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Non-linear effects in steady supersonic 
dissipative gasdynamics 

Part 1. Two- dimensional flow 
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(Received 31 July 1970 and in revised form 16 March 1971) 

Steady supersonic two-dimensional flows governed by the Navier-Stokes equa- 
tions are considered. For flows past a thin body, the Oseen theory is shown to 
fail at large distances. An investigation of the equations bridging the linear and 
non-linear zones is made. From this, it follows that the resulting equations are a 
system of Burgers and diffusion equations. The Whitham theory is shown to  
result under the inviscid limit of our analysis. Various other limits are also 
obtained. 

An explicit expression for flows past a thin airfoil is given, and the flow past 
a double wedge is exhibited in terms of known functions. 

1. Introduction 
It is our intention in the present investigation to consider simultaneously 

the effects of dissipation and non-linearity in two-dimensional supersonic flows. 
With the exception of the boundary layer, we will be interested in the total flow 
field past a body. 

Steady dissipative linearized flows have been considered extensively (Sirovich 
1968). For supersonic flow this investigation describes the flow field in terms of 
upper and lower Mach zones and a wake structured by entropy and vorticity 
behind the body. In  a previous investigation (Chong & Sirovich 1970) we pointed 
out that, in general, the two-dimensional theory breaks down at sufficiently 
large distances from a body. I n  particular, if h denotes the distance along a Mach 
line from the body, linear theory fails when h -+ co. In  $ 3  a detailed demonstra- 
tion of this is given. 

Although linear theory does break down, one can anticipate that a simplified 
non-linear theory should govern the far flow field. Perturbations at large dis- 
tances can be expected to be small, a fact which is supported by the linear theory. 
In $4, we demonstrate that this is in fact the case and that the far field Mach 
zones are governed by equations which can be reduced to the Burgers equation 
(Burgers 1948; Cole 1951; Hopf 1950; Lighthill 1956). The breakdown of the 
linear theory at  large distances has to some extent been anticipated by Ryzhov & 
Terent’ev (1967) in their treatment of the transonic problem. Also the validity 
of the Burgers equation in the far field region has been indicated by Lighthill 
(1956), who considered a propagating wave in one-dimensional unsteady 
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gasdynamics (see also Hayes 1960). Allied treatments have also been given by 
Moran & Shen (1966), Su & Gardner (1969) and Parker (1969). 

The need for the inclusion of non-linear effects in steady supersonic flow was 
pointed out by Whitham (1950, 1952, 1956), who considered inviscid theory. 
We show in $5 that the Whitham theory follows from our analysis under the 
inviscid limit. This is interesting since our method of investigation is substantially 
different from his. Also in this connexion it is important to note that the inviscid 
limit is non-uniform. The breakdown of inviscid theory occurs in shock regions 
of course, but also in the distant flow field. The entire distant flow field is a 
region of competing viscous and non-linear terms. In  a number of situations, the 
distant flow can be entirely viscous, and hence linear. 

The basis for our method of investigation lies in searching for the equations 
bridging the linear and non-linear zones. This search leads to the above mentioned 
Burgers equations. An additional property is that the resulting equations are 
valid for h --f 0.  That is, our analysis reduces to linear inviscid or viscous theory 
as the case requires - regions of abrupt change require viscous terms while slowly 
varying portions are influenced by the inviscid terms. Thus, we are able t o  give a 
representation which provides a description of the flow field, with the exception 
of the boundary layer. 

As an illustration of our method, we solve for the flow past a thin airfoil in $ 6 .  
This solution is given in some detail. AIso considered is the thin diamond-shaped 
airfoil for which a more explicit representation is given. 

2. Governing equations 

stream velocity 0, is uniform in the x direction. The equations of motion are 
We consider steady two-dimensional supersonic flow past a body. The up- 

(1)  I 21. (pe) - 0, 

21.(pixi++GP) = 0, 

0.  (P0( e" + g i i z )  + pii  - P . ti - K V F )  = 0, 

Pii = p(iii,j+ci,i)+(/3-&) 21.asii. 
Introducing a normalization with respect to upstream density Po,  temperature 
Po, isothermal speed of sound do, and a length scale L to be specified later, we 
define the dimensionless quantities 

x = B/L, p = p / p o ,  u = f/6,, P = P/pod; .  

U = ii,/d,, T = ( c , / ~ ~ F ~ ) ~ ! T ' ,  C, = (iZ/i3T')po, a", = [(ag/ap),,]g. 

This particular normalization was chosen to correspond to our linearized viscous 
theory (Sirovich 1968). Although the nature of the fluid can be arbitrary, for 
simplicity of calculations we consider a perfect gas which satisfies 

I, = RpT, e = c,T, (3) 

where e is the internal energy and c., is a constant independent of temperature. 
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In  terms of these normalized variables, our governing equations become 

v. (pu) = 0, 

p(u.V)u+XV@T)-V.P = 0, 

p(u.v)T+~2pTV.u-~P:Vu+V.(~VT) = 0, 

p z j  = &i,, + uj,i + (V . u) Sij) + q(v. u) Si,, 
where 5 = K/CVLPO$,  s = P I ~ P o ~ , ,  q = (P+QP)/LPO~O 
and x 2  = y -  1, y = cp/cv. 

(4) 

3. Linearized problems 
The solution to the two-dimensional linearized Oseen problem was discussed 

earlier (Sirovich 1968). The solution of supersonic flow past a body can be 
represented in terms of the fundamental matrix solution V by 

v = IsV(s) .  F(x - s) dS(s), (5) 

where F = (O,(pl-P).n, {Q-U.(pl-P)}.n). 
The integration is over the body of surface X and normal n. From (5) we see that 
the solution is explicitly represented in terms of the heat flow, stress and flow 
variables at the surface. The fundamental matrix solution is given by [see 
Sirovich (1968) for the detailed derivation], 

4 

i=l 
v(x) N l i (x )o iwi ,  (6) 

where 
I1 = H ( 4  exp [ - Y2YU/4X51 ,  w1 = [*, 0, 0, - 11, 

( 4 7 4 Y  u44 

w3*4 = [ & y 4  r y p ,  y(M2- l ) t / M ,  ?c Xyq,  

01 = 2 ~ 3 { y ( ~  + 5) + (7 - 1 ) E } / ( M ~  - 1 )2$. 

The wi are constant vectors, I1 and I 2  govern the entropy and vorticity wakes 
respectively, and 13, I4 are the Mach regions above and below the body. 

For a flow past a thin body given by 

y* = +€f f (X)  (0 6 x 6 Z), (7) 

(8) 

we can expand the source terms in powers of E .  The leading term of (5) is then 

where Mo = (O,e,.[pl-PI, e,[Q+P.U]). 
e, is the unit vector in the y direction, and the square brackets denote jumps 
across the thin body. 

Since our aim now is to consider the limits of accuracy of the linear theory, 

v N IV(a,1/) M0(z - S )  ds, 

11-2 
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we avoid the difficult problem of solving equation (8) for a particular problem. 
Instead, for purposes of illustration, we consider flow due to a distribution of 
sources. For simplicity, we take only a pressure jump. That is, corresponding to 
a thin body of length I, we take 

[ p ]  = ~ { H ( x ) - H ( x - Z ) ) ,  [PI = 0,  [TI = 0, (9) 
where H ( x )  is the Heaviside function. (This is related to flow past a finite wedge 
of angle 8.) Also for this section, we take the normalization length in (2) to be 
that of the body, so that 1 = 1.  

Substituting (9) into (8) we find 

R (=  l/a) is effectively the Reynolds number when L is taken to be the body 
length. Certain simplifications resuIt when R B 1 is imposed on (lo), however we 
do not pursue this. 

The representative assumption underlying the linearization of the Navier- 

(11) 
Stokes equations is that au 11 8% 

u - = o ( R G ) .  ax 

If we consider the very distant flow field, x 9 R and y - x/(M2 - l ) 4  = O(x/R)$ 
we easily find from (10) that 

u = O(s(R/x)&), U, = O ( E R / X ) ,  u,, = O ( E ( R / X ) ~ ) ,  (12) 
so that taking a derivative increases the order by the factor (R/x)3. 

theory is not self-consistent if €8 o(1). 
Since (13) seems to typify the condition met in practice, we regard the linear 
theory as breaking down on approaching the far field and try to determine the 
location of this breakdown. 

2 and y-xl(M2- 1)) = O((s/R)t). Then (10) 
may be evaluated by Laplace’s formula and we find 

Comparing condition (11) with distant flow field (12) we see that the linear 

(13) 

We consider (10) for R >> 1, R 

also 
u = o(€); 

uz = O ( B ( R / X ) ~ ) ,  uzX = O(cR/x) .  
Again a derivative introduces the factor (R/x)3. Imposing condition (11) we see 
that breakdown occurs at 

and the flow is self-consistently linear for R x  < 11~2. 
Studying the above analysis, we see that breakdown occurs in the neighbour- 

hood of the shock wave, that is, the linearized location of the shock wave. Also 
condition (14) does not really place this breakdown very far from the body since 
the product R x  is effectively the ratio of distance to mean free path. The cause of 
breakdown arises when non-linear steepening becomes competitive with the 
diffusive broadening. Away from the region of the shocks, the flow is still linear 
(and really inviscid). 

From Whitham’s investigation of inviscid theory (Whitham 1950,1952,1956) 
we know that linearized theory breaks down due to secularities - more precisely 

RX = 0(l/s2) (14) 
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the accumulated effect of local changes in the characteristic direction. In  
anticipation of the results of subsequent sections, we remark that the non-linear 
rectification of the shock zone will also include corrections of the Whitham type. 
(Actually the scaling and perturbation procedure is altered in the inviscid case, 
but we do not go into this here.) 

4. Method of multiple scales 
We are now interested in hd ing  a flow description which bridges the regions 

Rx = O(l/e) with Rx = 0(1/8) .  That is, we wish to obtain the connexion between 
the linear zone and the non-linear zone. For this purpose, we redefine the scale L 
so that the dissipative dimensionless ratios in (14) are O( 1). Instead of introducing 
tiresome variable changes, we now consider x as the spatial variable in the new 
normalization and seek a description which bridges the ranges x = O(l/c) and 

Starting with the small parameter 6 (e.g. in flow past a thin airfoil, we would 
z = O(llS2). 

take the thickness ratio of the airfoil to be c), we introduce the multiple scales 

xi = cix for i = 1,2,3,  ... (15) 

and the corresponding perturbation series 

p = 1 +qJ,+e2p2+ ..., 
u = U+EUl+E2U2+ ..., 

v = EV1+E2V2+ ... . 
T = (l/x)+d!'1+~~T,+... ,  

All variables are assumed to be functions of xi, i = 1,2,  . . . . 
up to the required perturbation order; i.e. setting 

The temperature dependence of the dissipative parameters will be immaterial 

we will only need Po, po  and K,,. Hence, we avoid unnecessary details and take 

6 = K O / C * - v O & O ,  5 = p o / W o ~ o ,  II = ( P o  + ~ ~ 0 ) l ~ i j O ~ O .  (18) 

Substituting expansions (16) into the governing equations (4) and formally 
carrying out the perturbation procedure, we get 

c2{Vl. u, + U . V,pl} + c3{V2. u, + V,. u, + U. V2pl + U .  V1p2 + V,. (plu,)} 

+ 0 ( € 4 )  = 0, (19) 

c a m , +  (U * V,) u1+ XVl TI1 + P{VlP, + (U. Vl) u2 + XVlT2 + v2p1 

+ U.V2% + XV, Tl +Pl (U.  V,) u1+ XPlV, Tl + (u1. V,) u, + TlVlPl 
-~v;u,-~v,(v,.uI))+0(€4) = 0, (20) 

+ p l u .  vp,+ xv, .  u,+ x2qv,.ul+ xplv, .  u,- ~ v y ~  + o(E4j = 0. (21) 

€2{U. V,T1 + xvl. UI} + €3{U. V1T2 + XVl. u, + u. V,T1 + ul. V,T1 
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Lowest-order problem 

For conciseness, we write v = [p ,  u, w, TI and hence 

v = Vo+€VI.+E2V2+ ..., (22) 
where v, = [l, U ,  O,l/x]. Then the O ( E ~ )  equations become just the linearized 
inviscid equations 

(23) 

where 
U l O O  0 0 1 0  

A = [ '  0 O U O  '1,  B=[' l O O X  '1. 
Although the solution of (23) is straightforward, we solve it using a method which 
is useful in the higher orders. We simultaneously diagonalize A and B. Thus, 
let li and ai be vectors such that 

o x o u  0 0 x 0  

Then li(hiA - B) = 0, (25) 

which requires hi to be the eigenvalues of A-IB. Straightforward calculations 
show 

Strict supersonic flow implies M2-  1 > 0. Thus we have four real roots corre- 
sponding to two wakes (vorticity andentropy) and two Mach waves. Substituting 
(26) into (25), we find 

A13394 = 0, 0, * (N2- 1)-k (26) 

14 = [ i ,  -+u, - ~ ( M ~ - ~ ) ~ / U , X I .  I 11 = [ O ,  l , O ,  01, 

l2 = 1 x 3  090, - 11, 

13 = [I, - r / U , y ( ~ ~ - l ) W , ~ i ,  

From (27) and (24), we get 

a1 = [I, U ,  0, XI, 
a2 = [xU,O,O, - U ] ,  

a3 = [y(X2-  a) /U,  0, y ( M 2  - 1)B, xy(2M2 - 1) /U] ,  
a4 = [y(M2- l ) /U,  0, -y(M2- l)$,,y(Mz- l)/V]. 

Setting ui = ai .vl, we have from (23) 

(29) 



Non-linear eSfects i n  steady supersonic dissipative gasdynamies. Part 1 167 

(30)  

] (31)  

1 
Thus w1 = gl (Y1,  x2, Yz ,  - * * 1, 

la2 = g , (Y1 ,Xz ,Y2 ,  **.), 

w3 = g3(x1-(M2-l)ay, ,x , ,y , ,  ... >, 
w4 = g,(x,+(M2- ~ ) + Y l , X , , Y , ,  .* . I .  

From the definition of wi, we also have 

la1 = p1+ Uul + xT1, 
w2 = xUpl-  UTl, 
~3 = y(M2- l ) P 1 / U + y ( M z -  1)*v1+YX(M2- 1)  TJU, 
~4 = y(M2- 1 ) ~ 1 / U - y ( l M ' -  l )*v ,+yX(Ma-  1 )  TJU.  

We defme a matrix S whose rows are composed of four row vectors ai, and 
let w = [wl, w2, w3, w4]. Then, by definition, we have o = Svl, and hence 

v1 = s-lo. 
Carrying out the calculations, we find 

-, - 1 ,  - ( M 2 - 1 ) & , -  =Tq+vj-+v,-, (33)  
2Y(M2- gb 1) Y Y x7 Y 

+ 
where we have decomposed the solution into modes: v$ describe the Mach zones 
in the upper and lower half planes, while V! describes the 'wake', which is really 
the superposition of two wakes. 

A point of importance with regard to v, is that when applied to a thin body 
the modes disengage; that is, products of variables of different modes are 
effectively zero. For example u+ au-/ax can be taken as zero. 

The non-linear jield equation 

Equations for O ( 8 )  in (19) ,  (20)  and (21)  can be grouped into two parts with one 
involving operations on v1 and the other on v,. That is, we can write formally 

(34)  
where L is the same linear operator as in (23)  and M(v1), which is non-linear and 
rather lengthy, is implicitly given by (19) ,  (20)  and (21) .  The decoupling in (34)  
follows from the discussion in the previous paragraph. Multiplying (34) from the 

Lv, = M(vl) = M(vl+) + M(v,) + M(v!), 

left by li, we have 
(:+hi&) ai.v, = li.M(vl). (35)  

The solution v, of (35)  will involve a complementary solution and a particular 
solution. The complementary solution will be of a similar form to vl, but the 
particular solution will involve terms which grow faster than v1 in the far field. To 
demonstrate this let us consider, e.g. the wave region in the upper half plane, i.e. 
i = 3. Then recalling that V: corresponds to i = 3, we have (since v i  = $ = 0 
in the upper half plane) 

(&+A3&) a 3 . V 2  = 13.M(V$). (36)  
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The left-hand side is a derivative in the direction (1, h3). But according to (29), 
13.M(vlf), since it is composed of vlf or alternately a3.v1, is a constant with 
respect to differentiation in this direction. Therefore the integral of (36) has a 
particular solution which grows linearly in the (1, h3) direction. Thus to preserve 
the ordering of the perturbation scheme, we impose the secularity conditioiis 

li.M(vl) = 0 for i = 1 ,2 ,3 ,4 .  (37) 

The decoupling shown in (34) further reduces (37). 

Wake region 
In  the wake, v1 N $. Thus the secularity conditions are 

I1.M(v;) = 0 and 12.M($) = 0. (38) 

Straightforward calculation shows 

and 

These equations can be solved explicitly t o  yield 

and 

where gO,(y,) and &(yl) are 'initial' conditions for the wake for x2 --f 0. We defer 
a discussion of the initial conditions until later. 

Mach zones 

In  the Mach zones, we have v1 N v+, v-. Thus the secularity condition is 

1 3 . 4 . ~ ( v q  = 0. (43) 

After simplification this becomes 

where 
(44) 

71 = x1 T (N2- l)t yl. 

By defining new independent variables, we can transform (44) into the form of a 
Burgers equation. Let 

72 = x2 't- ( B 2 -  l)4y2, Y2 = & y2, (45) 
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then 

where (46) 

[Y(V + 5) + Pfl M 3  
2(M2-1)&y% - V =  

Equation (46) has been solved by Cole (1951) and Hopf (1950). We represent the 
solution in the form 

j O5 &,4(S) exP [ ( 1 / 2 4  -w1, y2, 41 ds 
(47) 

-m 
g3,4(‘1, ‘2) = 

j exp “1/2v) P(71, ‘2, s)l ds 

where P(71,YZ,S) = 9:,4(Wt-- (71-s)2/2’2 

’ 

-cc 

and the ‘initial’ data g:,*(rl) is to be determined by allowing yZ --f 0 in g3,4. 
In  defining P, the lower limit of integration so is actually arbitrary. Changing so 
amounts to multiplying both the numerator and the denominator of (47) by 
the same constant. However, for definiteness we will take so to be the minimum 
point in the support of g:,4. It should be recalled that through (33), we can repre- 
sent all flow variables in the upper and lower waves in terms of g, and g4 re- 
spectively. 

5. Structure of the general solution 
To begin with, we will find it useful to return to the normalization based on 

body length. This is effected by taking L in (4) to be the body length. It is also 
convenient to eliminate the small parameter 8 by simply setting it to unity. 
Finally, rather than considering gs or ga, we, for illustrative reasons, consider 
the velocity perturbation in the x direction which we write as u* (suppressing 
the subscript 1). Then corresponding to (46), we have 

where 

and R = 1/(2v), see (46), is essentially the Reynolds number basedon body length. 
The solution to (48) is given by 

1 h*(s) exp { R S ~ ,  y ,  s)> ds 
2 (49) 

-m 
U * ( X , Y )  = p m  
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where 
(7 - s)2 

F(7, y, s) = - c2 h*(t) dt - -. L 2Y 
The function hf(t)  is det.ermined by the data. 

Inner limit of the solution 

The inner limit y -+ 0 is facilitated by multiplying numerator and denominator 
of (49) by (R/y)* and noting that 

lim (RI27ry)J exp { - (7 -~)2R/2y} = 8(~ - s). 
u-0 

We then obtain from (49) that 

u*(z, y) N h*(z T (W- 1))  y). (51) 

These clearly are solutions of the wave equations - or in other words solutions of 
the linearized inviscid theory. This observation is important in the determination 
of h*, i.e. the ‘boundary condition’. Before doing this, however, we discuss the 
inviscid limit. 

The inviscid limit 
Inviscid limits for Burgers equation were first considered by Burgers (1948). 
Later, rigorous mathematical treatments were given by Hopf (1950), Lax (1957), 
Olejnik (1956) and Ladyzhenskaya (1956). Our discussion here is based on that 
given by Lighthill (1956). 

Under the limit R -+ 00 on (47), the main contribution comes from the neigh- 
bourhood of the maximum points of 9. Stationary points of 9 are given by 

a (7 - 8) - F(7, y, s) = - c,h+(s) + - = 0. 
as Y 

If  F has only a single global maximum sl, then it is determined implicitly by 

s ~ ( T ,  y) = T - Czyh+(sl). 

From (49), the leading term becomes 

U f k ,  Y) h W T ,  Y)). (52) 
It is clear by direct substitution that (52) satisfies the inviscid Burgers equation 

-hf+c2h+-h* a a = 0. 
aY a7 

(53) 

The same equation results if we substitute (47) into (46) and let R = 1/2v -+ CQ. 

If the maximum of 9 is achieved a t  two or more points, shocks occur. That is, 
suppose that 9 has two equal global maxima at s1 and s2, then they are defined 
implicitly by 

Hence F(7, y, sl) = F(T, y, s2) gives 

C 2 W S 1 , 2 )  = (7--1,2) /Y.  
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which determines the shock trajectory. The slope of the shock is given by dif- 
ferentiating (54) implicitly with respect to x. Thus 

dy/dx = { 5 (M2 - 1)) + &C,[h*(S,) + h*(s2)]}-? ( 5 5 )  

Equation (55) can also be derived from inviscid theory. If we consider the 
integral form of the inviscid Burgers equation (53), it allows discontinuous solu- 
tions subject to the condition 

- m[h*] + &Cz[(h’)2] = 0,  (56) 

where [ ] denotes the jump across the shock and m is d.r/dy along the shock 
trajectory. Equation (55) can then be recovered from (56). 

A number of the results under the inviscid limit above can also be found in 
the paper by Whitham (1952). Whitham obtains his result by using a non-linear 
transformation on the linear inviscid solution. He represents his solution in the 
form 

where c is the characteristic curve defined by 

x = (H2 - 1)) y - k q c )  y + k F ( 0  B(t )  + t (58) 

with k = &(y+ 1)M4/(M2- 1) a constant, and x = R(y) is the body. Differen- 
tiating (58) along the characteristics t = constant yields 

ax = (M2- l)* [ 1 - (g!!;)*] 
= (H2- l)* [1+ ku] dy. (59) 

Hence, u is the solution to the partial differential equation 

i a  a 
ax 

-u+ku-u = 0. 
a 
ax ( ~ 2 - i p a ~  
-u+ 

Upon appropriate transformations, (60) can be shown to be just the inviscid 
form of (48). 

This accounts for the fact that Whitham’s inviscid result is identical to ours. 
Whitham’s theory may also be developeddirectly frominviscid theory. A straight- 
forward perturbation analysis on the ’ inviscid equations for a slender body 
reveals a secularity a t  the second order. This signals the use of multiple scales 
and Whitham’s results follow. 

We remark here that the inviscid limit is not uniform in y. Since 1/R and y 
appear in combination in (49)’ it is clear that the inviscid limit we have derived 
will not necessarily be correct as y + co. 

Another non-uniformity appears in the calculation of the shock wave. We 
recall that the shock trajectory was obtained by locating two equal global 
maxima of 9. Therefore, one should also consider the solution when two relative 
maxima (one of which is global) are close to one another in value. This analysis 
yields the shock structure. (For the unsteady version, see Cole (1951), Hopf (1950) 
and Lighthill (1956).) We do not repeat this calculation here. 
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Boundary conditions 

The key to the proper choice of boundary conditions lies in relation (51) which 
tells us that in the limit y + 0,  the solution approaches a solution to the linearized 
inviscid equation. On this basis, it is tempting to take the inviscid linearized 
solution and from it obtain the functions h+. This is especially appealing since, 
as one may verify, the relations between p, u, v and T as given by (33) are the 
same as those obtained from linearized inviscid theory. 

In  a real flow, once out of the boundary layer, the flow field may be considered 
as inviscid. The shock wave regions below and above a body, however, incor- 
porate effects of the boundary layer, e.g. viscous drag. Therefore a more nearly 
correct way of evaluating h* would be to obtain the exact ‘get away’ solution 
which comes off a body, and then use this to construct our h* functions. Such a 
program would be too difficult to carry out in practice. A possible approximate 
method would be to compute the linearized inviscid flow past the shape given by 
the body plus the boundary layer. This can then be used to obtain the linearized 
inviscid ‘get away’ solution for the construction of h*. 

Our main purpose in the next section is to illustrate our solutions. We therefore 
avoid boundary-layer effects and obtain solutions based on the linearized inviscid 
‘get away’ solution. Therefore, the above remarks about the dissipative effects 
from the boundary layer should be regarded as cautionary. 

6. Flow past a thin airfoil 
We consider an airfoil whose upper and lower surfaces are given by 

Y = &Eit*(X),  (61) 

where E << 1 is the thickness ratio, andf(x) = 0 for z outside the interval [ - 4, Q]. 
(The slope off+ is assumed to be 0(1).) Let G denote the linearized inviscid 
velocity perturbation in the 5 direction for flow past the airfoil (61)’ then as is 
well known 

The other flow variables can then be determined from the relations implicit 
in (33). 

Keeping in mind the discussion at the end of the last section, we use (62) as 
the ‘get away’ flow in (49). In  fact from (62) we have 

EU 
(HZ - h+(s) = - 

so that 

where 
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Using integration by parts, (64) may be written as 
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m 

-m Y -m 
u = (7--s) exp {R37(7, y ,  s )}  d s / c ,  / exp {R37(7, y ,  s )}  ds. (66) 

The repetitious superscripts 5 have been dropped in (66). 

field. 
Zone 1. y < 1/e 

In  this zone, we know from the inner limit of Q 5 that linearized inviscid theory 
is valid. Or in other words, the solution is simply given by (62). This limit, how- 
ever, is not uniform in the neighbourhood of 7 % & Q. I n  the neighbourhood of 
these lines, viscous effects come into play and the solution is given by an integral 
such as (5) where the source term is based on (62) .  A finer analysis then reveals 
that the linear description of this region breaks down when y = O( l/e2R). This 
agrees with the result obtained in $3, equation (14). 

We analyze the solution (66) by considering a sequence of zones in the flow 

Zone 2. y = O(l/s) 

The inviscid limit of $ 5  gives the proper description of this zone. We recall that 
the inviscid non-linear description fails in the interior of the shock as described 
in $5.  

Zone 3. y 8 O( 1/e) 

TO evaluate (66) in the limit R -+ a3 in this region, we fist write (66) in the form 

24 = N/(c ,D) ,  

where an obvious notation is used. For this discussion it is convenient to write 

= &I + -71, 
where asgain an obvious notation is used. And similarly 

+I4 exp(RF(7, y,s)}ds  
-t 

= &,+I2. 

For R + co, the major contribution of Il and I, come from the maximum of .F 
for s in [ - +, 41. Simple estimates show that 

u = O(r(yR)-t exp { - Rr2/2y}), (69) 
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for r > O(ey) .  For r < O(ey), 9 has a maximum at s = so E ( -  8, +). Thus we 
use Laplace’s formula to evaluate 1; and I, to yield 

where 

When y is large such that 7 < O(ey), the maximum of 9 for s in [ - +, Q] occurs 
near the point wherefis maximum. Thus (70) can be further simplified by taking 
so to be the maximum point off. The region where (70) is valid has been sketched 
in figure 1. 

We note that (70) is in the form of an N-wave for a wide range of y (Lighthill 
1956). But in the limit y -+ 00, the solution becomes entirely viscous, i.e. a linear 
description of the flow in the interior is no longer valid. 

/ 
Y / 

FIGURE 1. Region of validity of far field solution. 
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Plow pmt a thin diamond-shed wing 
For flow past a diamond-shaped wing of thickness ratio s, the function f is given by 

f(x) = 4-x 0 < x < 4, 
otherwise. 

In this case, (64) can be exactly evaluated and yields 

u = -sU(M2- l )~{exp(sRk~( l+sky+2~))  [erf(($+sky+7) (~ /2y)4)  
- erf ( (7 + eky) R/2y)] - exp(sRkg( 1 + sky - 27)) [erf (7 - sky) (R/2y)t  

+erf((Q +sky -4 (R/2~)4)1)/{2- erf((8 - 7 )  (R/~Y)*) - erf((Q+7) (R/2y)9 
+ exp (ERIC*( 1 + sky + 27)) [erf (4 + sky + 7) (R/2y)+) 

- erf ((7 +sky) (R/2y)4)] + exp (sRk+( 1 + sky - 27)) 

x [erf((i+sky-T) (R/2y)4) +erf((7--ky) (R/2y)t)]}. (73) 

The far field representation corresponding to (70) can be evaluated using a 
method which does not require the differentiability off and yields, 
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