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A study is made of the number of dimensions needed to specify chaotic 
Rayleigh-Be'nard convection, over a range of Rayleigh numbers ( y  = Ra/Ra, < lo2). 
This is based on the calculation of Lyapunov dimension over the range, as well as the 
notion of Karhunen-LoBve dimension. An argument suggesting a universal relation 
between these estimates and supporting numerical evidence is presented. Numerical 
evidence is also presented that the reciprocal of the largest Lyapunov exponent and 
the correlation time are of the same order of magnitude. Several other universal 
features are suggested. In  particular it is suggested that the intrinsic attractor 
dimension is O(Rai), which is sharper than previous results. 

1. Introduction 
The general introduction to this paper may be found in our previous one (Deane 

& Sirovich 1991 ; hereinafter referred to as I). The main concern of this second part 
is the number of parameters or dimensions needed to describe turbulent thermal 
convection. Some indication of this number follows from the Karhunen-Loe've (K-L) 
procedure discussed in I, and this idea is given more precision in the discussion 
given in $2. A general and precise definition of dimension is given by the capacity, or 
Hausdorff dimension (see e.g. Berge', Pomeau & Vidal 1986; Schuster 1984) and a 
means for estimating this dimension has been given by Kaplan & Yorke (1979), who 
use Lyapunov exponents for this purpose. Foiaq, Manley & Temam (1986) have 
shown, in general, that the Kaplan-Yorke formula gives an upper bound for the 
capacity. I n  order to verify our calculation of Lyapunov exponents, we supposed 
that the usual correlation time would furnish a baseline estimate for the largest 
Lyapunov exponent. Since this provoked some debate in certain circles, a numerical 
study of this point is made here, and to within the range of our calculations it indeed 
appears that the correlation time and the reciprocal of the largest Lyapunov 
exponent are of the same order of magnitude. 

An attempt a t  relating the K-L dimension, dKL, to the Lyapunov dimension, d,, 
is made in $2. This is based on intuitive geometrical arguments, and is to be regarded 
as informal. On the other hand, as the Rayleigh number Ra increases for a given cell, 
and the turbulence becomes more vigorous, we expect the flow to enter a scaling 
regime. When this occurs, one might suppose that the two different dimension 
definitions should bear a fixed relation to one another. This too has been investigated, 
and somewhat surprisingly, the fixed relation appears to hold rather well a t  our 
relatively low values of Ra. 
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Several other results presented here also depend on scaling arguments. In 
particular, we give some numerical evidence that the Lyapunov exponents, on 
average, have a uniform density. This is used as a basis for the approximation of d, 
in cases when the actual calculations would require excessive computer time. In a 
related context, we give a dimensional argument that implies that the largest 
Lyapunov exponent is O(Ra]), and from this that d, = O(Rag). If our argument 
holds generally, it is sharper than previous estimates. For example a simple estimate 
of the degrees of freedom based on a calculation of Landau (1944) gives an estimate 
of O(Ra) (Foiag et al. 1986). Rigorous mathematical results are available in two- 
dimensions (Foiag, Manley & Temam 1987 ; Ruelle 1982), in which case the estimate 
is O(Ra), and by implication, i t  is O(Rai) in three dimensions. Possible reasons for our 
sharper bound are given in $6. 

We have made extensive numerical calculations for the flows, and for their 
Lyapunov exponents over a range of Rayleigh numbers. However, this range is 
small, RalRa, < lo2, and although we regard our arguments as having a sound basis, 
they have not been verified over a sufficiently large range of Ra. Thus, some of the 
remarks made above and in the text should be regarded as speculative and 
conjectural. In  this regard we point out that the numerical data for the Nussclt 
number discussed in I fall on a Nu = O(Raf) curve, which as we pointed out in I is 
valid only at  relatively low values of Ra. However, none of the arguments that we 
present here depend on this particular Nusselt-number relationship. In fact the 
scaling of dependent variables, which we do use in our deliberations, has proven to 
be reliable for RalRa, = 0(104) (Balachandar, Maxey & Sirovich 1989; Sirovich, 
Balachandar & Maxey 1989). 

2. Dimension : Karhunen-LoBve 
I n  I, chaotic Rayleigh-Bthard convective flow was analysed across a range of 

Rayleigh numbers in terms of the K-L procedure. One characterization of the K-L 
procedure is that, of all admissible orthonormal bases, it optimally captures on the 
average the most energy in any finite spanning basis. I n  other words if we wish to 
retain some preassigned fraction of the total energy of the flow, the fewest number 
of functions will be required if the K-L basis is chosen. This in turn infers that we can 
define an intrinsic dimension of the flow, based on the K-L description. It has been 
suggested (Sirovich 1989; Sirovich & Sirovich 1989) that for an informal definition 
of K-L dimension, d,,, we proceed as follows. For a flow u,  and a K-L orthonormal 
basis {#,} define the projector 

N 

uN = PN u = C. a,, $n (x). 
n=o 

Thus, uN represents the flow as seen in the space of the first N +  1 eigenfunctions 
where these have been ordered so that 

A, 2 A, 2 Az 2 .... (2) 

Each eigenvalue, A, represents the average energy of the flow along the corresponding 
direction &. Then d,, is chosen such that 

N m 

d,, = NI min ( ( V N ,  uN))/<(u> u ) )  = C. A, / c A,, = E N / E  > 0.9 (3) 
N n-0 n-0 
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FIGURE 1. Cumulative energy contribution of K-L modes for various Rayleigh numbers. The 
dashed line a t  E,/E = 0.9 indicates the K-L dimension dKL. 

N 

T 5 15 30 50 70 
d,, 20 88 206 309 506 

TABLE 1. The Karhunen-Loe've dimension for the indicated values of Rayleigh number 

and A N / &  < 10-2. (4 ) 

In (3) EN represents the average energy in the projected space of (l), and E is the 
total average energy of the flow. Thus, condition (3) guarantees that 90% of the 
energy, on average, resides in the space spanned by (l), and condition (4) guarantees 
that, on average, the excluded amplitudes are less than 10 % of the amplitude of the 
principal mode. We emphasize that this definition is informal and is only intended 
as a plausible criterion. With this cautionary remark made, we propose that d,, 
furnishes a practical approach for finding a low-dimensional description. 

In figure 1 we show the energy captured, EN, as a function of the number of 
spanning functions, N ,  for the five cases calculated in I .  To repeat what was said in 
the previous paragraph, a description based on a system of functions other than the 
K-L basis would lead to curves lying below the corresponding curves in figure 1. The 
criterion (3) is shown as a horizontal dashed line in figure 1. (For each of the cases 
considered the second part of the criterion, (4), is met within the first part.) The 
corresponding K-L dimensions are given in table 1. Thus for Ra = 70Ra, the 
dimension is 506, but is still well below the representational phase space of 
( 12)2 x 32 x 3 x 14000. (A factor of 3 instead of 4 arises because the three dependent 
variables, u, are linked by continuity.) 

In the next section, we begin our discussion of the Hausdorff dimension of the 
attracting set for chaotic convection. To contrast this notion with the K-L 
construction, it is useful to make some preliminary remarks of a geometrical nature. 
If we consider a flow, say v (x , t ) ,  then provided it satisfies certain minimal 
mathematical properties, it has a representation in terms of some admissible and 
convenient basis set, perhaps suitable products of sinusoids. The K-L basis is 
generated, through a unitary transformation, from the original convenient basis. 
Amongst all unitary transformations, the K-L basis has the unique optimal 

9-2 
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properties described a t  the outset of this section. In  particular the system point, v ,  
as represented in the function space, spends most of its time aligned along the first 
axis of the K-L system, the next longest time is spent along the second axis, and so 
forth. The variances of the motion along the K-L axes, are given by the corresponding 
eigenvalues {An} .  Thus in stating that there is an intrinsic dimension, such as dKL, we 
are saying that by passing a finite-dimensional hyperplane through the attractor, we 
capture the overwhelming majority of the energy - with little of it leaking out. 
Actually since the variances, {An} ,  form a decreasing sequence, (2), the motion, 
more accurately, lies in an ellipsoid (in the hyperplane), becoming flatter with each 
additional dimension. 

We expect the actual attractor to be highly irregular in shape. It can be highly 
convoluted, scarred, wrinkled, hairy, twisted and so forth. The K-L dimension should 
be regarded as giving a rough cut a t  the determination of the dimension of the 
attractor. The ellipsoid described in the previous paragraph makes an attempt at 
containing the highly irregular shape of the attractor. The Lyapunov dimension, 
which is discussed next, gives a finer estimate of the attractor dimension. However, 
i t  is not part of a constructive procedure, in the sense that it does not furnish us with 
a set of fitting functions, by which we might parameterize the flow on the attractor. 

3. Lyapunov spectrum 
In a turbulent flow small perturbations to a particular realization depart rapidly 

as the system evolves and after a while the flow bears little detailed resemblance to 
the unperturbed flow. In  a dynamical systems context, this is termed, a sensitive 
dependence on initial conditions. Of course there is a subtle distinction between initial 
conditions for a flow that has not yet fully developed and initial conditions in the 
form of perturbations to an evolved flow. However, the spirit of the definition, and 
its consequences on quantities such as Lyapunov exponents, which are based on 
long-term evolution, are the same. 

If we consider an n-dimensional ellipsoid of infinitesimally close solutions, then 
their long-term evolution determines the Lyapunov characteristic exponents, 

where pi are the principal axes of the n-ellipsoid. A positive value indicates that two 
solutions diverge, on average, exponentially a t  a rate pi, and a negative value 
indicates that they converge exponentially fast. Note that pi has units of inverse 
time. The exponents are presumed to be ordered 

P1 > P2 > ...  ’ Pn. (6) 

Kaplan & Yorke (1979) conjectured that the Hausdorff dimension (capacity) of the 
strange attractor found in a dynamical system may be obtained by the formula 

wherej is the largest integer for which the sum is positive. The formula is plausible 
in that an infinitesimal j-volume on average grows, but a (j+ 1)-dimensional volume 
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shrinks as the attractor is sampled. While for some systems (7)  has bcen shown to 
indeed give the Hausdorff dimension (Russel, Hanson & Ott 1982), for other systems 
it may be incorrect (see Kaplan, Mallet-Paret &, Yorke 1984). Foiag et al. (1986) have 
shown under general conditions that d,  is an upper bound for the Hausdorff 
dimensional of the attractor. Sidestepping this issue we shall determine the 
Lyapunov dimension, d,, based on the Kaplan-Yorke formula given by (7).  

In principle one need only monitor the evolution of such n-volumes to determine 
the desired exponents. We implement this procedure by what is termed the standard 
method (Shimada & Nagashima 1979; Benettin et al. 1980; Wolf et al. 1985). First 
a solution, u, to the nonlinear equation, termed thewucial solution is obtained; then 
the linearized equations of Boussinesq convection in (u', T), 

v * ur = 0, (8) 

(9) 
aul 
at 
- = -u' - Vu-u - Vu'-Vp'+RaPre,T+PrV2u', 

aT 
- = - (u' . V) T- (u . V) T' + w' + V T ,  
at 

plus the appropriate boundary conditions are solved for each of the n desired 
exponents. Here the primed quantities refer to linearized variables and the unprimed 
to the fiducial solution. Since we solve the equations on a computational grid each 
field variable is a vector of length 4 x 12 x 12 x 32. Under the action of the differential 
operator in (8)-( lo), initially orthogonal vectors collapse, in time, towards the 
direction of greatest dilation (locally). Thus, magnitudes of the initially unit vectors 
diverge for directions that correspond to the positive exponents. To avoid 
exceedingly large values of the magnitudes, and the collapse of the directions, the 
vectors are regularly replaced by an orthonormal set obtained by a GramSchmidt 
procedure. At  times of normalization, the growth of a vector can be compared to its 
initial value of unity. It is this growth, when averaged over a long period, that leads 
to the limiting value of (5 ) .  

Since our numerical procedure does not distinguish between linear and nonlinear 
equations, the same scheme is used for solving the linear and nonlinear equations. 
The calculation is started by choosing the n mutually orthogonal vectors to be the 
harmonics in the vertical and horizontal such that 

u,(O) = sin (2nx) sin (2ny) cos ( jnz) ,  j = 1,2 , .  . . n. (11)  

The initial conditions for the fiducial solution is the solution that-resulted at the end 
of the eigenfunction decomposition (see I). All calculations are done in spectral space 
(except for the product terms), including the GramSchmidt procedure, since inner 
products are unchanged between physical and spectral spaces. The code minimizes 
the amount of storage required by utilizing the same working arrays for the linear 
and fiducial solutions, and allows the restarting of calculations if more exponents are 
needed. 

We have monitored the collapse of the directions towards that corresponding to 
the largest exponent and the divergence of the magnitudes of vectors. It was found 
that a GramSchmidt procedure could be safely applied about every 50 time steps, 
where the directions remain to within 65' and the magnitudes have diverged 
negligibly. No unreasonable errors are introduced by this choice. 
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Before leaving this section we point out that the Lyapunov spectrum must contain 
three zero values. As is well known, an autonomous system immediately has a zero 
Lyapunov exponent. This follows from the fact that the time derivative of the 
fiducial solution satisfies the linearized equations. In particular 

satisfies the linearized system, (8)-( lo), as well as all of the boundary conditions. This 
shows that nearby solutions on the fiducial trajectory remain nearby. Two other 
solutions of (8)-(10) are given by 

and 

It is clear that each of these satisfies all of the boundary conditions of the problem. 
Again, each expresses the fact that certain nearby solutions remain nearby and hence 
correspond to a zero Lyapunov exponent. 

4. Dimension : Lyapunov 
The definition of the Lyapunov exponent involves the limiting process t+ co, (10). 

A local value of ,ui(t) is obtained for finite time, with ,ui(t) +pi when t + 00. Goldhirsh, 
Sulem & Orszag (1986) have shown that for typical systems, pi( t )  evolves as 

Here xi represents a noise term and p i  the true value. Our data appear to be in 
accordance with (15), and we use them to extrapolate the Lyapunov values at t + 00. 

In figure 2 we show typical p i ( t )  vs. l / t  for the three values r = 5, 15, 70. Superposed 
on one of the data points is the least-squares, straight-line fit, to indicate the l / t  
behaviour. The intercepts a t  l / t  = 0 give the values pi. All of the Lyapunov 
exponents that  we report have been calculated in this way. 

For attractors of large dimension the Kaplan-Y orke formula becomes impractical 
as a tool for computation in view of the number of exponents which are required. 
In  figure 3 we plot the calculated Lyapunov spectra for r = 5, 15, 30, 50, 70. For all 
but T = 5 and 15 only partial spectra are plotted. On the basis of the five plots in 
figure 3 we conjecture : (a)  that  on average the Lyapunov exponents fill in uniformly ; 
and ( b )  that the density of the Lyapunov spectrum becomes independent of the 
Rayleigh number as it becomes large. From (a)  it  follows that pa us. n can be t,hought 
of as lying on a straight line, and from ( b )  that this straight line has the same slope 
as Ra + co. In figure 3 we also show the least-squares fit to the data by a straight line 
and table 2 shows the resulting slopes. Thus to within about 15% of all slopes are 

Keefe & Moin (1987), in the case of channel flow, have also found that the 
Lyapunov spectrum is reasonably linear. In  a general context it has also been found 

- 1/14. 
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FIGURE 2. The Lyapunov exponents as a function of l/t for the indicated values of Rayleigh 
number. The least-squares straight line superposed on the trace of the largest exponent indicates 
how the asymptotic value of the exponent has been obtained. (a) r = 5, ( b )  15, (c) 70. 

that the density of the Lyapunov spectrum is constant under parameter changes 
(Ruclle 1982; Foiag et al. 1983; Nicolaenko 1986). In particular this has been shown 
for the Kuramoto-Sivanshinsky equation (Manneville 1985). 

Under the assumption that the spectrum is approximately linear, we see that the 
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FIQURE 3 (a+). For caption see facing page. 
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I 

FIGURE 3. The Lyapunov exponent spectrum at various Rayleigh numbers: (a)  r = 5, (b )  15, ( c )  30, 
( d )  50, (e) 70. The line is a least squares fit to the spectrum for (a)  and (b) .  See text 34 for details 
of (c), (d )  and (e). 

r 5 15 30 50 70 
Slope ( x  loa) -7.81 -6.68 -6.14 -6.74 -7.56 

TABLE 2.  Slope of the linear approximation to the Lyapunov exponent spectrum, pn, 08. n, for 
the indicated values of the Rayleigh number 

Lyapunov dimension is given by twice the index of the zero crossing. In figure 4 we 
plot the Lyapunov dimension, d,, determined by us for the five cases. The values for 
r = 5 and 15 were determined by the Kaplan-Yorke formula, (7), and the remaining 
values by the assumption that the spectrum is fitted by a straight line. For 
comparison the K-L dimension, dKL,  has also been indicated. As expected it is larger 
than d,, but it nevertheless is of the same order of magnitude. Although the d ,  us. 
R a  curve appears near-linear we present an argument in $5 which suggests that this 
might be less than linear. 

As the Rayleigh number increases, and turbulence intensifies, the flow can be 
expected to enter a scaling regime. The best example of such a scaling regime in 
turbulence is the inertial range of Kolmogorov (see e.g. Tennekes & Lumley 1972) in 
which the famous O(k-t) law holds. For this case, as the Reynolds number increases, 
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FIGURE 4. Attractor dimension is a function of Rayleigh number. The solid line is the 
Lyapunov dimension d,, and the dashed line is the K-L dimension dKL. 
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FIGURE 5. Amount of energy captured in d, K-L modes as a function of Rayleigh number. 

the inertial range simply widens, i.e. its dimension increases. We now argue that the 
Lyapunov dimension gives us some estimate of the point beyond which the flow 
becomes purely dissipative (Stokesian). It is therefore of interest to consider the 
percentage of energy, in the optimal K-L coordinates, captured by the dimension d,. 
Once in the scaling region this should become a constant for a fixed geometry. 
According to  this argument it should become constant as Ra + 03. Figure 5 contains 
this plot and the constancy (x 76%) of the curve is remarkable in view of the 
relatively low values of Ra that  we consider. Calculations a t  much higher values of 
Ra will be necessary to be fully confident of the result. 

5. Autocorrelation 
From the point of view of fluid mechanics the timescales associated with the 

Lyapunov spectrum do not appear to be immediately relevant. A more natural 
timescale, theoretically and experimentally, is the correlation time, 7,. The 
autocorrelation 
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t 

FIGURE 6. The autocorrelation of the horizontal velocity in the midplane for different Rayleigh 
numbers. The direction of the arrow indicates increasing values of T .  

where a is some fluid variable, has been a traditional rncasure of the loss of 
information. For turbulent flow, such correlations rapidly fall to zero as the delay 
time, T ,  is increased. Beyond a certain correlation time 7, the signal is effectively 
uncorrelated with itself. As a working hypothesis we adopted the assumption that, 

7, = 0(1/PA (17) 

to  obtain some baseline verification of our calculations of Lyapunov exponents. It 
has also been suggested instead that thc correlation time is related to the metric 
entropy which is another measure of the loss of information (see e.g. Shaw 1981 ; 
Farmer et al. 1980 and particularly Badii et al. 1988). In  this section we explore the 
connections between these notions on the basis of our calculations. 

Figure 6 shows the autocorrelation of the horizontal velocity C,, as sampled in the 
midplane, z = a, for several values of r .  The C,, were constructed by calculating an 
autocorrelation for each of 16 points in the mid-plane and the averaging these 
together. The time signal corresponded to 214 data points in time and C,, obtained 
by the Fourier transform method. 

The results indicate that, as expected, there is a loss of correlation with increasing 
values of 7. For all the cases there is a small residual periodicity present, so that C,, 
does not go monotonically to zero for large 7, but oscillates with decreasing 
amplitude about zero. While some part of this is doubtless due to the insufficiency 
in the number of cycles captured to calculate C,,, the oscillation reflects the weakly 
turbulent nature of the flows we have explored, which are dominated by a pair of 
rolls which randomly line up with the x- or y-axis. Away from the midplane of the 
layer, for the cases we have considered, the loss in correlation is less pronounced. The 
layer feels the presence of the walls, and correlations in the boundary layer are 
stronger, owing to the reduced level of turbulence. 

For autocorrelations of the type shown in figure 6, there is no finite time such that 
C,, can sensibly be taken to  be zero. We thus choose as a criterion for identification 
of a correlation time 7, the appearance of the first minimum in the autocorrelation, 
which is identifiable at, and away from, the mid lane. For some systems it has 

pi > 0. In  figure 7 we show 7, as calculated here as a function of Rayleigh number and 
been shown that 7, equals the metric entropy, v = 5 El pi where the sum is over all 
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FIGURE 7. Comparison of timescales based on different measures of the loss of information as 
functions of Rayleigh number. 7, is the correlation time, 7,, is the Lyapunov time and r, is the time 
based on the metric entropy. 

also show T~ = l/pl and T,  = l/a = 1/(pL1+p2+. . .p.,). For large r there are many 
exponents and T,, can be much larger than 7, but, for small r ,  u x ,ul and so T, x T ~ .  

Note that all the values of T,, have been obtained explicitly since p, has been obtained 
for all the Rayleigh numbers. To within an order of magnitude 7, is approximated 
by T,, but not by 7,. 

The issue being discussed may have its origin in semantics. Examination of the 
metric entropy shows that it measures the rate of information loss as a result of a 
volumetric increase in the phase space. The reciprocal correlation time, on the other 
hand, estimates the rate of information loss based on the examination of just one 
dependent variable. A more telling way to see that metric entropy does not give a 
measure of the correlation time is to observe that u increases as the aspect ratio 
increases (a is extensive) whereas T,, being intensive, does not change in any 
significant way under such a change. 

6. Discussion 
A simple argument for estimating the degrees of freedom active in a turbulent 

convective flow can be based on the argument given by Landau (1944) for general 
turbulent flows. The smallest relevant scale in the convective problem is 6, the 
thickness of the thermal layer at a wall (it is tacitly being assumed that Pr = O(1)). 
Thus, the number of degrees of freedom in the vertical direction is 

which, as indicated, is twice the Nusselt number. Neglecting factors of order 1, one 
can argue that the number of degrees of freedom d is 

d = O(Nu3).  (19) 

If i t  is further assumed that the Nusselt number takes on the free-fall relation, 
Nu = O(Ra:), then we obtain 

d = O(Ra)  (20) 
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(Foiag et al. 1986). A mathematically rigorous estimate of the degrees of freedom has 
been given by Foiag et al. (1987) and Ruelle (1982) in two space dimensions and 
shown to be O(Ra).  This, however, implies that instead of (20), one obtains O(Rat) in 
three dimensions. 

Before proceeding further, we observe that if the width and depth of the 
convective cell are denoted by W and D ,  respectively, then 

d = O( V / s 3 ) ,  (21) 

where V = HWD is the volume. This relation underlines the basic extensive quality 
of dimension estimates. It also underlines a somewhat impractical feature of such 
deliberations. For, in the limit of large aspect ratios, d becomes unbounded. This is 
due to the inclusion of long-range correlations, which in any practical sense are down 
in the noise of any real problem. As has been pointed out (Sirovich 1989; Sirovich & 
Sirovich 1989), for turbulent flow, the spatial correlation length, or integral scale, 
should be taken as the relevant lengthscale in the horizontal directions, in order to 
obtain a dimension estimate of practical significance. 

To apply (19), it  was necessary to know N u  as a function of Ra.  As we discussed 
in I, a variety of power laws arise from experiment and theory, and our use of the 
free-fall relation should be regarded as nominal. In the recent experiments on 
Rayleigh-Bdnard convection by the Chicago group (Castaing et al. 1989), N u  = 
O(Rai) was found to hold in the soft turbulence region, implying (20). But in the hard 
turbulence regime N u  = O(Ra:) was found, which if inserted into (19) yields 

d = O(Ra4). (22) 

We now approach the problem of determining dimension from a different perspective, 
one which appears to lead to a sharper result. 

If we consider a boundary layer, thickness 6, the velocity of an eddy emerging 
from it is 

This in turn defines a timescale 
w = (2golATG)i. (23 1 

s 
7’ = - 

\ W’ 
\ 

which when normalized in the standard way (with respect to H 2 / ~ )  yields 

.=( y 
N u  Pr R a  

(24) 

This we assert can be identified with the correlation time. Thus if we adopt N u  = 
O(Rag) we are led to 

But by virtue of the remarks in $5 this is proportional to l/,ul, the leading Lyapunov 
exponent. Thus on the basis of the assumptions ( a )  and ( b )  in $4 we conjecture that 

7 = O(I2a-i). (26) 

d, = O(Rai). (27) 

Equation (27) is an unverified conjecture and a cautionary discussion already 
appears in the Introduction. We contrast (27) with (20), by noting a somewhat subtle 
but essential difference in the premises that go into the derivation of the two 
formulas. Equation (20) was an estimate of the degrees of freedom while (27) hopes 
to estimate the attractor dimension, the point being that if certain scales find a 
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relationship or correlation amongst themselves, then fewer fitting functions will be 
necessary. This lies at the heart of the difference in these estimates, and perhaps 
sheds light on why (27) is sharper. One additional point should be mentioned, that 
(27) is an intrinsic measure. It does not include the extrinsic affect mentioned in 
connection with (21). In  practical terms this would permit unnatural correlations a t  
scales larger than the integral integral scale. This is deemed unimportant in any real 
situation. 

Finally, we remark on a concern which the reader may have. Are the numerical 
estimates of dimension robust under increasing spatial resolution of the flow T To 
answer this we first point out that the working definition of d,, through (3) and (4) 
lead to d,, = 512 and 320 for grids of (12)2 x 32 and (32)3 respectively. Clearly, even 
neglecting energetically unimportant modes raises d,, by almost a factor of 2. 
However, we note that the energy curve for r = 70 (figure 1 )  is very flat for large 
values of energy cutoff. Thus this error in d,, is of the same order as taking the cutoff 
in energy not at 90 % but, say, a t  88 % and thus not of real significance. Second, we 
re-emphasize that for the larger values of r that we have considered, we have based 
our estimates on a small number of exponents and this is likely to be a greater source 
of error. For the smaller values of r the flow is completely resolved and here we have 
calculated all the exponents and the dimension estimate is precise. 
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