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A detailed investigation of the generation of sound waves from an oscillating piston is considered
within the framework of kinetic theory. Two kinetic models appropriate to the problem are developed.
Both of these are exactly solved by the Wiener-Hopf method. Under a certain special limit, gas dynamics
is shown to hold. A variety of other special limits are also considered.

1. INTRODUCTION

An early investigation of the sound propagation
problem by means of kinetic theory is to be found in
the pioneering report of Wang Chang and Uhlenbeck.!
In brief their method is based upon the expansion of
the distribution function in terms of moments. Using
this method, they showed that a series expansion for
sound speed and attenuation rate in the frequency w
could be obtained. The leading terms of these yield
the same results as the Euler, Navier-Stokes, and
Burnett equations, etc. A numerical investigation
based on this method and using an extremely large
number of moments is to be found in the work of
Pekeris and his co-workers.23 However, these results
proved to be very poor in the transition and high
frequency limit when compared with the experiments
of Greenspan* and Meyer and Sessler.® A discussion
of these results is to be found in Sirovich and Thurber.®
In that paper a method for investigating sound waves
by means of fairly elaborate kinetic models is given.
The results of their investigation showed extremely
close agreement with the above-mentioned experiments.

In all of the above theoretical investigations, only
the problem of sound propagation was considered.
By this we mean that only the dispersion relation for a
plane wave was analyzed. The boundary value
problem corresponding to the experiments of Refs. 4
and 5 was not considered. This lead to a controversy
(see Refs. 7 and 8) concerning the applicability of
the plane wave description in the neighborhood of the
oscillating wall. It was felt that in this region a free
flow analysis would be more appropriate. The free
flow analysis and certain experiments in their support
are given in Refs. 9 and 10. However, even these
new experiments provided data which fell more closely
on the sound dispersion curves than on the free flow
curves. It was shown in Ref. 7 that the free flow
analysis is of very questionable value at high fre-
quencies even within one mean free path of the wall.

The real issue can only be resolved by the solution
of the exact boundary value problem. A certain
amount of penetration into this problem has been

made by Ostrowsky and Kleitman,'* Weitzner,?
Mason,'1* and Buckner and Ferziger.’® Due to
various analytical difficulties a number of restrictive
assumptions had to be made in each of these investi-
gations. To a certain extent the result of these studies
was to raise more questions rather than to settle
the above controversy. Notable among these new
questions was the result in Ref. 11, that the falloff
of a disturbance from an oscillating wall at large
distances is O[exp (—x#)]. This is in clear violation of
the widely held view that gas dynamics is the valid
theory at large distances, since this theory predicts a
simple exponential falloff which is clearly recessive
when compared with the result of Ref. 11. We
mention in passing that this same peculiar falloff was
also found in a study of shock wave structure by
Lyubarskii.'® The explanation for this behavior is due
to the BGKW model (Bhatnagar, Gross, and Krook!?
and Welander®) or variations of it which were used
in the above theoretical investigations, for, in this
model, the collision frequency is a constant and fast
molecules have unbounded free paths. This point is
made in a recent paper.!® It is also shown there that
other fall-offs occur when the collision frequency is
nonconstant. If we denote the collision frequency by
v(§) and if
« = lim In 3/(In &),
I ad]

then in general one has a falloff O [exp (—x?©~%)]. This
has been demonstrated in a particular boundary value
problem using a model equation (Sirovich and York?®)
and also for the full linearized Boltzmann equation
(Richardson and Sirovich?!).

The resolution of the boundary value problem can
be made in terms of contributions due to the point
spectrum (essentially sound propagation) and con-
tinuous spectrum (in which the collision frequency
and boundary conditions play a major role). A major
aim of our investigation is to better understand the
interplay of these two effects. Specifically, we wish to
know if and yhere the point and continuous spectra
individually dominate. We also wish to take up the
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SOUND WAVE BOUNDARY.VALUE PROBLEM. I

detailed effect of collision frequency. This last part
will be taken up in the second part of this study, and
in the present paper we will assume a constant
collision frequency.

We are critical of the previous treatments in their
choice of models and in their boundary conditions.
For these reasons we will (in Sec. 2) formulate the
problem and treat the boundary conditions with more
than usual care. It is shown that previous studies, at
least implicitly, assume that the flow under investi-
gation is distant from the piston. We develop the
problem under the sole assumption that the Mach
number based on piston speed is small, and a simple
transformation renders the analysis valid up to the
wall.

In Sec. 3 we introduce two kinetic models for the
sound problem. Both are developed with the goal of
faithfully describing both the plane wave and con-
tinuous spectrum contributions to the solution. These
models are exactly solved by essentially the Wiener—
Hopf technique in Sec. 4.

Although our solutions are explicit, they do not
yield to ready analysis. For low frequencies our
solution implicitly settles the above-mentioned
controversy in showing that the discrete spectrum
dominates over the continuous spectrum in the
neighborhood of the piston. A specific solution for all
frequencies must await machine calculation. In the
limit of low frequency oscillations a number of results
can be obtained. For one thing, in this limit the
neighborhood of the piston is dominated by the
discrete spectrum, ie., the plane wave solution. The role
of hydrodynamics also emerges. We show that in the
limit of » — oo with xw/(RT)* held fixed, hydro-
dynamical theory (the plane wave) dominates. Also of
interest is the extent of the region in which the plane
wave solution dominates the continuous spectra
portion of the solution. The asymptotic extent of this is
x K o Beyond this region the description is
essentially nonhydrodynamic. A more detailed picture
of this “crossover”” phenomena is given in Sec. 5.

2. STATEMENT OF THE SOUND PROPAGATION
PROBLEM

We begin our discussion with the Boltzmann
equation

0 0
Ly -—)F = JF, 21
(at' ' ox @h
where F = F(%,¥',t") is the molecular distribution
function, X’ is distance measured from the mean
position of a sinusoidally oscillating piston, &’ is the
molecular velocity, and ¢’ is the time. JF is the non-
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linear Boltzmann collision operator or any particular
model of it.

Equation (2.1) can be nondimensionalized with
respect to a constant », representative of molecular
collision frequency, a mean molecular speed (RTp)%,
where T, is the mean gas temperature, and p,, the
mean density. The dimensionless variables are then
defined by

WWIRTYE =2, EJRT =€ o' =1 (22)

Since boundary conditions are applied at the piston

position ¥ = x,(¢), rather than the mean position

% = 0, we make a (noninertial) transformation which
takes the piston position x,(¢) into the origin of a
coordinate x’;

~t ! ? d ! !
X = X,,(t) =X, E xp(t) = um(t)a

where u,(r) is the piston velocity. %,, u, are non-
dimensionalized by (2.2) and we write
Xy RTYE = x, w)(DIRTYE = euy(t),
i OIRTY = x,(0),

where e is chosen so as to make u,, = O(1) and hence
is in effect the piston Mach number. Finally by writing

F(.f', €,9 t,) =f(x: g’ t),

(2.1) becomes

2 7. 1
[at + ¢t 8x] =7

We impose the following boundary conditions on (2.3):

2.3)

f_ G- =080 dE=0 ()

f(x = 0,8 1) = py2nRT) ¥p,(T,) %
x exp [(§ — eu,)(2T,)7'];
& > eu,(t). (2.4b)
Equations (2.4) have been nondimensionalized ac-
cording to (2.2) and

Po = Pylpo, T, =T,[T,.

The first condition, (2.4a), states that there is no mass
flow through the piston surface. For this to be true,
it must be assumed that the “waiting time” of mole-
cules on the surface is small compared to the period of
oscillations of the piston. It should be mentioned
that for very high frequency oscillations this might not
be the case. (In the case of specular reflection at the
piston there is no waiting time and the condition is
exact.) The second equation, (2.4b), specifies that the
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molecules leave the piston diffusely, i.e., for & > eu,
the distribution function is Maxwellian centered at the
piston speed and with a density and temperature p,,
T, which must be determined. (Other “outgoing”
distribution functions can be prescribed. We choose
this since it seems to be the most realistic condition.)
One of the unknown parameters is ultimately fixed by
(2.4a). In general, to determine the other one, another
boundary condition must be applied. (For example,
the temperature of the piston can be given, or a heat
flow condition supplied at the piston.) However, we
will subsequently show that, for the model operators
that we will consider, (2.4b) must satisfy a symmetry
condition of the equation which effectively relates p,
and T, so that (2.4a) suffices for a complete deter-
mination. It will be seen that the method of solution
holds in principle for any given outgoing distribution
function. The distribution function for molecules
striking the wall is of course determined with the full
solution.

Equation (2.3) together with (2.4) forms a completely
general framework for the sound propagation problem
in a rarefied gas. The linearization is carried out by
assuming that the Mach number e is very much less
than 1. We emphasize that this will be the sole
“smallness” assumption which we make. This is in
contrast to previous treatments which, at least
implicitly, assume that the piston position x, is
small. This added generality is a direct consequence of
the coordinate transformation.

Linearization follows from the following pertur-
bation expansion:

S=S1 + €& + O()]
with f° the absolute Maxwellian,

o ___Po —éj __P g
/ (2nRT) exP[ 2l ®D

To O(1), (2.3) is identically satisfied, and, to O(e), we
obtain

E+ag)e=tqon =16 @9

ot X Y

Defining the inner product
(o) =| Qf*gdg (2.6)

where f* is the complex conjugate of f, we have, for the
hydrodynamical moments,

P = f FE = po + epo + O(E,

T. G. RICHARDSON AND L. SIROVICH

pu’ = f EfdE = epyRT i + O(e),

pRT = [ (16— wy + & + a3}
= poRTy + pRTy(p + T) + O(&),
with the perturbed hydrodynamical quantities given by

=y

p=0,8), 4=(5,8), T=038-1%. 27
The boundary conditions (2.4) become
(61, 8(x = 0)) = u, (1) (2.82)

806 = 0§, 1) = 84(0) + &()GE — ) + &,
(2.8b)

where the unknown functions &, (2), &,(¢) arise from

pp =1+ e&(t) + O,
T, =14 e&y(t) + O(e?).

3. DISCUSSION OF KINETIC MODELS

The system (2.5), (2.6) is completed by specifying a
particular collision operator L. We base our dis-
cussion on the well-known model operator of Bhatua-
gar, Gross, Krook,'” and Welander,'®

If =3 = f). @3.0)

Here f is the local Maxwellian, # = vp’[py, and » is
constant. Linearizing according to (2.5) becomes

Lg=—g+p+&a+GE-dT, (G2
where we have used the definitions (2.7). We focus on
the problem of an oscillating piston by taking up =
exp (iwt). Collecting (2.5), (2.8), (3.2) and defining
g = g(x2 E)ezmt’ ﬁ — peuot,ﬁ — ueimt’ T: Teimt’ &1’2 —
oy o(0)e*, we have the boundary value problem
defined by

(1 tio+ & -a%)g CptEu+GE—DT (33)

[Lgx=0]=1, (3.42)
g(x =0,8) = o,(0) + ox(0)(3E* — ) + &1,
£>0. (3.4b)

The restriction to ¢/t = iw is, of course, the case of
steady state oscillations—which corresponds to asymp-
totically long times. As indicated, the parameters a,,
s, are functions of w, and their determination is part
of the problem. From (3.4a) we note that ¢ is the
normalized velocity amplitude of the piston.
Equation (3.3) is seen to be an integro-differential
equation for g. The mass conservation equation [taking
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the inner product (2.7) with respect to 1] is

. ou

iwp + . 0.
This implies that (3.3) has really only two independent
moments of g on the right-hand side. As a result it may
be reduced to two coupled integral equations. Un-
fortunately, no procedures for exact solution are
known for this type of problem. Thus for the sound
problem, if one seeks exact solutions (as we do here),
it is necessary to approximate (3.3) in such a way that
there is only a single moment of g present. (For low-
speed shear problems this is exactly the case, which
accounts for the amount of success which is met with
in such problems.) Several such approximations have
been introduced in connection with the sound propa-
gation problem. (Buckner and Ferziger’® present an
interesting alternative. They make no assumption on
the number of moments but instead replace the
boundary with a known oscillating source.) In Refs.
11, 13, and 14 the “isothermal” model (7 = 0) is
considered:

(1 +iw+£li)g=p+§lu.
Ox

@3.5)

(3.6)

It is of interest to note that (3.6) does not provide exact
solutions to (3.3) with T'= 0. To prove this, let us
integrate (3.6) with respect to the first two moments
to obtain

ia)p+%=0,

)
ZPo.
X

iou 3.7

To obtain the second, we have written

S @ —141,9=32 % 2

ox | 8= ox  ox ox
using (3.2), the fact that g = g(x, &) only, and the
isothermal assumption. Therefore, (3.7) and hence
(3.6) permit plane wave solutions

ezmt——zkw’ k = w,

and k is real. To see that this is impossible, we seek a
plane wave solution of (3.6) directly. This then takes
the form

(1 + io — iké)g = p + &, (3.8)

where p and u are now constants. Taking the inner
product with respect to g*, we obtain

(I + iw) lIgl® — ik(g, &18) = |pl* + |ul?,
and |igl|* = (g, g). The real part of (3.9) is
lgl® = lpl® + [ul?,

3.9
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which implies that
g=p+ éu (3.10)

Substituting (3.10) into (3.8) demonstrates that k = w
is impossible, hence a contradiction, and hence (3.7)
does not admit a solution with T = 0.

Another type of model is due to Weitzner.'? There
g is assumed to depend only on £, so that one has the
equation

(1 +io+ &i)g
Ox

= p+Eu+3E - DE~1,9. (11

This too cannot produce a solution to (3.3). For,
comparison of (3:11) with (3.3) shows that, in order
for a solution of (3.11) to satisfy (3.3), the distribution
can only be a function of & in velocity space. How-
ever, imposing this on (3.3), we see that this is im-
possible unless T = 0. But this has been shown above
to be incompatible with (3.3).

A related and somewhat more severe difficulty
associated with (3.6) and (3.11) is that they lead to
incorrect “sound speeds”; (3.6) produces sound waves
travelling at (3)} of the correct adiabatic speed and
(3.11) 3//5 of the adiabatic speed. We now introduce
two models which to some degree eliminate this
shortcoming.

Adiabatic Model

First consider the “adiabatic’ model defined by

. d &
(1 + iow + & —)g =—p+&u (3.12)
0x 3

This equation can be obtained by assuming that
0Q/0x = 0 in the energy equation of (3.3), namely in
. 20u . 290
1wT+3ax 3 7 0.
Then this and (3.5) give p = 37T, hence (3.12) from
(3.3). Note that (3.12) conserves mass and momentum
but not energy just as (3.6). Because of the adiabatic
assumption, the dispersion relation of (3.12) gives the
adiabatic sound speed, (3)! to lowest order in the
frequency @ (Appendix A). However, again an exact
solution of (3.12) does not yield an exact solution of
the BGKW model.

Positive Wave Model

We now introduce a second model of (3.3). Our
objective will be to construct a model which faithfully
portrays the plane wave solutions of (3.3), but
involves only a single moment of g. For convenience
we write

x =1, &, &/,/6 — )],
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and note that (y;,x;) = 96,;. Then (3.3) can be
rewritten as

(1 + io + & 2)3 =%+ 8)- (3.13)

ox

Now we seek a plane wave solution of this, i.e., we

assume

g = G®)e, (.14)

to obtain
(I +iov+s&)G=x G =x-a (3.15)
In order that

G =x+a/(1 +iv + s&) (3.16)
be a solution of (3.15), it is necessary that
det [1 — (¢, /(1 + i + s&)D]=0. (3.17)

Among the possible roots s which satisfy (3.17), we
choose the one s = sy,(w) which lies in the third
quadrant. Then, by taking @ > 0, this gives a wave
propagating to the right (and decaying in the direction
of propagation). Next let a = a(s;; ) denote the
eigenvector corresponding 10 5o,

[1— (G x/( + io + s6))]-a=0, (3.18)

and for convenience we take a* - a = 1; as before the
asterisk signifies the complex conjugate.
Now consider the equation

(1 + iow+ & -q-)g =y - av(x), 3.19)
ox

with

v(x)=(@-X,8) (3.20)
and a as defined above. A plane wave solution, (3.14),
of (3.19) gives
. Sl
C=1¥io+ &
The inner product of both sides with respect to
X - a gives

x -
(@-x,G)=(@a-x G)a*- (X,m) a,

(a-x, G). 3.21)

hence the dispersion relation

o

1 4+ iw + s&

Multiplying (3.18) on the left by a* shows that s =

so(w) satisfies (3.22). In Appendix A it is shown that

s, is the only solution of (3.22). By observing that

(a-y,G) in (3.21) is merely a constant, it follows

that (3.21) and (3.16) are identical up to a constant

multiplier. Therefore, the model (3.19) has the same
plane wave solution as the BGKW model (3.13).

) ca=1, (3.22)

T. G. RICHARDSON AND L. SIROVICH

The positive wave model (3.19) does not a priori
satisfy the conservation equations. On the other hand,
the plane wave solution does. This follows trivially
from the fact that any solution of the BGK'W equation
satisfies the conservation equations. Hence, in any
region in which the plane wave dominates, (3.19) does
lead to the conservation laws. Now, although the
positive wave model does not yield an exact solution
of the BGKW model, it will have this property
asymptotically. We will later show in what follows
that the plane wave is dominant in one important
region.

In thelimit w — 0, 5, and a(s,) take especially simple
forms. This calculation follows from (3.17), (3.18) and
yields

S0 = — @)oo + 0(w?)
2 = (i, B B + 0).

(These are the same as would be obtained from the
gasdynamic Euler equations.) Under this limit

x-a° = (1/y/2)(6 + &/J/15) + O(w),
and the asymptotic positive wave model has the form
2

(1 + io + & ;;)g = :/1—2(51 + 761?) w(x), (3.23)

w(x) = (1/y2)&6 + &[V15, 8.  (3.29)
The positive wave model (3.19), (3.20) and its asymp-
totic form (3.23), (3.24) both yield to solution by the
methods of the following section. However, since the
exact calculation of sy(w) and a° is difficult, all explicit
calculations will refer to (3.23), (3.24).

Boundary Conditions

As stated after (2.4), the particular model operator
that we choose, (3.12), (3.19), or (3.23), places a
restriction on the form of (2.4b) or, in the linearized
form, on (3.4b). To show this, consider (3.12) and
(3.23) in the limit & — 0 for x > 0. As will be clear
from the representation of the solution, 9g/dx exists
for x > 0. Then, in the limit,

(1 + iw)g(x, & = 0)
- {[(52 + &£3)/31p(x), adiabatic model,
[(&3 + &3)//30Iw(x), positive wave model.

The prescribed boundary value must also have this
symmetry; hence
(@) = oa(w)

and (3.4b) becomes
8 =gx =0,8) = ay(w)}& + &, £ >0, (3.25)

Thus (3.12) or (3.23) together with (3.4a) and (3.25)
form the complete boundary value problem. [A more
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complicated form than (3.25) results for the model
(3.19).]

4. SOLUTION OF THE BOUNDARY VALUE
PROBLEM

A variety of equivalent methods are available for
solving the given model equations. An approach of
some generality is the normal modes method used by
Cercignani.?? Another approach is that of Weitzner,!2
who uses transforms. In this paper we use an approach
which relies on the reduction of the problem to a pure
integral equation of the Wiener-Hopf type.

The equations to be solved are (3.12) [for which p
can be eliminated by (3.5)] or (3.23) with boundary
conditions (3.4a) and (3.25). These can be typically
represented by the equation

(1 +io+ & )g fl(z)v<x)+fz(§)—. 1)

v is taken as a generic moment, depending on the
model, and we write

v(x) = (f:(8), 8)- 4.2)
Thus f;, f;, and f; are known for each model. Our
method of solution allows any number of derivatives
of v to appear on the right-hand side of (4.1), but for

simplicity we consider only one here. Integrating (4.1)
gives the equation

8(x, E) = H(E)go(E) exp [— (L + iw) x]

&
1 a0
+ H(E) fo : [ﬁ(i)v(s) +£®) as]
1+ iw)
£

- H-&)[ wi[fl(z)v(s) + A(E) %]

X exp [-— (x ~ s)] ds

(A + iw)
X expl: ‘. (x — ):l ds. (4.3)

H is the Heaviside function, g, is the given boundary
value (3.25). Parts integrating terms in 0v/0s gives

g(x, 8) = H(){gu(8) — [f(B)/&110(0)}
x exp {—[(1 + iw)/&]x} + [f(E)/Exdu(x)

+ H(E) L ‘e

X {/1) — (I + iw)[fxE)/&:1}u(s)
x exp {—[(1 + iw)/&:)(x ~ 5)} ds

— H(—&) f (1/£)

x (A8 — (1 + iw)[fo(B)/&:1}o(s)

X exp {—[(1 + iw)/&)(x — 5)} ds. (4.4)

1789

Taking the inner product (4.2) of (4.4), one obtains
the integral equation

v(x) = J; mK(x — s)o(s) ds + f(x), 4.5)

where (in the cases under study f, is real)

K(x) = (1/5) f_ EGI

x {fiB) — (A + iw)[f(B)/5:]}
x exp {—[(1 + iw)/&]x}
x [H(é)H(x) — H(—§)H(—x)] d§, (4.6)

16 = () | QC@ABHE
X {g(§) — [f(®)/5:10(0)}
x exp {—[(1 + iw)/&]x} dE, 4.7)
v =1—(fs&), [fB)/&D). (4.8)
In (4.5) redefine the functions as follows:
o(x) = v(x), x>0, f(X) = f(x)’ x>0,
=0, x <0, =0, x<0,
and let
0, x>0,
79 =1_ f KGx—s)o(s)ds, x < 0.

Then (4.5) is extended to the integral equation

o(x) = f_ " K(x — $)o(s) ds + f(x) + 400, (49)

The Fourier transform of (4.9) is taken using
zkz (x) dx,

k=)

and the same functional notation is used for the
transformed and untransformed function. (The argu-
ment signifies the variable under consideration.) This
yields the Wiener-Hopf equation

v()[1 — K(k)] = f(k) + q(k),
where the transforms of (4.6) and (4.7) are

1= QE)fSE)
Ky = .[oo 1+ iw — iké,

“4.10)

(fx(g) =1 + iw)

! [- o5k
—o 1 4+ iw — ik&,

fz(E)) & (4.11)

Jk) =

@

x (go(z) ~E20)dE (1)
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In (4.10), by construction, o(k) is analytic for Im k >
0 and ¢(k) is analytic for Im & < 0. From (4.11) it is
seen that 1 — K(k) defines two different analytic
functions for Im (1 4 iw/ik) Z 0, i.e., across the line
L={k|1+io—ik& =0, —0 < & < oo}. Each,
of course, may be continued into the other half-plane.
From (4.12), f(k) defines an analytic function having
a cut on the half-line L_ = {k |1 + iw — ik& =0,
&, > 0} in the fourth quadrant. (L, will denote
L — L_ in the second quadrant.) Considering k real,
we see that both f and K are continuous at &k =0
and analytic elsewhere. In addition 1 — K(k) =1 +
O(1/k), ftk) = O(1/k) for k — co. From Appendix
A we know that 1 — K has no zeros on the real line
for w # 0.

In order to solve (4.10) by the Wiener-Hopf method,
it is necessary to construct a splitting into upper and
lower analytic functions. This is accomplished in a
standard way,? by introducing the functions

[}

Qk) = (1)27i) | log [l — K(1)] dt/(t — k), (4.13)

P(k) = (1/2"i)f:f(t) exp [@7(D] dt/(t — k). (4.14)

From the above mentioned properties of f and X,
(4.13) and (4.14) exist. Again P and Q define two
analytic functions for Imk 2 0. Unless otherwise
stated, the particular function being considered is
determined by the value of the argument, i.e., assume
no analytic continuation unless specifically stated.
(Analytic continuation will be denoted by the super-
script £.) In particular from the Plemelj formula,?
as Im k — 0 from above and below (& respectively),

Ot(k) — O~(k) =log [I — K(K)].  (4.15)
Next consider the function
A(k) = v(k) exp [Q(k)] — P(k), Imk >0,
= q(k) exp [Q(k)] — P(k), Imk < 0. (4.16)
A is analytic by construction in the domain of defini-
tion, and, as Im k — 0%, by (4.15),
At(k) — A~(k) = exp [Q~(K)J{v* (k)
x exp [QH(k) — O~(k)]
— [PH(k) — P~(k)]
x exp [—Q~(K)] — ¢~ (k)}
= exp [~ () {v(k)[1 — K(k)]
— f (k) — qk)}
=0,

since the term in square brackets is zero from (4.10).
Thus 4 is analytic for Im k¥ Z 0 and continuous for

T. G. RICHARDSON AND L. SIROVICH

Im k = 0. Hence it is analytic everywhere. In the limit
of k large, Q, P are both O(1/k) so that (4.16) gives
forimk >0

v(k) = P(k) exp [—Q(k)).

Taking the inverse Fourier transform, we have

@.17)

o) = - | e exp [-Q(0] dk, (418)
T J—
where the path of integration is parallel to and just
above the real line.

At this point the problem is essentially solved since
(4.18) can be put in (4.4) to give g for all (x,E).
However, it is natural to push the contour of (4.18) as
far as possible into the lower half-plane since the
solution for x > 0 is desired. In doing this, we also
split the solution into contributions from the point
and continuous spectra. First we continue P and Q
into the lower half-plane by means of (4.15) and find

_ 1 [® _geexp [—0(k)]
= L)e 1 — K(k)
x {P(k) + f(k) exp [Q(k)]} dk, (4.19)

where now the contour is just below the real axis,
passing through the origin, and P and Q are now
defined for Im & < 0.

We note again that the line L((1 + iw)/it, —o0 <
t < o0) is a cut for K(k) and L_ a cut for f(k). Also,
for the models under study, 1 — K has a single root,
kg, in the lower half-plane (see Appendix A). There-
fore, k, is a pole for (1 — K)~* and a branch point for
In (1 — K). The branch cut is taken between k, and oo
as indicated in Fig. 1. (One may easily show that the
origin is an essential singularity of X.)

Considering P, (4.14), and making use of the
contours indicated in Fig. 1, we find (in the following
we will take Im k& < 0, although the final results do
not depend on this)

P(k) = —f(K) exp O(K)
+ 35| yorewon -2, @
2mi JI_ t—k
where
U3 =50, — ().

Here f(t), and f(¢), signify that ¢ approaches L from
the right and left, as viewed in Fig. 1.
Using the same contours for Q, (4.13), we obtain

000 = —In (1 — K(K))
1 dt
+:5 [ o - xop 2

+In(ky — k). (4.21)
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k plane

Fic. 1. Complex k plane.
Then, defining
X(k) = exp ( J {In(1 — K)} -——), 4.22)

we have from (4.21)

exp (—Q)/(1 — K) = [X(k)(ko — )], (4.23)
On defining
N(k) = 4.29)
(4.19) becomes
_ 1 [" e N
v(x) = o Lme  — kXD dk. (4.25)

N and X are analytic except on L_ and the pole is
explicit. Therefore, the continuation of the contour
down into the lower half-plane yields

o(x) = — i[NCke)/ X(ko)le~™* 4+ (2m)
x L [k — k)KNRY X} dk, (4.26)

where the boldface curly brackets again indicate the
jump of the enclosed function across L_.

We defer discussion of the solution to the next
section and now specialize the above results to the
adiabatic and positive wave models.

Adiabatic Model
For this model

F1(B) = f3(8) = &1, fo(B) = —(13iw)&?,
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so that, from (4.8),

y = (1 + iw)iw.
Therefore, from (4.11) and (4.12) we have
Qe dt

Ky = o [ 0L
1+ iwd-ol + io — ikt
© 2
3Jw 1 + iw — ikt
© QN ( iw
k)= tgo(t
@) J; 1 + iw — ikt\l + iw &1
2
—(‘—ﬂ) dt (4.28)
31 + iw)

Here we have integrated out the &; and &, variables
and in (4.28)

ae =" f " QUENQUEEE) dE dés

= & + a(w)(1 + 3£)).
In these, Q(x)= (2n)texp (—x2/2) is the one-
dimensional Gaussian. It is clear from (4.27) that
K(—k) = K(k). (4.29)
In particular, if ¢ lies on the cut L of the function K,
K(1), = K(—1t).

From this and an obvious change of variable, we
obtain

X(—k) = exp (— 5:; L{ln (1 — K1)} t—i‘—k)

(4.30)

L, is the path indicated in Fig. 1 extending from the
origin to co.

From (4.29) it is clear that —k, is a root of the
dispersion relation 1 — K = 0 if k, is a root. There-
fore, as indicated in Fig. 1, —k, is a branch point of
In [1 — K(t)]. On making use of the contours indicated
in the upper half-plane of Fig. 1, we obtain in analogy
with (4.22),

exp [Q(K)] = —[X(—K)(k + koI™', (4.31)
and combining (4.22) and (4.31) gives
X(k)X(—k) = [1 — K(K)}/(K* — k). (4.32)
Inserting (4.31) into (4.24) gives
1 {f(9)} dt
Nty = 27ri L_ X(—=0)(t + ko)t — k) (4.33)
Positive Wave Model
We have
f1(B) = £(®) = 274, + £/J15), fo=0,
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and, from (4.8), y = 1. From (4.11) and (4.12),

[ ey
k=1 om(e+ v E
(4.34)
2
£ = f e (& + jl 3
__ 4
x &,24(8) T+ 7o (4.35)
In analogy with (4.30) and (4.31),
exp Q(k) = 1/ Y(k),
_ 1 — K(t), dt
Y(k) = exp (2mf log I k1 — k) (4.36)

since there is now no root to 1 — K = 0 in the upper
half-plane (see Appendix B). From (4.23)

X(k)Y(k) = (1 — K)/(ky — k). (4.37)
Finally, substitution into (4.24) gives
N(k) = — Uty dt (4.38)

2miJo- Y(t) t — k
Alternate Representation
The above results can be put in a somewhat simpler
form with the transformation
z = (1 + iw)fik.

This transformation takes L into the real axis [and
L_ into (0, c0)]. Under this transformation we also

have { f}— —(f ), where

J@) =10 =10
Here, as usual, f* and f~ signify the limits of f(z) as
z approaches the real axis from above and below,
respectively. Functions of z will in general be denoted
by tildes, e.g.,
R(z) = K(( + iw)/iz)
Adiabatic model: From (4. 29)

By _ oz 2
K(z) =  + i) f (t)t —
31 + iw) J- t—z ’ ’

Also from (4.28),
7@ = f ® Qe)tiootgs(t) + 30 + 2) 2
0 t—z
QA +iw)? 1+ iw
- f( )

- (4.40)
z iz

T. G. RICHARDSON AND L. SIROVICH

Next we define
PIRY )
£) = — (1 + iw)

wzyz

(4.41)

X(l + iw).
iz

Then, using contours of the type shown on Fig. 1,
one can show

X(z) = —exp (27” fw nfl — K@D , ) (4.42)

and also T

(4.43)
Then from (4.32)

X(Z)X(—‘Z) = —

12;- I?(z)(l + iw)2_ (4.44)

— 2z} iw

We see from (4.42) and (4.43) that £(z) and X(—2)
have cuts, respectively, on the positive and negative
real axis. Therefore, from (4.48) and the Plemelj
formulas, we may write

1+ iw)z © (1 — R@y dt
iw o (- —-z2Dt—1z
(4.45)

From (4.33) and (4.40) we find
o 1 (f() at
N = L X1ty + zo)(t - 2)

=_iw(1+iw)N(1-i.-iw)‘ (4.46)

V4 1z

The various jump quantities are now easily obtained:

(@) = 2miQD)tGiwtgy(t) + 3(* + 2)), (4.47)
iot® £ +2 )
A+ iw)? 31 + iw)/’
(4.48)
Returning to (4.26), we first recognize that v(x) =

u(x), the macroscopic velocity, for the adiabatic
model, and, then inserting (4.41) and (4.46), we find

a - K@) = 2mQ(t)t(

1+ iw N(zo) (1 + iw)x
u(x) = (lco)zz0 X(zy) exp (_ Zy )
_ _l_f exp [—(1 + iw)x/z] 1 + iw
27i Jo z — z, (iw)?z
N2\
dz, (4.4
<3 i @
where
N - ~ o
,Y> X’*Y (NH(X- = XD + YV — N)).

(4.50)

Downloaded 16 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



SOUND WAVE BOUNDARY VALUE PROBLEM. I

Then from (4.46) and (4.47)

S+ e Q(z)z . 2
W= = o g oo e + 3G + ),
4.51)
and from (4.45) and (4.48)
_ Q(2)z 22 1+iwz®+2
et 2z [z 1t e
¥ X(—2)(2" — z}) (iw (iw)* 3 )
(4.52)

Positive wave model: In analogy with the above
treatment, we write

1 (f J@) dt
e = 2aido Y() t—z (4.53)
_1 1 (" 1— Ko dt
X(z) . exp Py log P Ry Pa— (4.59)
5 1 [° 1 — Rt dr
P(2) = exp — - 4
(z) = exp 2mi f_wlogl — Rty t—2z’ (4.39)
with
7 = ot © Q(e)t
t—z

X [ﬁ(:‘ + 205 + 192 4 415t + 8)

1 [afw) 1
+
2(15)*( (15)*)

x (f* + (15} + 4 4 2015)h + 8)] dt, (4.56)

1—Kz)=1+ '+ 2315) b

30(1 +1w)foot—
+ 192 + 4(15)% + 8) dr. (4.57)
The jumps are now

f) = 21ri2§Q(z)z

X [ﬁ(z‘ +2015)82° + 1922 + 415) + 8)

1 (aw) 1
+ —_—
2(15)’*( 2 (15)‘*)

x (z* + (15828 4 422 + 2(15)z + 8)]’
(4.58)

Q(z)z
30(1 + iw)
+192% + 4(15)}z + 8). (4.59)
The identity analogous to (4.44) is
1- K21+ io
zZ— 2, iw

(A — R(z)) = 2mi (z* + 2015)%®

X)) = - ,  (4.60)
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and then

(1 — K(t)) dt

o Y(O)(t — z)t — 2z

Finally, inverting the transform (4.53), we have

1 1+ io ]V(zo) ( 1+ iw)x)
inzy X(z,) P Z

LJ
2mi Jo

11+

27w

) = ~ (4.61)

w(x) =
exp [—(1 + iw)x/z]1 + iw

Z— 2 iwz
@(z)\/\ dz, (4.62)
with (N/X) calculated as in (4.50) with
and N+ — N~ = (f2))/ (2)
P e 1+ io (4 — K(2)) 4.63)

io ¥)(z - zo)'

To study a hydrodynamic moment of g, it is, of course,
necessary to put (4.62) back into (4.3) and take the
appropriate moment. Our solution in the z variable
for both models has the same form as is found in
Refs. 12 and 22, while in the & variable it is similar to
that of Ref. 11.

5. ANALYSIS OF THE SOLUTION
Determination of g(x =0, £, < 0)

Adiabatic model: As a first step in the study of the
solution (4.49) we calculate the boundary value of the
distribution for incoming molecules by evaluating (4.4)
at x = 0 for §; < O with the appropriatef;, f;, and f;.
This gives

g(x = 09 51 < 0)

© 14+ iwé (1 + iw)s
=—| (1 > =T -7
J; [ + 3iw E;]u(S) exp[ & :Ids

2
1¢ (5.1)

YA
We demonstrate that (5.1) is bounded in the limit
&, — 0. By Watson’s Lemma we have

J;mu(s) exp (—'—(1 -!;Iiw)s) d

3 E”
1+ e u(0) + ——— it

where we use u(x) = u(0) + u (O)x + O(x) which is
demonstrated in Appendix B. Note that, unlike shear
problems, u'(0) exists—however, this is already
signaled by the continuity equation (3.5). Using (5.2)

~u'(0) + 0(&), (5.2)
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in (5.1), we find, since #(0) = 1, that

&+ &)

Jiw(l + iw) u (. (53

lim g(x = 0, ) = —

510

Positive wave model: Here we find that from (4.3)

g(x =06 <0) = — ?15 f’[1 + \/f;’:]w(s)

X exp [(—1-_—2—1—%] ds (5.49)

1

and in the limit for & small, by Watson’s lemma,

2 2

__@xs o

J30(1 + iw)

Comparing (5.3) and (5.5) with (3.25), we see that
the distribution will not be continuous at & =0
unless

wo(w) = &/ (0)/iw(l + iw)], adiabatic,

= (2/\/30)[w(0)/(1 + iw)], positive wave.
(5.6)

However, «, is fixed by (3.4a), and (5.6)is not satisfied.

Hence the distribution function is discontinuous at the
wall.

lim_g(x = 0,§)

§1-0

(5.5

Low Frequency Oscillations

Adiabatic model: We will consider the behavior of
the solution (4.49) as w — 0. The expansion of z; in
this case is given by (A.2). Now the point spectrum
contribution to (4.49) is

1+ iw N(zo) e (1+iw)z/2
(iw)zzo Y(Zo)

N(z,) is given by(4.40, 4.44), and using (A.2) we find
to first order

(%) = (5.7

s 1 QW (£ +2)
N(z")""zgﬁ H~two=0 3

dt + 0(°)

(5.8)

[where 1/22 = —(3/S)w? + O(w®)]. The dependence of
Xon v is indicated and from (4.4, 4.43)we observe
that it is well behaved at o = 0. Similarly X is
expanded using (4.45), (4.49), and we find

_ 1 @ Q)
X = z3(iw)? Jo X(—~t, 0 = 0)
X (—tz—;-—adt + O(®). (5.9)

Then (5.8), (5.9) give in (5.7)

u(x) = [1 + O(w)]e" M4/ (5.10)

T. G. RICHARDSON AND L. SIROVICH

The continuous spectrum contribution to (4.49) is
given by
o ,~(1+iw)x/zo : ¥
wey = — L [t i V),
2rido  z— 2z, (iw)z \X(z)/
(5.11)

From (4.40), (4.44) we find that to first order

1 (> Qnt (F+2) dt .
X(z)—zo o X(—1,0) 3 t—z+o(m)’

(5.12)
and

£(2) 1 © QO (P+2) dt

T 2wl X(—1,00 3 t—

+ O(w).
z
(5.13)
Therefore
1 1+ ioNz) _
z — z, (iw)’z X(2)

~14 o). 519
z

If we now take the jump of (5.14), it is seen to be of
O(w) since the O(1) term is analytic across the real
axis [while the O(w) term is not]. Hence in the limit,
for a fixed x,

u,(x) = O(w). (5.15)

Thus (5.10), (5.15) and the expansion of z, give

u(x, 1) = [1 + O(w)] exp {iw]t — (H)ix)
— 2(Ddw2x + O(w®x)} + O(w). (5.16)

Hence, for any fixed value of x and as w — 0, the
flow is governed not only by the plane wave (the
point spectrum) but actually by hydrodynamics, since
the amplitude of the plane wave is unity, i.e., (0) = 1
in the normalization.

Positive wave model: For this model, since we are
interested in the velocity moment u, it is necessary to
substitute the solution for w, (4.63), into (4.3) and
solve for u. Hence u will have a representation such as
(4.63) in terms of the point and continuous spectra,
and we again write

u = u,(x) 4 u,(x).

After some calculation, the contribution from the point
spectrum is found to be

. N(Z()L ® 'Q(El)
i0X(2e) J~o /2

ff + 2) El dfl e—(l+im)z/zo
\/15 51 - Zo

Uy(x) = —

X (51 + , (517
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and that of the continuous spectrum is

ulx) = f QLS + Bou(@)(E + 2)]

% exp (_ Q_ﬂﬂ@i‘) de,
&
1 fe Q&) & +2 —(1+io)z/ty
+ iw Jo \/2 (§1+ \/15 )513

1 (e 1 [N\,
% ( 27i f (z — z)(§1 — 2) \Y(Z)/
Nz 1
— —} d§
X(zo) (5, — Zo))
1 © Q&)
27Ti —o \/2 (51

@ —(1+zw)w/z

8+ 2\&
s )
U

b (2~ 26 — 2 \K@)

First consider the pole contribution for w small. The &,
integral behaves asymptotically as — 1/J/2 zy + O(o?).
The expansions of N(z,) and X(z,) follow from
(4.53), (4.56) and (4.59), (4.61) respectively. We find

(5.18)

¥ rw
N(zp) = _Z 9_(t)_t
2y Y@t
* [ﬁ(# + 2015 + 196 + 4(15)t 4 8)
U (a®) 1\ . o de
3 -— 15 4
2(15)1}( é)(t + (15)* + 4¢
+ 2015 + 8)] + 0(wd), (5.19)
and
- _ _1__ QN b
¥z iwz} ON Folt* + 2(15)"

+ 192 4 4(15)*: +8) t-i‘-”— + 0(@d). (5.20)
—z

Unlike the adiabatic model (5.17), «,(0) occurs to

first order in N(z,) [(5.19)]. Therefore, we must deter-

mine it to fix #, and u,. The condition for its deter-

mination is (3.4a), and so in the limit we have

1 =lim [u,(x = 0) + u(x = 0)].

As is easily seen by (5.17), (5.18), this is a linear equa-
tion in «,(0). However, it is unnecessary to solve for
it, since we observe that if

25(0) = 2//15,
by (5.19), (5.20)

N(zp)|R(zp) = 2biwzy + O(w),

1795

so that (5.17) to first order at x = 0 is
u,(x =0) =14 O(w).
Also we see that
N@)/X(2)] = O).
The remaining calculation is analogous to that of
(5.12)-(5.14) and need not be repeated. All contribu-
tions to u, are seen to be O(w). Therefore, altogether,
we have for this model
u(x, 1) = [1 + O(@)] exp {iw(z ~ @)2x)
— 1@ 0 + 0(w*x)} + O(w). (5.22)
Again for any fixed x and as w — 0, not only does the

plane wave dominate, but also hydrodynamics, since
the amplitude is unity.

(5.21)

Limit of x Large

Adiabatic model: For x large, the contribution from
the point spectrum is clear and is O(e %) where
Re ko(w) > O for w # 0, i.e., the decay is exponential.
Now consider the continuous spectrum. From (5.11)
and (4.50)-(4.52) this is

__ltio
“ = Garent
J’“’ exp [—(1 + iw)x/z — z%2]
X "
o X (2) X (2)X(—z)
z—2+—2— h(z) dz, (5.23)
3(z
where
h(z) = X (@)[1 + iw32g4(2)/ (2% + 2)]

+ (V)] [((0)*z — z)BI1 + iw2(222 + 1))
(z* + 2)]. (5.24)
The integral is of the form

I(x) =fwe—(l+iw)m/z—z2/2q(z) dz.
0

Set z = (1 + iw)}x}w and take the principal branch
of the cube root. The path can be taken as the real

axis again and
0 2
I(x) =f exp [—(1 + iw)%x§ (l + w—):l
0 w2
x qlzw)] 9= aw.
dw

The exponential has a maximum at w = 1, and by
Laplace’s formula, for x large, I(x)~ (2=/3)} x
exp [—2z21q(z,,), where

z,, = (1 + iw)bxd. (5.25)
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Therefore, (5.23) becomes

1+ iw
RN
. hza)
X o ] e R R (=)
Zm+2
3(zh, — ze .

If we keep all first-order terms for z,, large (x large),
we find

1 1 5
) =T b’ Eo ([ iz, ()

(iw)*3/3 Z — Zg\Zpm
AT+
- -——N—Q@——— a+ 4iw)), (5.26)
210 (2 — 20)
with
FH(0) = f‘” Qi liwtgo() + 3(* + 2)] di
o X(—1) (t+ zo)
Thus in the limit of large x the continuous spectrum,
being O(exp [—2x%]) by (5.25), (5.26), dominates the
point spectrum. This result was first obtained in Ref.
11 and in another context in Ref. 16. If one takes x
large as the hydrodynamic limit, then this result
contradicts hydrodynamic theory which predicts that
the point spectrum is dominant. Shortly we give a
proper definition of what is the hydrodynamic limit,
and this resolves the contradiction.

For the positive wave model, the same type of
argument may be given and a result similar to (5.26)
can be obtained. In view of the similarity a separate
analysis does not seem warranted.

(5.27)

Hydrodynamic limit: We now define the hydro-
dynamic limit to be

x'w’

RTY?

Here x’ is physical distance from the walls, (RT; S LIS
is the wavelength of the sound disturbance, and » is
the collision frequency. In dimensionless variables,

the normalization (2.2), we have that (5.28) is equiva-
lent to

fixed, »— oo.

(5.28)

xow fixed, w—0. (5.29)

The consequences of this limit given below should
serve as sufficient motivation for making this definition.
Let us consider the exponential behavior of the
point and continuous spectra under this limit. The
continuous spectrum for both models has the factor

exp [—2x}] = exp [~ $Hwx)}(1/w)}]

~exp [—3(1/w)}]. (5.30)

T. G. RICHARDSON AND L. SIROVICH

The point spectrum, on the other hand, is, by taking
the real part to first order,

exp [—2(B)twx] = exp [—2(}) (wx)w] = 0Q).
(5.31)

Clearly the point spectrum dominates and the hydro-
dynamic solution (5.16) or (5.22) results. It is of
interest to consider the sequence of limits

wmx fixed, w0, (5.32)

forn=1,2,3,---. By (530), (5.31) it is apparent
that the point spectrum will still dominate for
n — 2 < 2nf3,i.e., n < 6. Hence hydrodynamics re-
sults as long as

XKL 1job. (5.33)

Otherwise the continuous spectrum will appear as a
boundary layer at infinity at the order (5.33).

We refer to the change of dominance in the point
and continuous spectra as ‘“‘crossover.” Therefore,
condition (5.33) can be referred to as asymptotic
crossover, that is, for x < O(1/w®) the continuous
spectrum certainly dominates. It seems worthwhile
having a more precise criteria for crossover since
conceivably this might be measurable in an experi-
ment. The lead term of u, for the adiabatic model,
from (5.16), is

u,(x) ~ exp [—(Diox — 3(Dw?x). (5.34)

The continuous spectrum is calculated from (5.25),
(5.26), and we find, keeping all first-order terms,

4 () ~ — X3 €xp (——%xi) ( 1

.
<[ +3 0
345 + 30%) \x [ ok Ol
- l% [(bioxt + I]). (5.35)
X

To evaluate N+(c0), (5.27), in the limit of w small, we
have used the fact that

© Q)

2 4+ 2)dt = —5,
o X(—t,O)( +2)

(5.36)

which follows by expanding (4.44) for z large and
small. The explicit crossover is obtained from the

‘match of (5.34) and (5.35). Although «,(0) is not

known, its explicit form is not important since it will
be O(1).
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SOUND WAVE BOUNDARY VALUE PROBLEM. I

APPENDIX A: THE DISPERSION RELATIONS
Adiabatic Model
The dispersion relation is defined to be 1 — K =0
and is of a class that has been exhaustively studied in

Refs. 24 and 25. In particular the roots come in
pairs. For w small, we find

—ik = + Dbio[l — Zio + L{io)? + 0(@?)], (Al)
or, in the z variable,
1/z = F@lio[l — Lo + £2(i0)? + 0(@¥)]. (A2)

We denote the root in the fourth quadrant by +k,
(or +2zy). Using the methods of Ref. 24, one can
show that there are in fact only the two roots as given
above. Waves to the right and left are produced,
moving at the adiabatic speed to lowest order and
decaying in the direction of propagation. It is also
known?® that there exists a w, > 0 such that no
roots exists for w > w,. By arguments similar to
(3.8)~(3.10) it is possible to show that there is no root
ofImk=0,w #0.

Positive Wave Model
The dispersion relation for this model, from (4.34),
is
1= Q0u + 2094 + 192

+ 415 4 8] d1f(1 + iw — ikf) = 0, (A3)

or (4.58) in the z variable. For @ small we find the

root in the fourth quadrant
+ik = o[l — Ho + O(w?)]. (Ad)

This dispersion relation lacks the symmetry present
in the adiabatic model. We want to show that (A4)
is the only root of (A3). To carry this out, we study
wave solutions of (3.23), (3.24),

(1 +iw + s&)g = (Y& + 8[/15)w, (AS)

w= 12 + 8115, ). (A6)

Taking the inner product of (A5) with respect to g*
and separating real and imaginary parts, we find

o + s,(g, £:8) =0, (A7)

1+ 5,(g, &18) = [w]™ (A%)

Here s, and s; are the real and imaginary parts of s,
(g,g) = lgll?, and for convenience we have taken
lghl = 1. Hence, in particular [w] < 1. Equations
(A7), (A8) give

@f(L = [[w]?) = sy/s,. (A9)
By assuming w > O for definiteness, (A9) implies that
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admissible roots lie in the first or third quadrant. Now
consider (AS) for the limiting case w = 0. The
complex conjugate of (AS5) is

(1 — wig* +s*E:g* = (W*[2)(& + 8/15).  (A10)
Then (A10) multiplied by (A5), for v = 0, gives

lgl® + Is1 &1 81" + 25,1 181° = WI¥/2(¢, + &{/15)’,

and, taking the inner product of this with respect to 1,
we have

1+ |s]?16:gl1* + 25,(g, &18) = Iwl®. (AL

First suppose that (g, &g)=0. Then (All) is
satisfied only if s =0 and |w| =1 (or, trivially,
| £1g]|2 = 0, which implies g = 0). Secondly, if (g, £,g) #
0, by (A7) s; = 0 for @ = 0. It remains to show that
s, = 0 in that case. To do this, define

© Q)
s ={ =0,

-0l — Z

For z above and below the real axis (4 respectively)
the representation

—2°/2 mi *

fH2) =e*! [:l: —]e dt] (A12)
\/211' )

is known.?* Then the dispersion relation associated

with (AS5) is just (4.58) in the z variable, setting

s = —ik = (1 + iw)/z. This can be reduced in terms

of (A12) to

30(1 + io) + z[fE(@){z4 + 2(15)828 + 1922 + 4(15)%z
+ 8} + 22 4 2(15)%22 4 20z + 6(15)}] = 0. (A13)

Now as w — 0, z; — s,/|s|%. Thus any root z(w) of
(A13) approaches a real value since we have shown
that s; = 0 when w = 0, and by continuity this is true
in the limit, i.e., 5;,—~0 as v — 0. By (Al2) the
imaginary part of (A13), for w = 0, is found to be

7|Qm)te 7 12zP(z), (A14)
where

P@) = 2 + 20158 + 1928 + 4(15)z + 8. (A15)

(Al4) is zero if z =0, but then the real part of
(A13) is nonzero. We must check for zeros of P(z)
for z real. From (4.37) and (A3), P is seen to be the
integral of a nonnegative function and therefore
nonnegative. The stationary points of (Al5) are
found to be at —(15)}/2, —(15)}/2 & (7)}/2, and at the
minima (A15) is positive. Therefore, (A14) is never
zero unless z, — co, which implies s, = 0. Hence we
conclude that when w = 0, s = 0. Therefore, at least
for w small, (A4) is the only root of (A3).

Downloaded 16 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



1798

APPENDIX B: BOUNDEDNESS OF u'(0)
FOR THE ADIABATIC MODEL

That #'(0) ought to exist follows from the con-
tinuity equation (3.5), since it exists if and only if
p(0) does, and the latter must be bounded by physical
considerations. Differentiating (4.49) and evaluating at
x =0, we get

(1 + iw)® N(zo)

u'(0) = — —
(iw)*zg X(Zo)
(1 + iw)? 1 1 /Fe)\
Goy2mi b G — 29 2\ = BY
By (4.50)~(4.52) we see that
(N@)X(2)) = 0(2), (B2)

as z — 0. Therefore, the integrand of the integral in
(B1) is O(1/2) for z small and the integral does not
appear to exist. We demonstrate that (B2) is in fact
0O(z?) so that (BI) does exist.

We begin by Fourier-transforming the continuity
equation (3.5) in the z variable, (4.38), to give

uk(2)) = —z/(1 + iw) + [zio/(1 + iw)]p(k(2)).

(B3)
By (4.39)

u(k(2)) = (B4

———— (N(2)/X(2)),
= 0)( )2< (2)/X(2))

and in the limit of z small, by (5.2), (B4) or (B3) is
uk(2)) = —z/(1 + iw) + 0(2). (BS)

Therefore, we must have p(k(2)) = O(z) for (B3) to be
consistent with (B5). This suggests that we write

pk(2)) = 2[M(2) + R@)/(z — 2)X(z),  (B6)
where we suppose
_ m(t) dt
Mz) _L (=t + ko)t — k- (BT)

m(t) is to be determined, and we require that M be
bounded for z small, consistent with (B3). R is
analytic in the plane. The form (B6) only says that p
has the same singular behavior as u which follows
from (B3). Therefore, (B3), (B4), and (B6) give

z N(z2)
(z — zo)(iw)* X(2)
_ z %o [M(z) + R(2)]
= Tt 1tie (z — z2)X(z) @9

Evaluating the jump of (B8) across the positive real

T. G. RICHARDSON AND L. SIROVICH

axis, one finds that

_ __® \l+iw
m(t) = Q(t)t(goa) — ) L ®)
so that by (B2)
1 + zcof Q1)
T (i) o K= + z,)
12 dt
X (go(t) N iw)t — - (B10)

To determine R, observe that in (B8) the left-hand
side is O(1) for z large, (z — z))X(z) = O(1) so that
R = 0(1/z). Hence it is zero everywhere. Also note
that by (B10), M is bounded for z small. We thus have
with this construction of M that

&Z) PIURY (Z Zy)
o T
Now the jump in M is 0(2) for z small so that (B2)

is actually O(z?%). Therefore, the continuous spectrum
integral exists and #’(0) is bounded.

+( )Z

M)
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