However, it seems likely that 
this type of approach will be beneficial in future applications to three dimensional 
data, both numerical and experimental. 
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