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It is shown that the Karhunen-Loeve decomposition may be used to determine the 
eigenfunctions of a general class of linear operators from an ensemble of realizations that are 
derived from that system. Given a moderate size data set (either numerical or experimental) 
from a linear system, good approximations to the eigenfunctions that characterize the 
underlying equations can be computed by performing the Karhunen-Lotve procedure. Two 
numerical examples are presented: the vibration of a thin membrane in a rectangular domain 
and in a stadium. These are used to determine the convergence and accuracy of the method. 
It is found that this method yields accurate results for the first few eigenfunctions with 
relatively few realizations. Eigenfunctions with less energy are accurately resolved as the size 
of the ensemble increase. The method is shown to be an efficient and practical procedure 
for determining the eigenfunctions of systems in complex geometries and in cases where the 
governing equations are not known a priori. The effect of random noise contamination of the 
data set is also investigated and it is found that the Karhunen-Loeve procedure can still 
achieve accurate results despite the presence of substantial background noise. 0 1991 Academic 

Press, Inc. 

1. INTR~OU~TION 

The determination of the eigenvalues and eigenfunctions of a linear operator is 
fundamental in physics and the mathematical sciences. Analytically, the determina- 
tion of the eigenfunctions is restricted to the simplest of geometries and the most 
elementary of operators. Consequently, for the vast majority of non-trivial 
problems, one must resort to numerical approximations of the eigenfunctions 
associated with the equation of interest. However, even with the powerful computa- 
tional resources available, the eigenvalue problem can be extremely difficult. Often 
the geometry of the system is complex, requiring high resolution, which in turn 
demands large computers for solution. A second case in which the determination of 
the eigenfunctions is all but impossible is when the governing equations of motion 
are unknown, but for which experimental data from the system in question are 
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available. One such example might be the response of a complex structure to 
external vibrations. 

In this paper, we develop a method by which the eigenfunctions from a linear 
system may be computed from a set of data generated by that system. This method 
is based on the Karhunen-Loeve (K-L) decomposition by which any ensemble of 
data may be decomposed into an optimal set of empirical eigenjiinctions which are 
orthogonal and achieve the maximal capture of the energy of the system in the 
minimum number of eigenfunctions. We shall demonstrate that this procedure can 
be used to reproduce the analytic eigenfunctions for a general class of linear 
systems. The method is shown to be computationally efficient-involving far fewer 
operations than the QR algorithm which is often employed in the solution of the 
eigenvalue problem [ 11. It should be noted that the K-L procedure is usually 
associated with nonlinear and chaotic behavior (cf. [Z-4]). Thus our presentation 
demonstrates that the procedure naturally extends down to linear, organized 
behavior. 

The rest of the paper is divided into two main sections. In the first section, we 
derive the basic equations and discuss the analysis behind the procedure. In the 
second section, we illustrate the procedure using two sample problems. The first 
example is a trivial one-the vibration of a thin membrane in a rectangular 
domain; however, its simplicity allows us to examine in some detail the convergence 
and accuracy of the procedure, the effect of changes in the resolution of the data, 
the size of the ensemble, and the level of background noise. The second example 
computes the eigenfunctions in a stadium-shaped domain, a representative problem 
for complex geometries. 

2. DERIVATION OF EQUATIONS 

The question at hand is the determination of the eigenfunctions of an operator 

(1) 
In general L, is a linear matrix valued operator and x E R”. For problems of interest 
L, is a differential operator (though it may be more general) and the eigenfunctions 
satisfy suitable homogeneous boundary conditions. For the following remarks, we 
shall require that the spectrum of L is real although we do not necessarily assume 
that L is Hermitian. 

Consider the two evolution equations 

(2) 

(3) 
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where Lt refers to the adjoint operator. We solve (2) and (3) subject to initial data 
which are sufficiently general so as to excite all the modes of the corresponding 
operators. 

Next, we form the cross-correlation: 

K(x, x’) = Jirnm i JOT u(x, t) 0(x’, t) dt 

= (u(x) u(x’)). (4) 

Generally, the K-L eigenfunctions, Y(x), are defined [S] as the eigenfunctions of 
the auto-correlation tensor, (u(x) u(x’)): 

s (u(x) u(x’)) Y(x’) dx’ = AY(x). (5) 

Thus, by considering the cross-correlation, (u(x) I), we are extending the K-L 
procedure. To associate the K-L eigenfunctions of K(x, x’) with those of the linear 
operator, L, we assert that modulo invariant subspaces, K and L have the same 
eigenfunctions. 

This can be shown by applying L to the eigenvalue relation, (5): 

s L,[K(x, x’)] Y(x’) dx’ = AL,[ Y’(x)]. (6) 

Using the definition of K(x, x’), (4), and the equation of motion, (2), we obtain 

s ((k,(x)) u(x’)) Y(x’) dx’ = ,lL,[ Y(x)] (7) 

and, after integration by parts, we find 

I (u(x)( -iu,(x’))) Y(x’) dx’ = AL,[ Y(x)]. 

Now, using the second equation of motion, (3), and after a second integration by 
parts, we obtain 

s (u(x) L$I(x’)]) Y(x’) dx’ 

= s <u(x) 0(x’)> L,.[ Y(x’)] dx’ = AL,[ Y(x)]. (9) 

K and L commute and thus have the same eigenfunctions. Note that the eigen- 
values, p, associated with L will not in general be the same as the K-L eigenvalues, 
A. The eigenvalues calculated by the K-L procedure represent the average value of 
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each eigenfunction over the entire ensemble. If, for example, u2 represents an 
energy, then A, represents the average energy of the nth mode in the system. For 
a linear system, each eigenmode evolves without any intersection with the rest of 
the system, and thus the value of 3., is uniquely determined by the initial conditions. 
In contrast, the eigenvalues of the operator L have no such meaning and are intrinsic 
to the equations, not dependent on the initial conditions. The eigenvalues of the 
operator L may be found by projecting the original data set, u(x, t), onto the com- 
puted eigenfunctions and analyzing the time behavior of the resulting coefficients. 

The strategy adopted above is in no way unique. The main purpose of the above 
is to show, in a general way, how to obtain the eigenfunctions by treating an 
evolutionary system. Certain operators with special properties will allow other 
techniques. For example, a negative, self-adjoint operator can be treated in a 
simpler fashion, solving only one time dependent system: a,, = L,[u(x)]. This is the 
approach used for the application considered in Section 3. 

2.1. Numerical Considerations 

In ref. [6], two different approaches are suggested for computing the K-L eigen- 
functions: the direct method and the snapshot method. For the purposes of com- 
pleteness, we briefly summarize each of the two methods. The goal is to determine 
the eigenfunctions of K(x, x’), defined by (4), or equivalently, 

K= $ 5 dk’(X) dk’(X’) 
k=l 

(10) 

where, e.g., 

dk’(x) = u(x, tk), k= 1 . ..p (11) 

and t, represents uniformly sampled times. 

2.1.1. Direct Method 

For the implementation of this approach, we immediately introduce the spatial 
grid on which the data is represented. For data resulting from numerical simulation 
this will be the collocation grid, while for experimental data it will consist of the 
sampling locations. For example, if the problem has support in two dimensions, 

x = (x, v), (12) 

we would write U(X, y, t) at the discrete grid points: 

4x,, Y,, t), n=l -..N,,m= 1 . ..N.. (13) 

It follows that 

ax, Y, x’, Y’) = Kz,;,w. (14) 



LINEAR EIGENFIJNCTIONS 281 

The eigenfunction problem is therefore equivalent to the diagonalization of an 
NXNY x NJ,, matrix. More generally, in d-dimensions, we will have an O(ZP) 
matrix to deal with. The operation count for the direct method scales like O(PNZd) 
for the computation of K nm,n’m’ 9 and like O(iV3d) for the diagonalization. Storage 
requirements scale as O(NZd) for both parts of the process. While this’approach is 
feasible when Nd is not too large, it becomes impractical for highly resolved, multi- 
dimensional problems. In that case, the computational demands and the storage 
requirements necessitate an alternative approach. 

2.1.2. Snapshot Method 

The snapshot method is based on the fact that the cross-correlation, (lo), is a 
degenerate kernel. From this, the eigenvalue problem, (5), has a solution which can 
be written as 

Y= i a,u(“)(x), 
ft=l 

i.e., an admixture of snapshots. Thus if we define 

G=j u(“)(x) d’@(x) dx 9 (16) 

then the problem is solved by performing the eigen-analysis of the P x P matrix 
c nm, i.e., 

Cu=ia (17) 

where a = (al, . . . . aP) and 1 is the same as in (5). Using this approach, the opera- 
tions count scales like O(W’P’) operations for the computation of C,,, O(P3) 
operations for the diagonalization of C,,, and O(NdP2) operations to compute 
Y(x) using (15). Storage requirements also scale like O(P2). 

Whereas the direct method proved to be unusable for large Nd, the snapshot 
method remains viable and only becomes impractical for large ensemble size, P. 
The choice of the approach will usually be determined by the form of the particular 
data set. If the data consists of a long time history with only moderate spatial 
resolution (typical of experimental data or a coarse numerical simulation) the direct 
method will be appropriate, whereas if the data consists of a moderate time history 
with high resolution (common for large-scale numerical simulations of complex 
systems) the snapshot method becomes favorable. 

3. NUMERICAL EXAMPLES 

As an illustration of this procedure, we will present two illustrative examples in 
which the K-L procedure has been used to find the eigenfunctions of the Laplacian 
operator 

V2@ = /ND. (18) 
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We consider two differently shaped domains: (i) a rectangular domain and (ii) a 
“quarter-stadium” domain. In both cases, the K-L procedure has been applied to 
data from the numerical solution of the two-dimensional wave equation: 

a% - = v2u. at2 
Since the Laplacian is a negative operator, we can employ a simplified version of 
the analysis from Section 2, solving only one equation of motion with u,, as the left- 
hand side. Since the operator is self-adjoint, the cross-correlation, (lo), Gil be a 
Hermitian matrix, further simplifying the computational procedure. 

The first of these examples can be considered as the vibration of a membrane in 
a rectangular domain and seems at first to be a trivial application of the procedure. 
However, it is chosen for that reason, since it affords us the opportunity of 
investigating the convergence properties and overall accuracy of the method. Since 
the eigenvalues and eigenfunctions for this problem are easily found analytically 
and since the problem is simple enough to be repeated for many different resolu- 
tions and ensemble sizes, we can thoroughly explore the application of the proce- 
dure for different choices of the parameters. In addition to varying the resolution 
(N) and ensemble size (P), we shall also investigate the effect of various levels of 
random noise on the accuracy of the eigenfunctions, an issue of some importance 
when applying the procedure to experimentally obtained data. 

The second example, which can be interpreted as the vibration of a thin mem- 
brane in a “stadium,” is presented as an example of the application of the procedure 
in a complex geometry. The stadium geometry, achieved by appending two semi- 
circles of unit radius onto the ends of a rectangle of length L, is a classic geometry 
that has been extensively studied [7-lo] and is known to possess spatially chaotic 
eigenfunctions when L > 0. 

We should note that once the data and the correlation matrix (or inner product 
matrix) has been obtained, the numerical procedure is blind as to both the nature 
of the data and the system that produced it. Thus the K-L decomposition does not 
know, or care, whether the geometry of the domain is a simple rectangle, a stadium, 
or any other arbitrary shape. In addition, the complexity of the dynamical system 
that generated the data, whether it be linear, nonlinear, ordered or chaotic, does 
not affect the computation of the eigenfunctions and eigenvalues. Thus, the use of 
the rectangular geometry as a test case is not a numerically insignificant problem, 
since we would expect that the convergence and accuracy data that we obtain from 
this system will be generally applicable to many systems. 

3.1. Vibration of a Membrane in a Rectangular Domain 

We choose a domain bounded by x = [O, L], y = [0, 11, where L is the aspect 
ratio of the rectangle. It is easy to show that the analytic eigenfunctions are 

Qnm(x, y) = sin 7 sin(m7ry). 
( > 
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To apply the K-L procedure, we need an ensemble of snapshots from the system, 
and in general, we would have to utilize some procedure to numerically solve the 
equations of motion. However, for this case, since the equations are so simple we 
can generate our ensemble analytically. If the initial conditions state that at t = 0 
the membrane has some initial, stationary, configuration, then the complete solu- 
tion U(X, y, t) may be represented by 

N M 

u(x, y, t) = C 1 A,, cos(k7ct) sin 
mx 

n=l m=l ( ) 
L sin(m7cy); (21) 

N and A4 are the number of modes used in the x and y directions, respectively, and 
k = dm. The coefficients A,, are determined by the initial conditions and 
are the eigenvalues that will be approximated by the K-L procedure. Once we have 
specified these, we can quickly calculate U(X, y) at any time. In addition, the matrix 
C,, required for the snapshot method, can be calculated simply by making use of 
the orthogonality of the trigonometric functions: 

C, = 5 5 A;, cos(kdi) cos(kntJ. 
n=l m=l 

(22) 

Sirovich [ll] has discussed extensively the extensions to the original data set 
that may be found by making use of symmetries inherent in the geometry of the 
problem. For the present case, any single realization may be extended into four 
independent realizations by reflections about the two axis of symmetry, and 180” 
rotation. The data extension has two purposes. First, when the ensemble is of 
limited size, it increases that size dramatically (some geometries allow as many as 
16 new realizations from a single snapshot), thus improving the statistical quality 
of the results. Second, the data extension endows the computed eigenfunctions with 
the symmetries that we know the analytic eigenfunctions possess, thus improving 
the geometric fidelity of the computed eigenfunctions. For the present case, new 
snapshots are not difficult to generate and so statistical considerations do not 
require any data extension. However, the geometric advantages can still be enjoyed 
and, for all the results presented, we have made use of the fourfold symmetry that 
the rectangular domain allows. 

For the present example, the aspect ratio was chosen as the Golden Mean, 
L = (1 + fi)/2 x 1.61803, while the initial conditions u,(x, y) were specified as 

X?C 
u,=sin - ( > L 

sin(y7r)e -10[(2x-L-0.1)*+(2y-1-0.2)q (23) 

au,=, 
at (24) 

The first twenty coefficients, A (for these initial conditions), computed for 
N = A4 = 16, along with the mode numbers in the x and y directions, n and m, are 
given in Table I. Since these coefficients are approximated by the K-L eigenvalues, 
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TABLE I 

Analytic Values for the K-L Eigenvalues and 
Mode Numbers for Initial Conditions 

Rank n m Eigenvalue, n 

1 1 1 0.27907109 
2 3 1 0.18179162 
3 5 1 0.07670603 
4 1 2 0.05969925 
5 1 3 0.05850719 
6 1 4 0.04820078 
7 3 2 0.03888910 
8 3 3 0.03811257 
9 3 4 0.03139880 

10 7 1 0.020693 19 
11 4 1 0.01878738 
12 5 2 0.01640905 
13 6 1 0.01626344 
14 5 3 0.01608140 
15 5 4 0.01324856 
16 2 1 0.00832501 
17 8 1 0.00757156 
18 1 6 0.00672115 
19 7 2 0.00442672 
20 3 6 0.00437827 

Note. uo(x, y) = sin(xn/l) sin(yn) exp( - 10[(2x- 
L - 0.1)’ + (2~ - 1 - 0.2)2]) with N = M = 16. The 
eigenvalues are normalized so that x A,, = 1. 

we shall refer to them as the analytic eigenualues (we reiterate that they are the true 
values of the K-L eigenvalues and not the eigenvalues of the Laplacian operator). 

Using the above equations, a data set consisting of 100 realizations, each 
separated by 0.5 time units, was constructed. This was done for three different 
resolutions: 4 x 4 (N= 16), 8 x 8 (N= 64), and 16 x 16 (N= 256). Here N is defined 
as the total size of the system. With the described data extensions, this yielded 400 
separate realizations at each resolution. 

The K-L procedure was applied to various subsets of the entire data ensemble. 
Since the resolutions used in this example are not too large, both the direct method 
and the snapshot method were used to calculate the K-L eigenvalues and eigen- 
functions. This also allows us to see how the different methods affect the results. 

3.1.1. Accuracy and Convergence 

Figure 1 shows the eigenvalue spectrum computed using the snapshot method. 
The resolution of the calculation was N = 256 (16 x 16), and the solid line plots the 
analytic eigenvalues at this resolution for comparison. The different lines represent 
different ensemble sizes, ranging from 24 to 400 (including symmetry extensions). 
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FIG. 1. Eigenvalue spectrum for wave equation in a rectangular domain. Resolution of computation 
was 16 x 16. Solid line represents the analytic spectrum while dotted lines show K-L computed spectrum 
with ensemble sizes of 24, 48, 100, 200, and 400. 

As we would expect, as P increases, the computed spectrum approaches the analytic 
spectrum and the fidelity of the K-L procedure improves. For P = 24, only the first 
few eigenvalues are well approximated before the spectrum begins to fall off, while 
for P = 400 the computed and analytic spectra are essentially indistinguishable until 
about k = 50, and even then, the K-L spectrum produces a reasonably faithful 
estimation of II, throughout 12 orders of magnitude. 

A better indication of the accuracy of the K-L estimation is shown in Fig. 2, 
which plots the running average of the error in the eigenvalues, 

1 k In.-n.l 
E,(k) =% ,C 7, 

r=O I 
(25) 

where li is the ith empirical eigenvalue, while ni is the ith analytic eigenvalue, 
based on the initial data. Figure 2 plots this error for the five different ensemble sizes 
ranging from 24 to 400. As expected, the average error decreases as the ensemble size 
increases, but we also see that the convergence of the eigenvalues is not completely 
uniform. For example, for P = 400, the jump in the average error at k = 4 indicates 
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k 

FIG. 2. Running average of error of computed eigenvalues for N = 256. Lines indicate different sizes 
of the ensemble. 

that 1, is not accurately resolved. However, for the range of k between 6 and about 
40, the average error decreases, indicating that these eigenvalues are better resolved 
than at lower values of k. At high values of k, the running average becomes smooth 
and rises rapidly. This corresponds to the spurious eigenvalues at values of k larger 
than the size of the ensemble. At these values of k, the error is always 1, and the 
average error rises accordingly. One should comment that the running average does 
present the results in the most severe manner, since it treats each eigenvalue with 
equal weight despite their wildly disparate sizes. 

The use of the snapshot method yields almost identical results to those of the 
direct method. Whereas the direct method gives N eigenvalues regardless of the 
ensemble size, P, the snapshot method gives P eigenvalues, regardless of the size of 
N. Thus for P < N all of the eigenvalues computed are valid approximations to the 
analytic spectrum. However, when the ensemble size exceeds the resolution of the 
problem, spurious eigenvalues are generated. These spurious eigenvalues have a 
characteristic magnitude comparable to the machine accuracy of the computer and 
thus are easily distinguished from the true ones. Apart from this, the snapshot and 
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direct methods yield almost identical results and unless there is a comment to the 
contrary, the results reported could be from either method. 

Of course, the primary application of the K-L procedure in this context is to 
approximate the analytic eigenfunctions. Figure 3 shows the first 12 eigenfunctions 
computed using an ensemble size of 400. The eigenfunctions are normalized so that 
their maximum value is 1. The lines plotted represent the zero-crossings and the 
kO.5 contour levels. At a glance, the eigenfunctions seem to have reproduced the 
analytic eigenfunctions remarkably well. The zero-crossings are generally straight 
lines and are aligned well with the side boundaries. There are some nonuniformities 
in the eigenfunctions which are especially noticeable when looking at the 0.5 level 
contours, but in general the comparison is quite favorable. The somewhat haphazard 
ordering of the eigenfunction is determined by the initial membrane displacement, 
and comparison of the computed modes with the analytic modes (given in Table I) 
shows that the mode numbers of the first 12 eigenfunctions are correctly captured. 

As a quantitative measure of the accuracy of the eigenfunctions, we have 
calculated the root-mean-square error of each eigenfunction, ul,, as compared with 
the known analytic eigenfunction, Qk. As with the eigenvalues, we then calculate 
the running average of the error in the eigenfunctions, which is now defined as 

FIG. 3. Contour plot of the first ten eigenfunctions computed using the K-L procedure for N = 256, 
P = 400. Eigenfunctions are normalized to have a maximum of 1. Contour levels show zero crossings and 
kO.5. 

581/96/2-4 
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k 

FIG. 4. Running average of error of computed eigenfunction for N = 256. Lines show different sizes 
of the ensemble. 

The results of this computation for a resolution of 256 are shown in Fig. 4, where 
each line represents a different ensemble size. As with the eigenvalues, the error, for 
any fixed value of k, decreases when the ensemble size is increased. While the first 
two eigenfunctions are resolved with good accuracy, the resolution of ul, is not so 
good, as indicated by the sudden jump in the average error. However, from k = 3 
onwards, the accuracy of the computation is quite consistent, rising slowing as k 

increases. Nevertheless, for P = 400, the average error for the first 100 eigenfunc- 
tions is only 0.1, indicating that on average, 90% of each analytic eigenfunction 
was correctly captured by the corresponding empirical eigenfunction. 

3.1.2. The Effect of Resolution 
Surprisingly, changes in the resolution of the data set had very little effect on the 

accuracy of the eigenfunction calculation. Three different resolutions were con- 
sidered, with 16, 64, and 256 total grid points in the domain. For a large ensemble 
size (P = 400) in which the average error in Y ranges from 0.001 to 0.1 (Fig. 4) the 
lowest resolution did show a decrease in the accuracy of the first few eigenfunctions, 
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although even at this coarse level the average error for all Yk was still only 0.1 and 
comparable with the higher resolutions. For the two liner resolutions, the accuracy 
of the computed !Pk was almost unchanged for the first ten eigenfunctions. For 
higher values of k, the errors for the N= 64 calculation, while larger than the 
N= 256 case, were still of the same order. For a small ensemble size (for example, 
P = 48), the average errors in Yk ranged between 0.1 and 0.5, but the change in the 
resolution of the data set had almost no consistent effect on the accuracy of the 
computed eigenfunctions. This was the case even for the N= 16 resolution, 

3.1.3. The Effect of Noise 

In the previous section, the convergence of the K-L procedure was examined 
using data that was accurate and clean. This was afforded by the choice of a 
problem which enabled us to generate the realizations very accurately, since we 
have the complete solution to the problem in closed form. The nature of the data 
thus allowed us to concentrate exclusively on the performance of the K-L method 
without any concern for issues regarding the data itself. In practical situations, 
however, the data is unavoidably imperfect. In the case of numerically simulated 

FIG. 5. Eigenvalue spectrum for rectangular geometry, N = 256, P=400, illustrating the effect of 
random noise. The solid line depicts the analytic spectrum while the dotted lines show the spectra for 
noise levels of lo-‘, 10e2, lo-‘, and 10m6. 
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data, there may be high-frequency oscillations arising from the particular numerical 
scheme, or, conversely, a suppression of high-frequencies through the use of a 
numerical filtering technique. With experimental data, random background noise 
and experimental inaccuracies often leave the data mildly contaminated. 

In this section, we examine the effect that random noise has on the accuracy and 
convergence of the K-L procedure in the determination of the linear eigenfunctions. 
We examine this issue using the same test problem as before, namely the vibration 
of a thin membrane in a rectangular domain. The procedure is identical to that 
described above with the one exception that at each point of the domain, and to 
every realization, we add random noise. The noise consisted of pseudo-random 
numbers ranging from -A to +A, where A is a specified amplitude level. Four 
different levels of noise were added, with amplitudes A = 10e6, 10e3, 10e2, and 
A = 10-l (compared with the membrane displacement, which is O(1)). Thus at the 
highest level, the signal-to-noise ratio was 10. From this new set of “noisy” data, the 
K-L eigenvalues and eigenfuncions were computed as before, again using both the 
direct and the snapshot methods and performing the calculation for a variety of 
resolutions and ensemble! sizes. 

Figure 5 shows the eigenvalue spectra for N = 256, P = 400 with several noise 
levels. The solid line shows the analytic spectrum for comparison. The effect of the 
random noise is evident. For eigenvalues larger than a given threshold (which 

k 

FIG. 6. Running average of error of computed eigenvalues for N= 256, P =400. Lines represent 
different levels of background noise. 
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depends on the noise level) the noise has no discernible effect and the eigenvalue 
spectra lie on top of one another. As k increases and the magnitude of the eigen- 
value decreases, the effect of the contamination becomes apparent as the computed 
spectrum peels off and departs from the zero-noise spectrum. It is interesting and 
encouraging to note that the magnitude of the eigenvalue where the accuracy of the 
computation breaks down is considerably smaller than the level of the noise injected 
into the raw data. Thus, for the case in which O(lO-*) noise was introduced into 
U, the eigenvalues are still essentially correct until & z 0( 10P4). The level at which 
the noise-distorted spectrum begins to dominate over the true spectrum does not 
appear to change with smaller ensemble size or lower resolution. In fact, the overall 
accuracy of the calculation is almost completely unaffected by the noise level for 
values of k smaller than the peel-off value. This is illustrated in Fig. 6, which shows 
the running error of the computed eigenvalues for the N = 256, P = 400 case. The 
solid line plots the zero-noise case while the dotted lines plot the running error for 
increasing levels of noise. For the 10% noise level, the entire calculation is 
adversely affected and the errors in the eigenvalues are roughly one order of 
magnitude higher than the zero-noise case. However, for the smaller noise levels, 
the errors are essentially indistinguishable from the zero-noise case until the point 
at which the eigenvalue spectrum (Fig. 5) peels off due to noise level. The result is 
not quite so good for the eigenfunctions (Fig. 7) and one sees that the average error 

k 

Running average of error of computed eigenfunctions for N = 256, P = 400. Lines indicate 
different levels’ of background noise. 
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in the eigenfunctions begins to rise somewhat before the peel-off point occurs in the 
corresponding eigenvalue spectrum. 

3.2. The Vibration of a Membrane in a Stadium 

The second numerical example considered applies the K-L procedure to a 
complex geometry, namely that of a stadium. It is known [7, 81 that a stadium 
geometry is ergodic. In addition, the lack of any simple geometry makes the 
analytic determination of these eigenfunctions impossible. Using the K-L proce- 
dure, however, we demonstrate that the computation of the linear eigenfunctions 
may be achieved relatively easily. The stadium geometry does have fourfold sym- 
metry, meaning that all of the eigenfunctions will have either odd or even symmetry 
with respect to the x and the y axes. In order to simplify the present analysis, we 
have chosen to examine only the odd-odd eigenfunctions. This means that we need 
only study one quarter of the stadium geometry, applying homogeneous boundary 
conditions along the lines of symmetry. The remaining symmetries can be studied 
by changing the boundary conditions along the lines of symmetry appropriately. 

FIG. 8. Ten representative realizations of the membrane height in the stadium geometry. At f = 0 the 
initial condition is specified as a Gaussian-shaped distortion of height 1. Solid lines indicate positive 
heights while dotted lines indicate negative membrane heights. Contour spacing = 0.1. 
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In order to apply the K-L method, we must first obtain an ensemble of realiza- 
tions of the dynamical system. This was achieved by numerical simulation of the 
wave equation (19) in the quarter-stadium geometry. The numerical scheme 
employed was a spectral collocation method in which the quarter-stadium was 
divided into two domains: a square and a quarter circle. Each domain was then 
integrated separately, matching the solution and its first derivative at the interface 
at each time step. The computations were carried out using a 32 x 64 grid. Since we 
do not know the analytic solution for the eigenfunctions, we do not know to what 
extent our results are accurate. However, based on the previous section, we can 
estimate the limits of validity for our computation. 

Ten successive individual realizations from an ensemble of 427 are shown in 
Fig. 8 as examples of the data set. With the resolution used, the direct method 
would require the inversion of a 2145 x 2145 matrix which is computationally 
impractical. Thus the results presented were achieved using the snapshot method. 
Figure 9 shows the first 10 eigenfunctions. The contour lines plot the zero-crossings 
and the &OS levels. The first few eigenfunctions look like what one might expect 
and can be described in the same terms as the rectangular geometry: !Py, is the (1,l) 
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FIG. 9. First ten eigenfunctions for the stadium geometry. Contour lines indicate levels of 0.0, +O.S. 
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FIG. 10. Eigenfunctions 91-100 for the stadium geometry illustrating spatial incoherence of the 
higher eigenfunctions. Contour lines show zero-crossings. 

mode; YI, the (1,3) mode; etc. However, the irregular geometry quickly breaks this 
pattern, and then next few eigenfunctions do not follow any easily describable 
pattern. This is even more evident in the higher eigenfunctions, a few of which 
are shown in Fig. 10. Occasionally, strong patterns, similar to the rectangular 
geometry, are clearly visible (for example, lu,,). However, for the most part, the 
zero-crossings are randomly oriented with respect to the boundary and each other. 
This is in good qualitative agreement with McDonald and Kaufman’s [12] exam- 
ple of a stadium eigenfunction. Unlike the eigenfunctions in the rectangular 
geometry, the nodal lines here do not intersect. However, as Berry notes [ 131, this 
alone does not imply any chaotic structure, since the crossing of the nodal lines of 
eigenfunctions is not a generic property of Hamiltonian systems. 

4. CONCLUSIONS 

The results presented here indicate that the eigenfunctions of a general class of 
linear operators in an arbitrary geometry may be accurately and easily obtained by 
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using the K-L procedure. The method is computationally efficient and the choice 
between the two approaches, the direct method and the snapshot method, ensure 
that the procedure may be efficiently used both when the size of the ensemble 
is large but the spatial resolution is limited (typical in an experimental setup) or 
when the spatial resolution is large but the ensemble size is limited (typical for a 
numerical simulation). 

By applying the technique to a problem in which the analytic solution is well 
known, we have been able to determine the convergence and accuracy charac- 
teristics of the procedure. Of course, these will differ from problem to problem, 
depending on the eigenvalue spectrum and the spatial complexity of the eigen- 
functions. A very encouraging result is the insensitivity of the results to moderate 
levels of random noise and the fact that the most energetic eigenfunctions are 
accurately resolved with very moderately-sized ensembles. 

The ability of the K-L procedure to compute the linear eigenfunctions also opens 
a new possibility in the study of complex, nonlinear systems. The procedure has 
been applied to complex nonlinear systems (for example, to a turbulent boundary 
layer [3]), and this indicates that the procedure has physical meaning down in a 
linear regime. Thus is would be possible to follow a system from a linear state 
through various stages of complexity. At every stage one could obtain a basis of 
eigenfunctions that optimally describe the system. At the linear stage, these will be 
the eigenfunctions of the linear system. However, as the flow becomes nonlinear 
and more complex, these eigenfunctions will gradually distort, reflecting the 
different phenomena that govern the flow at each stage. A similar approach has 
been reported by Deane and Sirovich [14] in their study of low-Rayleigh-number 
turbulent convection. 
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