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A novel techniqua related to Peskin's immersed boundary approach
is used o introduce solid surfaces into a simulated flow field. The
Navier -Stokes equations permit the presence of an externally imposed
body farce that may vary in space and time. Forces are chosen to
lie along a desired surface and to have a magnitude and direction
opposing the local flow such that the flow is brought to rest on an
element of the surface. For unsteady viscous flow the direct calculation
of the needed force is {acilitated by a feedback scheme in which the
velocity is used to iteratively determine the desired value. In particular,
we determine the surface body force from the relation I{x,, )=
@ [o U(x,. I') dt’' + BU(x,. t) for surface points x,, velocity U, time t,
and negative constants o and 8. Examples are presented which include
2D flow around cylinders, 3D turbulent channet flow where one
boundary is simulated with a farce field, and turbulent channel flow
over a riblet-covered surface. While the new method may be applied to
complex geometries on a non-Cartesian mesh, we have chosen to use
a simple Cartesian grid. Al simulations are done with a spectral code in
a single computational domain without any mapping of the mesh.
¢ 1993 Academic Press, Inc.

L. INTRODUCTION

Computational techniques for simulating fluid flow
model solid surfaces tn a variety of ways. In a finite
difference or spectral method a velocily or vorticity ficld is
specified or calculated explicitly on a sct of boundary points
(Roache |[27]). lor the voriex blob approuach, image
vortices enforee a no-through-flow condition while vorticity
embedded in surfuce pancls can satisfy the no-slip condition
(Leonard [19], Pepin [21}}. Generally in these approaches
no-slip or no-through-flow can be cxactly enforced at
selected grid points at c¢very time step. In a molecular
dynamics scheme the molecular structure of the surface can
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be represented directly; approaching molecules feel the sur-
face through intermolecular potential force ficlds (Koplik
[ 187). The no-slip condition occurs as a direct consequence
of the surface structure; surface penctration and adhesion
may oceur. The dircet simutation Monte Carlo model {Bird
[37) simulates molecules statistically and these scatter off
surfaces either diffusely or specularly, depending on whether
no-slip or no-through-flow is the desired boundary condi-
tion. Velocity slip occurs for both molecular methods in
a manner consistent with experimental observations.
However, of these techniques only in the molecular
dynamics approach does the surface have a force that
reaches out into the flow to make its presence felt.

When 'fluid flows over a body it exerts a normal
{pressure) force on the surface and, if the surface is no-slip,

- the fuid also exerts a shear force, Conversely, the surface

excrts a force of opposite sign on the fluid; in the no-slip
case, this localized force is what brings the fluid to rest on
the body. That is, the fluid simply sees a body through the
forces of pressure and shear that exist along the body
surface. (In non-isothermal and non-equilibrium Mows
other surface effects occur as well.) In an unsteady flow, the
surface forces vary in time. We can imagine that, in a
simulation, if one were to apply the correct set of forces
to the model fluid. the Ruid would Aow as though it were
passing over a solid object. That is, the effect of cerlain
boundary conditions can be modeled with an externaf force
field rather than with a specification of boundary parameter
values. Hence, a [low about a body can be computed in a
simple domain on a regular grid in the course of the solution
of the overall fluid equations with the body’s effect imposed
by a force field. [t is this point of view that we now pursue.
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The concept of modeling a boundary immersed in the
fluid with a force field has been used before although most,
but not all, of the works involved two-dimensional flows
and few if any of the flows were continuously turbulent,
Also, none of the authors appear to have used a pseudo-
spectral approach to compute the flow. The immersed
boundary ideas were applied extensively to model moving
boundaries of: heart valves {Peskin [22], Peskin and
McQueen [25]) a beating heart (Peskin [23], Peskin and
McQueen [24], McQueen and Peskin [20]) a swimming
fish-like structure {Fauci and Peskin [10]) and flexible
particles in suspension (Fogelson and Peskin [127). The
basis of these models is that the solid being modeled is
defined by a set of connected boundary points which move
(Lagrangian} through a fixed (Eulerian) mesh. The
boundary peints are connected by elastic links which create
internal forces (to the body) which are transmitted to the
surrounding fluid since the boundary points and the links
are massless. The interior solid forces, calculated by an
approximately implicit scheme or an implicit scheme (Tu
and Peskin [327; Peskin [26])} provide part of the {orce
density in the Stokes or Navier-Stokes equations. The
forces and velocities are interpolated between the bound-
ary points and the fixed mesh. Sulsky and Brackbill [31]
modeled elastic particies in a suspension, where the force
density in the particles is related to the displacement field
computed from the stress-strain constitutive equations for
an elastic solid. The flow is computed with a finite volume
technique; interior as well as surface points represent
the solid body. Unverdi and Tryggvason [33] modeled
droplets using a localized body force to simulate the effects
of surface tension. They used [ront-tracking particles to
maintain the separation between two fluids and calculated
the whole flow with a finite difference approach,

The works cited above were primarily concerned with
boundaries moving through a fixed mesh and the flow field
was computed with a finite difference/element approach,
The boundaries move with the local flow velocity and the
force density is determined from internode forces within the
body. The forces between boundary points rather than the
relative (or absolute) location of the boundary points are
specified. The solid body was modeled as a set of massless
nodes interconnected by springs; the fluid mediates the
internode forces. In these approaches the force computation
is fairly complex as it must model the interior stresses and
strains of the solid. If the locations of the boundary points
(rather than the forces between them) are specified, the
problem is simpler. The force produced by each point may
then be computed independently (Peskin [227], Fauci
[11]7). In [11] this approach has been combined with a
vortex blob technique and has been shown to provide
qualitatively accurate solutions. An earlicr related approach
is that of Viecelli [34-35] in which a shear-free surface is
modeled with an adaptive pressure field in a marker and cell

355

technique. The pressure along some desired boundary is
used to enforce the no-through-flow condition; if fluid flows
through the boundary the pressure is increased on the
boundary until the through-flow ceases.

2. PRESENT APPROACH

We write the incompressible Navier-Stokes equations
with an external force ficld as

ou U.-U
= -V -
P pUx$2 (p+p 3 )
+u VAU +Tyn8(8) (la)
and
Y- U=0. (1b)

Here, ¢ is time, U= (u, v, w) is the velocity, £ is the vor-
ticity, p is the pressure, p is the density, and p is the viscosity.

The force term on the right-hand side of {1a) requires
some explanation. S =0 denotes the surfaces which delimit
the body and 4(S) is the three-dimensional delta function
having the property

L“x #5(S) dx* = L # dS. 2)

In this context T ;n; is the force exerted by the body on the
fluid, where n is the normal pointing out of the fluid domain.
This formalism, which was derived in Refs. [28-30],
justifies and demonstrates several aspects of the formalism
now being developed. First, for a given flow with no-slip
boundary conditions, say, there exists a force system on the
surface which if appiied at the boundary will bring the flow
to rest at each point of the bounding surface. In the
customary context of fluid mechanics this force is calculated
after the flow has been determined. As will be seen, however,
we shall obtain the force on each element of the surface
during the course of calculation which will enforce the no-
slip boundary condition. A second feature of this formalism
is that (1} is derived for the fluid ocoupying all space. Thus,
if § = 0 separates an inside from an outside, the force ficld at
the surface sets up a fluid flow in a domain which is not
of immediate interest. This feature will emerge in our
calculations. Finally, we observe that the formulation given
in (1) also demonstrates that each element of the surface
may be treated as a separate entity, and the surface is a
lingar superposition of the correct forces appropriately
located.

We will denote by f(x,, t}, where x, is a boundary point,
the force on the element of surface. In general, in an
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unsteady viscous flow the method of choosing f(x, ¢) such
that U(x,, #) = 0 is not self-evident. We will permit the force
to adapt itself to the local flow field. In particular, consider
the force governed by the following feedback loop:

fix,. )= | Ulx,, ) dt’ + BU(x,, 1) (3)
O

The quantities « and § are negative constants having dimen-
sions of M/(L*T?) and M/(L’T), respectively. This force
field represents a straightiorward feedback of the velocity
field information and in the realm of control systems theory
it is called a two mode controller (Dorf [97]). Here the error
being fed back is the velocity integral and the velocity itself.
One might at first think that using concepts from linear con-
trol theory in simulations of turbulent and highly non-linear
flows would be difficult, especially because the control is
digital rather than analog (Dorf [9]). Yet, as will be seen,
we only need to control small regions of the flow where
near-linear responses might be expected. The first term with
integral feedback is alone sufficient to create a force field
that will bring the flow to rest on the surface points. If U is,
say, positive along one of the Cartesian axes, the force will
increase with time to oppose the flow until the flow comes
to rest. The second term can be thought of as representing
a force created by the Stokes drag of an obstacle located at
x, but which is too small to be resolved, i.e., it might repre-
sent the drag on a fine hair located at x,. Other terms may
be contemplated as well. For example, a term involving
derivative feedback, ie., y(dU(x,, #)/dt), might be used to
more closely maintain U(x,, ¢} = 0:if U is slightly perturbed
from zero, f will change abruptly to force the velocity back
to zero. A force proportional to U 1U| might represent the
turbulent drag of an unresolved obstacle. A term related
to a spatial derivative or integral of U might also be
congidered. As will be shown below, however, simply using
the time integral and direct velocity feedback 1s adequate
for solving the unsteady incompressible Navier-Stokes
equations for flows around a variety of bodies.

Using simple feedback on boundary points may be
thought of as creating a force field that learns to simulate the
boundary condition desired. Hence, other boundary condi-
tions can be simulated as well. For example, if (U - v}
replaces U in Eq, (3) the surface boundary points will end
up having velocity v. If v is not a tangential velocity, the
locations of x, will have to change with time.

We can show in a heuristic way that such a feedback
scheme may work. Suppose we temporarily consider the
momentum equation with forcing but without the first three
terms on the right-hand side:

dU(x,, 1)
p—=2

el fix, = L Ulx,, ) d' + UK, ). (4)
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This is the equation for the velocity of a damped simple har-
monic oscillator of a mass = p x> with a spring constant a.

The oscillation (natural) [requency is (1/2n),/|a|/p and the

damping ratio is — /(2 ./|a| p). The integral feedback acts
like a spring force on the small volume of fluid near x;
which, in a sense, tethers with an ¢lastic string that volume
of Auid to x, and U provides damping. A larger damping
ratio implies greater dissipation of flow perturbations near
the surface. An important assumption throughout is that
the force acts where the velocity is measured. It is not clear
what may result if the two locations are substantially
separate. The value of U(x,, ¢} 15 most conveniently
evaluated if x, coincides with a grid point. In practical
calculations the computational cell volume 4x* will be
small and the temporarily neglected terms of Eq. (1a) will
provide additional damping for these oscillations. There
will, however, be a somewhat ill-defined apparent mass term
since the volume of fluid feeling f will impart motion to the
surrounding flow. This additional apparent mass will cause
a decrease in the oscillation frequency. In an unsteady
flow, a must be large enough so that the resulting natural
frequency is higher than the most energetic flow frequencies
in order that the force ficld can track the changing flow.
The method by which the time integral is evaluated will
determine the maximum magnitude of o,

In the simulations discussed below the time integral is
approximated simply as a Riemann sum

' N
[ U, ydr= Y U, ) 4, (5)
0

i=1

where N is the number of steps and A4t is the size of the time
step. This integration scheme, for large gain, is clearly
unstable for the simple harmonic oscillator problem. In
practice, we find that the solution to Egs. (1a}), (1b}, and (3)
is still unstable for large enough a or 8 but is stable for
moderate values and is insensitive to their exact values. In
particular, in the codes discussed below, the time marching
of the forcing term is done with a second-order accurate
Adams-Bashforth scheme. We find that the stability limit
for the time step is approximately given by

Ar<_B_ v {aﬁz—Zak}, (6)

where & is a problem dependent constant of order one,

The forcing scheme 1s introduced into a spectral method
solver of the incompressible Navier—Stokes equations and
the following discussion will be specific to that approach.
We note, however, that the scheme can be used in other
methods that permit the introduction of local forces, even if
the method solves more complex equations such as the
Boltzmann equation or higher order equations describing
liquid molecular dynamics.
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3. SPECTRAL METHOD

We use a pseudo-spectral method in two or three spatial
directions to solve the incompressible Navier—Stokes equa-
tions and use body forces to simulate solid obstacles in the
flow, The spectral method code, developed by Handler er al.
[15] is based on that of Kim ef al [17] in which the
Navier—Stokes equations are rewritten for channel flow as a
fourth-order equation for the wali-normal velocity and a
second-order equation for the wall-normal vorticity. In this
method the incompressibility condition ts satisfied exactly
at each time step. We first will consider a rectangular three-
dimensional channel, periodic in the streamwise direction
{x) and the spanwise direction (z) and bounded by imper-
meable surfaces in the vertical direction ( ). We can impose
no-slip or shear-free boundary conditions on either wall.
The flow quantities are represented with a Fourier expan-
sion in the periodic direction{s) and a Chebyshev expansion
in the wall-normal direction. The code was originally
created to study turbulent channel flow.

It is convenient, because of the numerical method used, to
add the force f to the non-linear term U x £2 since this term
is most efficiently evaluated in physical space. De-aliasing in
the x and = directions occurs during the plane by plane
evaluation of U x £ by interpolating U and Q onto a grid
having 3 as many colocation points in each direction. The
force field required is then also calculated on this expanded
grid. Because these colocation points may not correspond to
the regular grid sites, the surfaces created with the force field
are properly interpreted only on the expanded grid.

In order to generate a smooth surface rather than a
step-like surface which would result from applying the force
only to the grid sites of the rectangular grid, we smooth the
force field in space. In the two periodic directions the force
at each surface point x, is defined by a narrow Gaussian
distribution, f(x, 1y=f(x,, 1)e Wi+ Ui+ —&F1 whare
the surface point x, is located at gnd site (i, j,, k,). The
immediately adjacent points receive about 37% of the
centrai force whiie points two grid sites further away receive
essentially none. The effect of this local smoothing is to blur
the location of the surface and extend its reach slightly.
Hence, the exact location of the surface may be uncertain to
within one grid site, If sufficient spatial resolution has been
used we find that the exact smoothing function is not crucial
provided it has similarly compact support, In the simulations
of three-dimensional flow discussed below, such spatial
smoothing is not done in the Chebyshev direction. In the
papers based on Peskin’s approach discussed earlier a
similar approach is used to distribute the forces of the
boundary nodes to the nearby grid sites.

Introducing peint forces into a spectral representation of
the flow posed some unique problems because singularities
tend to produce significant global spatial oscillations even
in a temporally steady flow. These oscillations are distinct
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from the temporal oscillations discussed above (see Eq. (4})).
Those oscillations come from the actual solution to Eqgs. (1)
and (3) while the presence of singularities causes unrealistic
oscillations due to the global nature of the expansion func-
tions used in the spectral method. Even though the force
field is a body force applied throughout the cell volume and
not a point force, the effective force has a sharp peak. We
find, however, that the spatial oscillations did not grow in
an unstable manner in time (see also Gottlieb et al. [13])
and, if left alone, they simply remained at about constant
amplitude during the calculation. As might be expected, the
oscillations as reflected in the energy spectra of the velocity
field were by far the greatest at the highest wavenumbers
and were insignificant at somewhat lower wavenumbers.
The unaltered spectral representation is simply unsuited to
handle sharp gradients of, say, velocity across a single com-
putational cell. As greater spatial resolution is used, the
energy in the highest modes declines and the amplitude of
the oscillations declines as well. Yet, at the highest practical
resolution, the oscillations were still present.

It was found that two partial remedies could effectively
remove these oscillations without either remedy itsell being
too harsh. In the Chebyshev direction as well as in the
Fourier directions, mild spectral smoothing is used. The
spectral coefficients of the quantity U x £ + f at every time
step are multiplied by

o~ s/ NP g = (npi N o — (s f N

where (n, n,, n_) are grid point indices in the (x, y, z) direc-
tions and (N, N, N.) are the number of modes in those
directions. This is a low pass filter. The decay constant 20 is
chosen so that there will be a sharp cutoff of the highest
modes and so that the highest wavenumber will be reduced
by 1/e. This filtering leaves the first 86 % of the modes of
U= Q4+ f with over 95% of their original energy at each
step. The exact values of the constants should not be impor-
tant as long as the natural energy cascade has generated
little energy at the highest wavenumbers (i.e., all scales are
resolved). Similar spectral smoothing has been employed by
others as well (Gottlieb et al. [14]). Of course, with greater
resolution this smoothing will have less influence on the
flow because there wili naturally be less energy in the highest
resolvable modes. It does not appear necessary to remove
the highest modes more completely, At very early times
when the fluid first begins to flow around the body, the
smoothing is most necessary because the boundary layers
near any solid surface are thin. As the simuilation continues
and boundary layers thicken, the gradients across a cell
diminish, and the relative amount of energy in the highest
modes decreases. (Another possibility, not pursued by us,
would be to spectrally smooth the force field itselfl)

A second, and perhaps unusual smoothing method, is to
create a flow inside the solid bodies to reduce kinks that
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FIG. 1. Geometry for flow simulation of channel bounded by two
impermeabie boundaries and containing a virtual wall, Uniform gravity is
applied above the wall and a reverse force below.
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otherwise develop in the mean velocity profile. The idea is
analogous to potential flows past bodies for which an inter-
nal flow, usually not of interest, is created in the course of
solving the problem, In the present instance, the force field
maintains the no-slip impermeable conditions on surfaces
and the unwanted internal flows are created as part of
obtaining a globally smooth velocity field. Slight unforced
internal flows may also appear in the natural development
of the integration.

As an illustration consider laminar flow between two flat
plates (Fig. 1}). We suppose that the top plate is a no-slip
boundary and the bottom is a shear free boundary,
{dU/dy)=U -n=0. Next, a virtual flat plate is inserted near
the bottom of the channel with time integral feedback
forcing on all grid points at index n, = 2. In the bulk of the
channel between the no-slip wall and the modeled wall a
uniform pressure gradient or gravitational force G is
applied. If no force is applied below the modeled plate the
velocity U and velocity derivative dU/dy will both remain
approximately zero there. Just above this plate dU/dy will
be large and there will thus be a substantial kink in the
velocity profile that will cause large oscillations. Figure 2a
shows these oscillations and the development with time of
the flow toward the theoretical parabolic velocity profile. If,
however, in the small space between the virtual plate and
the lower wall we apply a large force in the direction
opposite to G, a small back flow will develop and the kink
is substantially reduced. An appropriate choice of back
force below the plate can effectively eliminate the

FIG. 2. {a) Time development of u velocity profile in the channel. Note the spatial oscillations, Back force =0. Symbols represent the equilibrium
theoretical profile. (b) Equilibrium velocity profile with non-zero backforce. Note the absence of spatial oscillations. The symbols represent the

equilibrium theoretical profile.
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undesirable oscillations as seen in Fig. 2b. A parabolic flow
is obtained (in the sense that the RMS difference between a
parabola and the solution integrated over the height of the
channel goes nearly to zero} when the back force is such
that the energy in the highest Chebyshev » mode is mini-
mized. Minimizing the energy in the highest modes of a
time-averaged flow can be used in the turbulent cases as
well. This simulation is discussed further in Section 4.

4. RESULTS

We now present solutions to a variety of problems that
demonstrate by example the practicality and flexibility of
the technique. In the absence of rigorous proofs, these
examples support the vaitdity of the methodology presented
here.

4.1. Laminar Flow

In the above simulation of laminar channel flow we over-
lay the theoretical parabolic velocity profile and find that it
1s the same as the simulated result (Fig. 2b). The theoretical
profile is: u = y(h — y) G/(2p}, where / is the channel height,
G =0.002, and z = 0.001. The presence of the spatial oscilla-
tions did not affect the approach to the solution nor did they
provoke a growing instability. In this case the Reynolds
number based on channel half width and the centerline
velocity is 1000. Even though this is a one-dimensional
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FIG. 3. Time response of velocity » for a single cell. Dashes
—a=—100, f=0, Rey=100; dots —x= —100, =0, Rey=2; solid
—a=—100, f=—10, Regy =2.
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probiem, we chose to compute it on a reduced three-dimen-
sional mesh; 4 x 32 x 6 in the x, y, and z directions, respec-
tively. If we consider a lower Reynolds number or use higher
resolution in y, the size of the oscillations would be smalier.
The gains in Eq. (3) were taken as «a= —20 and = —0.5;
and Ar=0.1. After the flow had reached equilibrium, a
backforce { — 160G) below the virtual plane was turned on.
A large reversc force is required because the virtual plane is
so close to the shear-free boundary. The spatial oscillations
then rapidly disappear as the velocity below this plane
reaches —0.00311, a value too small to be seen on Fig, 2b.
No spectral or x — z spatial smoothing is required.

Consider next the response of uniform flow at a single
grid site suddenly being subjected to the no-slip condition.
A two-dimensional flow has velocity {u, v)={1,0)at t=0.
We use a square spatial mesh 32 grid sites on a side, Fourier
in x, and Chebyshev in y. At t=0% we turn on the forcing
at one site in the center of the flow field and observe the
evolution of the « velocity at that site. The computational
domain is also 32 x 32, so a cell has dimensions dx= Ay = 1.
If we choose y/p =1/100, the Reynolds number of a single
cell, Re,,;. based on the initial velocity and Ax, is 100 and
viscosity damps out the velocity oscillations slowly (in
roughly 80 time steps, Fig. 3). Here a= —100, =0, and
A4t=0.1. If « is varied the frequency response follows
well the simple harmonic oscillator prediction of a /x
dependence. The differences are likely due to the neglected
fluid effects, particularly the added mass, from the first three
termns on the right-hand side of Eq. (1a). If we choose
Re..; =2 so that the viscosity strongly damps the oscilla-
tions, the oscillations disappear more quickly but still not
quickly enough (about 50 time steps) with p=0. If,
however, we also use proportional feedback, f= —10, it is
possible to nearly eliminate the oscillations; in Fig. 3 we see
that this case is highly damped. This suggests that with a
judicious choice of gains and time step it should be possible
to simulate unsteady flow around a solid object.
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FIG. 4. Geometry for flow simulation of two-dimensional startup flow
around a cylinder.
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4.2, Startup Flow around a cylinder

The startup flow past an impulsively accelerated cylinder
has been well documented experimentally (Bouard and
Coutanceau [4]) and computationally (Pepin [21]). In the
experimental setup a solid cylinder is dragged through a
large towing tank in which the tank walls are far enough
away that they do not influence the flow. Photographs of
flow tracers show the wake structure and various separation
events that occur at different Reynolds numbers. In Pepin’s
computational technique the cylinder surface consists of 576
straight panels and the flow is modeled with nearly 50,000
interacting and overlapping vortex blobs by the end of his
simulation. The external flow boundaries are at infinity and
the blobs exchange circulation to model viscous diffusion.
The surface is modeled with image vortices inside the cylin-
der and vortex panels on its surface. Pepin found good
agreement with the experiments at Reynolds numbers based
on cylinder diameter and the velocity at infinity of 550,
3000, and 9500. At Reynolds numbers 3000 and 9500
greater spatial resolution was used.

In our computations using the spectral code we have a
more limited computational domain. Since we are at present
only interested in the startup case in which the cylinder
wake remains symmetric about the cylinder centerline, we

T T
0495 1.35

FIG. 5. Closeup view of flow around a cylinder, = 2.12. Cylinder is
indicated by heavy line: {a) Select streamlines; (b) Contours of constant
vorticity; solid-—positive; dashes—negative,
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only simulate half the domain and place a half cylinder
against a shear free boundary at y=90. The top (y=1)
boundary is also shear free. A sketch of the domain is given
in Fig. 4. We use a square domain with sides of length two
in which a cylinder of diameter 0.44 is centered. The grid
resolution is 192 by 129 in the Fourier (x) and Chebyshev
() directions, respectively. Of course, our grid remains
rectangular and x, lie on grid points so the cylinder cross
section is slightly rough; it approximates a circle with a
diameter of 41 grid spacings in x and 80 in y. That
represents 62 grid spacings in x on the ¥'s expanded grid and
the same number (80) in v, since there is no de-aliasing done
in the Chebyshev direction. The 306 small squares are
drawn in Fig. 4 indicating the locations of x .

A simple method for starting the flow is to create an
initially uniform velocity in the x direction and at : =0 turn
on the force field along the boundary points. With an
appropriate choice of gains {x= —4x10% f=—6x107)
the cylinder graduaily appears in the center of the channel
as the force field adjusts to the oncoming flow. We use a very
small initial time step (4t = 5 x 10~°) corresponding to the
stability limits implied by « and § and find that the cylinder
is fully formed within O(10?) time steps and before the
flow has progressed more than one-tenth of a diameter
downstream. In referring to the flow development we use

n
)
~r
e

FIG. 6. Closeup view of flow around a cylinder, 1 = 5.12, Cylinder is
indicated by heavy line: (a) Select streamlines; (b) Contours of constant
vorticity; Solid—positive; dashes—negative.
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the dimensionless time © = tU/R, where U is the upstream
velocity, ¢ is the computational time, and R is the cylinder
radius. For comparison, Bouard and Coutancecau estimate
that the startup time in their experiment is 1 < 0.08. This
relaxed state can then be used as the initial flow field and the
computation may be continued with a more reasonable time
step which more closely approaches the Courant limit
(dt=5x10"* and a=—4x10° B=—6x10%). Alter-
natively, we can specify a potential flow about a cylinder as
the initial state but the force field required to maintain it
would be unknown a priori. In addition, we wish to create
a general computational technique and the potential flow
field around other shapes is not always readily available.
There is little or no penalty in using the simple relaxation
approach employed here.

The gains « and B are chosen based on the stability limit
{6) and the oscillation response time, This, in combination
with the normal Courant number restriction, gives us an
estimate of the time step that should be used. We choose
gain values with a safe margin of error since we do not know
for certain the value of k in (6). If the time step is then
increased, the gains should be decreased appropriately. We
note that for most of the cylinder flow simulations we also
use feedback, in much the same manner as for the surface
points, to adjust the gravitational force  in such a way so
as to maintain a constant mass flux.

We will consider a flow with a Reynolds number of 550.
At a time 7 = 2.12 the streamlines and contours of constant
vorticity are shown in Figs. 5a and b for a portion of the
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FIG. 7. Location of aft stagnation point vs. time: Solid—present

calculations; dots—Pepin; symbols—Bouard and Coutanceau.
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flow field. The cylinder is indicated with a thick line and tick
marks spaced by 5° increments. Inside the cylinder a slight
flow develops due to the spectral and spatial smoothing of
the force field but the magnitude of the flow velocities is
small. At this time a recirculation bubble has formed with a
primary separation angie of about 60° measured from the
three o’clock position. Tt is clear that the negative vorticity
of the primary vortex draws positive vorticity off the cylin-
der trailing edge. At 1= 5.12 (Fig. 6) the primary vortex has
grown to almost the same size as the cylinder itself and has
spawned a secondary vortex near the 45° location. The
primary separation point has moved forward to about 75°.
These flow patterns, including the details of the secondary
separation, correspond remarkably well with the cal-
culations of Pepin and the photographs of Bouard and
Coutanceau.

In Fig. 7 the plot of the aft stagnation point location
versus time shows that our results are somewhat higher than
experiment, while Pepin’s are slightly lower. The geometri-
cal parameters are defined in the figure. In Fig. 8 it is seen
that our streamwise location of the vortex core (defined as
a local extremum of the stream function) again agrees well
with the other results. At early times the uncertainty in the
location of our cylinder surface and the close proximity of
the core to that surface is the cause of discrepancy. Similar
uncertainty applies to the vertical location of the core
(Fig. 9). Our location of the separation angle generally
agrees with Pepin’s results although we predict a slightly
earlier initial separation (Fig. 10).

Figure 11 shows a comparison of drag coeflicient
(Cp,=D/{pRU?), where D is the drag) results. To find D we
let G =0 and compute the loss of fluid momentum in the
channel with time. Here we do not maintain a fixed
upstream mean velocity and we compute 1t and C,, based on
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FIG. 8. Horizontal displacement of vortex core vs. time: Solid—
present calculations; dots—Pepin; symbols—Bouard and Coutanceau.
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FIG. 9. Vertical displacement of vortex core vs. time: Solid—present
calculations; dots—Pepin; symbols—Bouard and Coutanceau.

the actual mean velocity at x =0, not simply the initial
velocity. We use the drag as a measure of the convergence
of the simulation. With a spatial resolution of 96 x 64 grid
sites in x and y (only 69 points on the half circle) we find
that the drag erratically follows the correct trends (see
Fig. 11) and that greater resolution of 192 x 129 is needed to
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FIG. 10, Secparation angle, measured from the 3 o'clock location vs.

time: Solid—-present calculations; dots—Pepin.
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FIG. 1L
96 x 64 mesh; solid—present calculations on 192 x 128 mesh; dashes—
present calculations on 300 x 256 mesh; symbols—Pepin.

Coeflicient of drag vs. time: Dots—present calculations on

obtain a converged solution. The 192 x 129 calculation
appears to be close to convergence since there is little dif-
ference between it and the higher resolution solution using
300 x 256 grid points (956 points on the half circle), par-
ticularly at later times when the boundary layers are thicker.
The spectral solution appears to adequately track the vortex
solution at early times even considering that the boundary
layers are thin and that thereisa ! /\/; drag singularity near
1=0 {Bar-Lev and Yang [1]). The discrepancy in the
results at later times between our method and that of Pepin,
though not large, is possibly due to the non-constancy of
our U/ or that Pepin had an infinite domain while ours is
finite.

It appears that the proximity of the periodic and shear
free boundaries has otherwise little influence at these early
times. Also, the effect of the slightly rough cylinder surface
due to the rectangular grid is of little significance except in
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FIG. 12, Mean velocity profile in turbulent channel flow: Solid-
Handler er al.; dashes—present results.
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the lowest resolution simulation. This is probably because
the scale of the roughness in the most highly resolved
calculations was less than the boundary layer thickness near
the separation region. In these calculations no internal flow
was needed to smooth the solution although several flows
resembling internal potential flow solutions were tried. The
minor oscillations thal are seen in the vorticity contours do
not appear to affect the overall development of the flow. As
mentioned above, slight internal flows (velocities <5U)
appear naturally owing to the smoothing of the force which
introduces perturbation forces inside the cylinder. The
maximum velocities on the virtual cylinder itself, however,
remain three to four orders of magnitude less than U,

4.3, Turbulent Flow

In a larger calculation we use a fully three-dimensional
geometry to simulate turbulent channel flow. The resolution
of the calcuiation is now 48 x 65 x 64 grid points in x, y, and
z, respectively, and the geometry is that of Fig. 1. The chan-
nel dimensions are 1250:250:625 viscous units (/*) in x, y,
and z, respectively, the sane as those used by Handler et al.
[15]. Here the wall shear velocity, u*, is given by

w* = o), -, (7)

and the viscous scale length by
¥ =vfiu*, (8)

Here, an overbar indicates a time average. The Reynolds
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number based on the wall shear velocity and the channel
haif height (Re=u*h/v} is 125, where v = u/p. During the
run a virtual plate is inserted into an equilibrium turbulent
flow that had been created between two ordinary no-slip
surfaces. The flow is then allowed to re-equilibrate for 520
time steps before time averaged data is taken for about
seven large eddy turnover times ( = 4/(tt;n )max ). In Fig. 12
we see that the mean velocity profile with a modeled flat
plate located one grid site off the shear free boundary (at
y* = y/I*=0.151) is virtually the same as that obtained by
Handler et al. [15], both for the bulk of the {low and for the
flow close to the wall. The root mean squared velocity and
Reynolds stress profiles (Fig. 13, 14) also agree well; the
small differences are likely to be due to the lack of sufficient
time averaging for the present calculations. It is worth
emphasizing that, even though there is some delay in the
force response of the virtual wall owing to its integral nature
(x=—=200, f=—15, 4¢=0.03, A7 u*?*/v=0.135, and the
reverse force is — 160G), the fluctuating quantity profiles do
not suffer significantly and are essentially the same as above
a true no-slip surface. The natural frequency of the forcing
(thus, the choice of ) was chosen to be above the frequency
having the greatest energy in a frequency spectrum of the
fluctuating velocities near the wall. On the virtual plane
itself, the spectra show two to three orders of magnitude less
energy at moderate to low frequencies than at a location a
few viscous units above the plane. This indicates that the
forcing effectively brings even the {luctuating velocities to
rest. Even though the force field responds slower than the
fastest time scales in the flow, there seems to be no net effect
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present results,
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on the mean profiles. This, we believe, 1s because there is
negligible energy at the highest frequencies so the error is
minimal. The gains can still be made larger with the same
time step .before the method becomes unstable. (With
o= —3500, f = —2.5 the peak fluctuating velocity energy on
the virtual plane drops by another order of magnitude.) We
also note that we do not pay a penalty for maintaining the
stability of the forcing scheme; the time step is only limited
by the Courant condition. It is, of course, possible to reduce
the time step considerably and raise the gains to have a force
that responds fasier than the fastest flow time scales but this
is unnecessary.

In a third example of three-dimensional channel flow we
simulate the effect of streamwise grooves along the virtual
boundary. Such grooves, or riblets, have been determined
experimentally to reduce the turbulent drag. Riblets having
a triangular or cusped cross section, a peak to peak spacing
of 10 to 20 viscous units, and a height of 5 to 15 viscous units
are most effective {(Waish [36]} in reducing drag. The
mechanism for this drag reduction still lacks a complete
explanation and others as well [5-8] are applying direct
numerical simulation to the problem. We model a channel
of dimensions 1250:250:3735 viscous units, somewhat more
narrow than in the example above but still sufficiently large
to include a few boundary layer low-speed streaks which are
spaced by roughly 100 viscous units {Jimenez and Moin
[16]). The spatial resolution is 48 x 64 x 128. The ribs
stretch in the x direction for the full length of the channel.
The y locations, measured in grid sites, where the velocity
is brought to rest are, at increasing z locations,
22456765422 ..., These points lic on the expanded 37s
grid which has the usual cosine grid spacing in the y direc-
tion (y,=h—cos[n(i—1)/N ]). The peak to peak spacing
of the ribs is nine expanded grid sites or 18 viscous units and
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FIG. 15. View looking down the channel in the x direction showing
contours of constant streamwise (u) velocity and selected o, w velocity
vectors. Top boundary is smooth no-slip; bottom boundary has riblets,
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the ribs are six regular grid sites {five viscous units) high. In
this case there are 21 ribs aiong the channel width. Below
the ribs we apply a back force that is small (4G) below the
rib peaks and large (800() below the valleys. The back force
profile was chosen by trial and error to minimize the energy
in the highest 1 mode in the mean flow over each portion of
the ribs. Once the trial and error procedure was complete
and the oscillations were very small, we found that the
moderate spectral smoothing described above was sufficient
to eliminate the remaining spatiai oscillations.

The resuits are seen in Fig. 15 and 16 which give views
looking down the channel in the x direction. The lines are
contours of constant streamwise velocity and are separated
by Au=10.05 and 0.02 in Figs. 15 and 16, respectively. The
arrows indicate the velocity in the y — z plane. We observe
what appears to be ordinary turbulent channel flow in the
bulk of the domain. There are streamwise vortices which are
seen to draw slow-moving fluid off of the walls and bring
energetic fluid close to the walls. If we lock closely at an
interesting area in the riblet region (Fig. 16} we see that the
ribs seem to affect only the region close to the wall. As
expected, near the rib peaks the contours are closely spaced
and the velocity gradient (hence drag) is high, while in the
rib valleys the gradient is low. We particularly note that the
ribs, essentially defined by the zero velocity contour line, are
of a consistently uniform shape even though each is
experiencing a different local flow. None are substantially
distorted and each has a shape that corresponds well with
the forced grid points. The somewhat rounded peak and the
artificial smoothing applied may account for the relatively
poor drag reduction; this particular configuration produced
a drag reduction (drag on ribbed surface/drag on flat top
surface during a single run) of 2.2 + 1.9%. The error bars
indicate a 90 % confidence interval, assuming a normal dis-
tribution for our 23 independent realizations. Experiments
report drag reductions for riblets with these dimensions of
as much as 5%. As the ribs are smoothed further they
become less distinct from an ordinary flat surface and the
drag reduction should disappear. Animations made of this
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FIG. 16, Close-up view of a portion of Fig. 15.
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simulation do not yet reveal any apparent mechanism for
the drag reduction. We, as have others (Choi er al. [ 5]), find
a few percent drag increase for similarly shaped riblets if the
flow is laminar. This increase is related to the exposed
surface area of the rib. A more detailed investigation of the
riblet simulation is now in progress.

5. DISCUSSION

The feedback forcing method described here permits
simulations with complex boundary geometries within a
spectral approach, which framework is ordinarily thought
to be unsuited for complex geometries. Neither domain
decomposition nor mapping methods are required in this
approach. Computer memory overhead for the solid sur-
faces was also minimal; vectors containing the cell indices
and velocity time integral for the boundary points are all
that is required. For the case of the riblet surface, the
simulation ran 5% slower than the non-riblet channel {low
on a Cray YMP. It is difficult to compare the efliciency of
the cylinder flow calculations with those of Pepin since dif-
ferent computers were used (JPL Mark 4 parallel processor
for Pepin and Cray YMP in the present study). However,
our simulations took about 10 min on a single processor of
the Cray, whereas Pepin’s calculation required roughly 10 h
on the Mark 4. We note that Pepin’s method has since been
made much more efficient.

The present method was shown by example to model
adequately both simple flows and several that were not so
simple. The results appear promising. The simulation of
riblets in particular appears unique in that a code already
validated for turbulent flow in an ordinary rectangular
channel was modified with relative ease to simulate flow
over a complex structure on one of the boundaries. It should
be emphasized that the method of virtual boundaries does
not yield an exact simulation of solid boundaries but rather
provides a quantitatively accurate model calculation. The
method has several drawbacks as well The boundary
location is not exactly defined both because the force may
not respond sufficiently quickly to a changing flow and
because, even if it does respond, the velocity is only zero at
the point where it is measured and may not be precisely zero
between boundary points. It also may be difficult to exactly
measure the surface forces; the force field itsell will not
necessarily provide a good measure because the necessary
smoothing techniques can distort the results, Determining
the pressure and viscous forces from the velocity field right
at the surface can also be difficult since the surface location
is not sufficiently well defined, Specification of a control
volume away from the surface may be advantageous for this
purpose. Finally, unless a surface lies along a smooth mesh
line, a curved boundary may appear rough on the smallest
scales unless smoothing sufficiently blurs any step-like
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structures. Of course, if the laminar boundary layer over the
surface is substantially thicker than the roughness, the
roughness effect should be small.

Certain refinements of the technique may yet meet
some of these objections. Nonetheless, it appears that the
technique may be useful for obtaining a reasonably accurate
representation of a surface in a flow in which the near
surface activity is not the primary interest. As with any
other computational technique where surface details are of
interest, it is necessary to have a non-uniform mesh that
concentrates grid points near the surface. For example, in
the riblet calculations of Choi et al. {5, 6], Chu et al. 17],
and Chu and Karniadakis [8] mesh points could be
concentrated right along the rib surface. In the present
calculations the Chebyshev cosine grid did enable us to
concentrate grid points near the riblets, although not in an
optimal way. The fact, however, that the spanwise grid
spacing was everywhere constant (128 modes in the riblet
computation) was costly in that the increased = resolution
was not needed away from the ribbed surface. This feature
(resolution in z at mid-channel equal to that near the ribs)
was present in the calculations of Chu er al. £7], Chu and
Karniadakis (87, and Choi er al. [5, 6] as well.

The force boundary conditions described above are also
adequate for compressible and/or non-isothermal flows. As
it stands, the force field creates an adiabatic wall; it simply
pushes the flow without changing its temperature, The pro-
cedure must be modified to provide a non-adiabatic wall. In
this case one can change the internal energy by using local
integral heating to maintain the temperature at a desired
value. It is also possible to create a shear free boundary. The
regular force field can be used to maintain no through llow
and a second force field may be applied at interior points to
force no shear on the surface. Similar ideas can be applied
to other surface quantities as well. Problems invelving rapid
temporal change will naturally place strong restrictions on
the time resolution of the feedback mechanism.
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