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independent elements over the reals or 3" x 3"
elements over the complexes. It is thus a basis for all
3" x 3" matrices, in other words a complete matrix
algebra. While this algebra satisfies no simple com-
mutators or anticommutators, it satisfies the following
relations:

Oym, = wmQy, k> 1,
mem, = wlmm,, k>,
O = 0 lmQy, k<,
00 = 000, k>

Some of the triple terms such as 7, 7mymg equal mymymy ,
but this is not a general property of the algebra.
Thus, this algebra does not serve as a representation
for parastatistics.

If we write the series my, Qy, 7y, Qs, 73, O35, ",
7., O,, then, excluding the end factors, each entry
has the same commutation relations with its neigh-
bors; ie., mQ; = 0w Qym, Oy, = Wm0, -
This is essentially the mathematical structure behind
the fact that the dual transformation is an auto-
morphism. If we define a transformation partially by
D:imy— Q> mp— -+, —> Q, — ©(Q,) such that
&)= UX and D:A\A — B — A4, then ®(U) =
U and ®(Q,) = w'mU~? complete the auto-
morphism and preserve the commutation relations of
Q, with 7, and =, . The transformation given above
serves the general g-component model. In the 3-
component system, we have o™ = w? and U2 = U.

APPENDIX C

The critical energy E, can be determined by assum-
ing that the free energy is a differentiable function.
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This implies that f is differentiable with respect to its
argument. With k76 = 1, we have at high- and low-
temperatures, respectively,

Ee -2 2 10gy - LEW 3x/w)
99 fCxfuy 99
Eo _pdloga [l dBle) <r.
26  f(Bla) 06 S

The unknown function f’/f can be eliminated at the
critical point to obtain

e =-[{- 2 ) 161~ 1)

The derivatives taken with respect to 6 at the critical
temperature satisfy (x/u), = —(f/«),, so that

E.=¢ + ¢ — (¢, — 50)/\/‘1-
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The linearized Boltzmann equation is considered for steady-state oscillations. Denoting molecular
collision frequency by »(§) and writing v = O(§2) for & large, we show that solutions for x — o behave
like exp (—x*/3-21) This shows that the continuous spectra dominates hydrodynamics for all except the

rigid sphere or radial cutoff case (o = 1).

1. INTRODUCTION
It is a well-accepted fact and certainly no surprise
that the behavior of a gas near a wall is déscribed by
kinetic theory equations and not simply by fluid me-
chanical ones (at least under most conditions). Several
investigations'~® have indicated that flow far from a

boundary is also a nonhydrodynamical regime. We
are speaking, in particular, of the O(exp (—x%/))
falloff at large distances predicted in sound propaga-
tion> and shock structure! for constant molecular
collision frequencies and a somewhat more compli-
cated but still nonhydrodynamical falloff for velocity
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dependent collision frequencies recently shown in
Refs. 3 and 4.

The purpose of this investigation is to demonstrate
the effect of intermolecular collision frequency on
solutions of the linearized Boltzmann equation. We
will carry out our calculations in connection with a
problem in steady-state oscillations. However, the
results we obtain should be equally applicable to
other problems and to transport equations more
general than the Boltzmann equation. In view of the
somewhat heavy calculations, we give below an out-
line of our results and discuss them here rather than in
the next section.

A first result is that the collision frequency »(§) for
high speed molecules has a direct effect on the nature
of the solution. In fact, writing

»(€) = 0(&%) (1.1

for & large (for noncharged particles 0 < « < 1), we
find, for example, that the density p is given by

). (1.2)

This result has already been shown in an approximate
method for certain kinetic models.3-* Our demonstra-
tion is given within the framework of the linearized
Boltzmann equation itself.

For oscillations of frequency w, hydrodynamics
predicts that the falloff of oscillations at large distances
is given by

(3-g)
xz/sa

p=0(e

p = O(e—k(w):t) (13)

(where Rek >0, w # 0). From this we see that
hydrodynamic theory at large distances is small com-
pared to the Kinetic theory prediction except when
« = 1. Hence the region at infinity is a kinetic theory
boundary layer.

The region near a wall is intuitively, at least, a
free-flow regime; however, the region at infinity,
although containing particles not having undergone
collisions, is not a free-flow regime. We determine
(1.2) by a stationary exponent calculation of an inte-
gral. Examination of this shows that, for a fixed but
large value of x, the main contribution in the calcu-
lation comes from particles whose speed is & =
O(x'/3="). Now the free path of a particle moving
with a speed & is &/v; therefore, for fast particles, the
free path 1 = O(§%) by (1.1). Hence the main con-
tribution to the evaluation (1.2) comes from particles
having a free path

A= O(x(l—a)/(ii—a))'

Therefore, these particles for all values of « have
undergone many collisions.
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This raises an interesting point with regard to the
Chapman-Enskog procedure. There, it will be re-
called, it is assumed that spatial derivatives are slowly
varying with respect to the mean free path. It is, of
course, clear that the procedure is not uniform in the
velocity since the combination § - 0/0x occurs. Our
present investigation therefore demonstrates that, for
o < 1 and for certain regimes, § in this combination
cannot be regarded as small.

As a next point, we take up the question of where
classical hydrodynamics is valid. For low-frequency
phenomena, k(w) in (1.3) is O(w?). Comparing this
with (1.2), we can say that in the low-frequency limit
at least hydrodynamic theory is valid for

X << w—z[(:’—a’/(l—a)].
Therefore, only for o =1 (effectively rigid sphere
molecules) does the hydrodynamic region extend to
infinity.

2. STEADY-STATE OSCILLATIONS

The problem of steady-state oscillations in a half-
space has been discussed at length; the equation
governing this is

(wer+ 10+ & 53;) e, B =Kg,  (21)
where o is the frequency of oscillation and the
linearized Boltzmann operator has been split into the
difference K — », v being the molecular collision fre-
quency. A discussion of the spectra of the operator
(iw + £(8/0x) + » — K) has been given in Ref. 5.
In general, the spectra consists of point spectra and
a two-dimensional region of continuous spectra. For
(2.1), as is well known, only the outgoing distribution
g (& > 0) is in any way specified at x = 0. We will,
however, not really consider any specific boundary-
value problem. Formally we will regard the solution
as known and then, from this, seek properties of it.

Regarding the right-hand side of (2.1) as known, we
formally integrate and find

g(x, E) = H(E)g,(E) exp (:‘—t’—)—")

&
+ H(E) ﬁ fl (K)s, E)
1

X exp (——(v + iw)(x — s)) ds
&

— H(—&) j :i (Kg)(s, §)

—(v + iw)}x — 5)
&

X exp ( ) ds, (2.2)
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where H is the Heaviside function and g, (§) =
g (x =0, & > 0). Then, combining the last two terms

of (2.2), we obtain
gﬁ@ﬁ=m&mmnm(:ﬂiﬂﬁ)

1

+ (H(El)f:+ H(_&)f)];j(m)(s’ £)

—(v + im) |x — s[) ds
1€
= (Bg.)(x, §) + (WKg)x, §), (2.3)

where B and W represent the linear operators defined
through (2.3). Note that (2.3) reduces the problem to
one in integral equations; we will, however, not
pursue this line of investigation here. We now solve
for a moment of g, say the density

p(x) = (1, g)(x)
- f” - g(x, §)(2m) ¥ exp (—4&°) dE,

—a

xexp(

so that
p(x) = (1, Bg,)(x) + (1, WKg)(x). ~ (2.4)

It is known that the term (I, WKg)(x) contributes
point spectra as well as continuous spectra to the
solution. (1, Bg,)(x) contributes only continuous
spectra. Here we examine the latter effect on p(x) as x
becomes large.

As will be clear, our discussion will apply to both
normal and transverse oscillations, but for the sake of
simplicity we assume purely normal oscillations in
which case g = g(&, &). Then we write the integral as

1 r:ol2
(LB&Xﬂ——Qﬂ%L [ e

2 in]x
x“%_g_wn+1)ﬁw,
2 Eu
where u is the cosine of the polar angle and & = |§|.
Considering first the u integration, it is clear that the
exponential term involving u is a maximum when
p =1, since ¢ = [»(§) + iw]/§ is such that
larg ¢| < 37 — 9,6 > 0.
Under the transformation g = 1/(1 + p) this part of
the calculation is reduced to the Laplace integral

o 1 d
o J vg (5’ >___P__2
0 1+ p/(1 + p)

Watson’s lemma applies, giving the x integral asymp-
totically equal to (x — ©)

e"g,(&, DI(xe)™" + 0(x*c?)].
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Thus, we are left with

= £ (& 1)
@m)t o x[n(@) + o]

£ e+ ok
xexp( > : )dE.

(1, Bg)(x) ~

(2.5)
The stationary points of the exponential function

f(&5x) = =48 — (&) + iw]x/&
are given by

_ 1"(5)ox n v(€)y + iwx

—&, ; =z =0 (2.6)
0 0
and the second derivative is
fm@wn=3+5§in @7

0

Take £ to be a complex variable and expand g,(£, 1)
about the solution £, of (2.6); then, with (2.7) to
lowest order,the method of steepest descent gives

g.(&,, 1DE
[=fis (&, 01 x[0(E,) + iw]

To make (2.8) specific, we suppose that, for & large,
v has the asymptotic expansion

WE) = k& + 2V + O(&7F),

with 0 < « <1 and k, V, and B positive constants.
The case o = 1 corresponds to rigid sphere molecules
or radial cutoff. « = 0 gives a constant collision fre-
quency as in the Krook model equation. Then the
solution of (2.6) is, for x large, given by

£, = [(k + io)x]* + O("-P3),
— [(1 _ a)kx]l/w—z) + O(x(l—z)/(:i—a)), 0<a< I,

ef(;-u,;z)

(1, Bg,) ~ (2.8)

a =0,

=[(V + io)x]* + O(x"7), x=1
2.9)
Then for (2.7) we have
Jidéss x) = =3 + O(x*"%), o =0,
=3 4a+ 0x¥" 0<a<l,
= —3 + O(x~*"), a=1 (2.10)
and
(&5 %)
= —3[(k + iw)x]?f + O(x'*P/3), o =20,

= _%(3 — 1)([ . 1)(0:—1)/(3—a)(kx)2/(3—a)
+ O(x(z—:z)/(:k-z))’ 0<a< 1’
o= 1.

(2.11)

—(kx) + O(x%),
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f(&,; x) can be written compactly as
F(&, X) = =[x + foxd, "
X %(3 . o()(1 _ a)(a—l)/(s—a) + o(xz/(S—a)),
0<e <1, (2.12)
where the order term is more precisely given by (2.11).
It can be shown by using (2.9)~(2.12) that paths in the
complex plane can always be found such that the

method of steepest descent is valid, and that (2.8) is
then given as

(1, Bg,) ~ g(&os 1) .
[3—a+ du]
X exp {[kx + iwxéao]zm_“’

X %(3 —_ O()(l _ a)(a—l)/(ll—fl) + 0(x2/(3—a))}_

(2.13)

V4 o)t
l:l_a+6al(_+—;w)_i|
kx

where 4, is the Kronecker delta.
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Thus we observe that (1, Bg,)(x) behaves essentially
as exp (—ax¥®-), a > 0, for x large. This result,
for o = 0, was first obtained in Refs. 1 and 2 using
the Krook equation. For a > 0 the result was found
in Refs. 3 and 4 by using an approximate method
for kinetic models. Here we have demonstrated that
this result holds in general for the linearized Boltzmann
equation.

* The results given in this paper were found in the course of
research sponsored by the Office of Naval Research.
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The stochastic theory of quantum mechanics is further developed to include the problem of extended
rigid particles, thus allowing the introduction of spin. It is demonstrated that the stochastic equations for
the system’s center of mass give rise to a generalized Schrodinger equation for integral or half-integral
spin; in the particular case of spin 3, upon elimination of the internal variables, Pauli’s equation is
obtained. A formal simplified relativistic extension of the theory is worked out and shown to lead to
Dirac’s equation in the case of spin } and for a gyromagnetic ratio equal to 2; in the case of arbitrary
spin, the theory gives an equation of the Feynman-Gell-Mann type.

I. INTRODUCTION

In a series of papers' we have proposed an elemen-
tary theory for a classical particle subject to a random
interaction with its surroundings. In (I) it was shown
that such a stochastic theory contains as a particularly
simple case the quantum mechanics of a nonrelativ-
istic spinless particle under the action of an external
potential. In (II), (III), and (IV) we demonstrated
that the theory applies also to more general situations,
as, for example, the electromagnetic case, and to a
system of interacting particles; in particular, the two-
body problem was studied more closely. The aim of
this paper is to extend the theory to particles with
spin. With this purpose and following the line of
thought presented in the aforementioned papers, we
shall consider our stochastic particle as a spinning
rigid body. We are aware of the fact that such a model

is not fashionable, due to its inherent difficulties,? and
that more abstract and formal procedures, which
assign no classical analog to the spin variable, are
being preferred. Nevertheless, the introduction of
spinning rigid bodies has given lately a series of inter-
esting results, both in the study of electron spin in
particular®* and in connection with some attempts to
understand the nature of the quantum numbers of
elementary particles; two representative examples of
such attempts are given in Refs. 5 and 6.

To start with, we consider a system of stochastic
particles and apply to them the methods previously
developed. Upon introduction of the constraints de-
fining a rotating rigid body, the theory gives a Schro-
dinger equation, except for some additional terms due
both to the particle’s extension and to its spin. The
amplitude y is now a function of the center-of-mass
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