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The asymptotic evaluation of a wide class of multidimensional integrals occurring in mathematical
physics is considered. In this class are included integrals of the form

1

@mN f f  PE exp ik - x — a(k)r]dk.

A semiconstructive method is proven and certain classes of integrals are asymptotically evaluated. Ex-
amples involving problems in partial differential equations and a transport equation are given.

1. INTRODUCTION

It is often the case in mathematical physics that the
resolution of a problem reduces itself to the evaluation
of integrals. This is especially true in the case of linear
problems. In spite of this, formidable problems still
usually remain. Often the integrals one encounters do
not have representations in terms of familiar or, for
that matter, tabulated functions. In such cases one
tries to take advantage of the presence of large param-
eters in the integrand.! Techniques for exploiting the
presence of a single large parameter occurring in
l-dimensional integrands have been considered ex-
haustively in the literature.>~* These classical tech-
niques have also proven successful in a number of
cases involving multidimensional integrals,5~® but
progress there has not been as great. Generally
speaking, these methods represent the asymptotic
evaluation in terms of an evaluation at the stationary
point of a function. The location of the stationary
point of this exponent is, of course, not part of the
classical methods, and this part of the calculation
usually proves impossible except when only elementary
functions are involved.

In this paper, we develop a method for the asymp-
totic evaluation of integrals which avoids these
restrictions and difficulties. We consider integrals
over an arbitrary number of dimensions, containing
a number of parameters. In order to do this, we
naturally have to give up a certain amount of general-
ity. We do this by focusing on integrals which are
typical of a large class that occur in mathematical
physics. As the reader will see, the restrictions placed
on the integrand of the integrals under study are
typically the case in physical problems containing a
dissipative mechanism.

The method discussed in this paper has already
proven successful in a number of problems in gas
dynamics,'-?* magnetohydrodynamicsi»** and ki-
netic theory.!®:1” A general discussion for integrals
over one dimension has already been given.!

2. STATEMENT OF THE MAIN RESULT

To begin with, we consider integrals of the form

|
I= P f_ e xoWip(K) dk. (1)

[This is generalized below by Eq. (21).] Both k and x
denote N-dimensional vectors and dk represents the
N-space volume element. The integration may extend
over any part of N space. The infinite limits of inte-
gration are indicated only for simplicity; other limits
can be included in the support of p. The sole restriction
in this regard is that the region of integration include
the origin.
Without loss of generality we may take

ok)=0, k=0. (2)

o(k) is said to be admissible if it satisfies the following
five conditions:

(i) Reo =0,2>0,

(ii) 0, = 0, only if k = 0,

(i) o€ C,

(iv) in the neighborhood of the origin

o =if(k) + g(k) + O(k?),

where f and g are real, continuous, and homogeneous
degree one and two, respectively,

(v) g=0,o0nlyifk = 0.

Condition (i), which demands that —g, have a global
maximum, states that the system in question is stable,
and condition (i) then adds that it be dissipative.
Condition (iv) is obtained if ¢ € C3?, and is therefore
somewhat weaker. That the first order is pure imag-
inary and the second pure real is often a direct con-
sequence of the transformation properties of the
equations governing the system.,

For most purposes it suffices to place the following

1365

Downloaded 16 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/imp/copyright.jsp



1366 LAWRENCE

weak restriction on the function p(k):

i) [l f ol dk < M < oo.

[Actually, as will be clear, (vi) is stronger than neces-
sary, but we avoid such mathematical niceties.]

Main Result
If ¢ is admissible and p satisfies (vi), then 7, as given

by (1), can be written as

I = IO + 0*(t—%(N+l))’
where

10 — (2;)N f eik-x——if(k)t-y(k)tp(k) dk (3)

—0

and O*(1~?) represents a quantity such that

lim ##%0*(r?) =0

t—~ o

for any.small 6 > 0.
With the additional condition at the origin

(vii) p = po + O(k),

we obtain

I = (2 1)N Jw eik-x—if(k)t—-g(k)tdkpo + 0*(1-—;'(N+1))
T

—o0

or
I = IOPO + 0*(t——‘}(N+1)), (4)

where I° is defined through (4). We prove (3) and (4),
and an extension (21) and (22) in Sec. 3. In the re-
mainder of this section we comment on certain aspects
of the calculations involved in (3) and (4).

Before going further, it should be noted that the
main result is, in a sense, only semiconstructive. The
integral appearing in (3), and even the one in (4), can-
not generally be carried out in terms of elementary
functions. Even after taking into consideration the
homogeneity requirements on fand g [see (iv)], we are
left with an integral which cannot, in general, be
carried out. In Sec. 4, however, we carry out the full
integration in several important special cases.

So far, nothing has been said of the parameters x.
In fact, the error estimates in (3) and (4) are com-
pletely independent of x. This is another aspect of
the semiconstructive nature of the calculation. The
region of validity in x space of the calculation is the re-
striction to those x such that the integral of (3) or (4)
is large compared with the error estimate. Often this
region becomes apparent only after the completion
of the integration of the integrals in (3) or (4). We give
explicit examples of this in Sec. 4.
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In this same vein, we point out that it is conceivable
that the integral terms in (3) or (4) are less than, or of
the same order as, the error estimate for all values of
x. In such a case, the calculation as it stands only
represents an estimate for the integral /.

At this point, we mention an essential difference
between (3) and (4). In general, the modulus of the
error estimates in (3) and (4) are quite different. The
first form (3) only involves an expansion in terms of
the scales of the underlying operator leading to (1),
while (4) involves in addition an expansion of the
data of the problem. In other words, (3) leads to a
sharper result and, hence, may be used for significantly
shorter times. As an illustration, in gas dynamics,'®
(3) is valid for times large compared to the mean time
between molecular collision, while (4), in addition,
requires that the time be large compared with the time
taken by a sound wave to traverse the initial disturb-
ance.

In the remainder of this section, we indicate how
one can typically obtain the functions f(k) and g(k).
For many problems of mathematical physics, this
usually presents a simple calculation. The following
remarks are only meant to be formal.

Let us consider a problem which may be considered
as an initial-value problem. Consider

o _
ot

(5)

L is a linear operator and v belongs, say, to a Hilbert
space (perhaps finite). The problem, then, is to solve
(5), subject to specified initial data

v(t=0) =7

(6)

Further, let us assume that the problem has already
been Fourier transformed, i.e., L, v, and ¢° are to be
regarded as functions of k. Using formal manipula-
tions and inverting the transformations leads to the

following representation for the solution:

1 e ikex i1
v = Py f_we kexgty® k. @)
The representation of e~ itself involves a number of
problems, but, generally speaking, it can be repre-
sented in terms of the spectrum of L. Therefore, a
typical term which arises out of the point spectrum of
L has the form

1 f eik-x+uk)tp(k) dk. (8)

(27)’)N —C

The function p(k) is partly due to the operator and
partly due to the initial data. The function A(k) is an
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eigenvalue of L, i.e., there exists a ¢ such that
Lg = Aq.

The above integral is, of course, of the form I in Eq.
(1). To employ the main result it is, of course, neces-
sary to prove A admissible. Aside from this, it is
important to note the way in which A(k) arises. Now,
although 4 may be quite difficult to obtain, its ex~
pansion is in practice much simpler to obtain. For-
mally, one writes

L=Lo+kL1+k2L2+"'
and
A= o+ Kdy 4 Koy 4

where the L; (known) and the 1, are homogeneous of
degree zero in k. A number of results and methods for
such perturbation series for L are discussed in the
literature.18:19

Finally, although it is not our intention here to con-
sider the initial-value problem in any detail, one
further point is worth mentioning. This has to do with
the solution to (5) and (6), say, in the form (7).
Suppose there exists a discrete eigenvalue of L, 4, such
that its real part for k = 0 is greater than any other
part of the specttum of L. Clearly, then, for r— o
the major contribution to (7) is given by (8), and by
our main result this has the form (3) or (4).

3. PROOF OF THE MAIN RESULT AND ITS
GENERALIZATION

We require the following lemma in our proof.

Lemma: For o(k) admissible there exists a gy > 0
and an €; > 0, such that

%)
for all [k| > € and any & > 0 such that ¢ < ¢,.

Proof: Since g is homogeneous of degree two

g(k) = k’g(e),

with

e = k/k. (10)
From the continuity of g and condition (v) we can also
write

gJI 2 g(e) 2 gm > 07

with g,; and g,, the maximum and minimum, respec-
tively.

From condition (iv),

oy — %kzgm > %kz m + 0(k3)
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Hence, there exists an ¢, > 0 such that
O’r—%kz m>Os ‘k|<€0

In fact, let €, be the maximum such value.

Next from the continuity of o, and the dissipative
condition (ii), we have that o, is bounded away from
zero if |k| is bounded away from zero. Therefore, for
all &, > 0, we have

7, > Glky) = inf o,(k) > 0.
|k

| >ko

(11)

(12)
Then there exists an € such that

0<é<eg
and

G(ky) > 32
For, if this were not true, there would exist a point set
{k,} such that

O'(kz) < %gmeia

where {€,} is a sequence converging to zero. From (11),
lk,| > €, for all i. But then this contradicts (12).
Denote the largest such é < ¢, by ;. Then from (11)

we have
122
Gr 2€ gm > 0

for all k| > € and € < ¢, . Setting g, = ig,., we have
proven the lemma.

Proof of the Main Result

From condition (iv) we have

k

which may be zero. In any case, we set

. |o—if—g
lim ” = < o,
k| -0

c=1+4+c¢.
There exists an €, > 0 such that

lo —if —gl < c kP (13)

for
k| < €.
Next, we choose
€3 = min (€;, €,),
where €, is the same as that of the lemma. Then, for
€ < €3 we decompose the integral (1) as follows:

(27T)NI —_ f eik-x-fr(k)tp(k) dk

k| =<

+ “lk] <€(eik-x—a(k)t — eik-x—-—ift—gt)p(k) dk

o

+ “lkk eik-x—z‘f(k)t—y(k)tp(k) dk
o €

=1, 4+ 1, +I,.
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Then, since
1N — L] < |1 + |1,

we need only estimate the first two integrals. Using (9)
of the lemma, we easily have

I < f o 1| dk
k| =€

=e—vofzt( et ol dk < Me (14)
k| e

v

Next, writing

12 =J“k| eik-x—ift—at(e(y+if—a)t _ ])P dk
<€

and taking absolute values, we have
Ll < M| [0 — 1| dk.
k| <€

Using a well-known inequality and Eq. (13), we obtain

11,] € McQyt f P N2
1]

eceStMCQ Vt€N+3
N+3
where Q, is the surface area of the unit sphere in N-

dimensions.*®
We now set

3
3, ect
K€N+ ter‘f f’

(15)

~$(1-8)
b

(16)

e=1
where & > 0 is small and

> 6;2/(1—5)'

(17)
With this choice of €, Eq. (13) becomes
L) < Me™
and (15) becomes*
] < Kec/(z?.-'—ﬂa)/t%uv+1)—%éuv+1) — 0#(,—%(N+1))_ (18)

This proves the main result (3), since the extension of
the limits of integration to co in I adds an asymptoti-
cally small contribution.

It is clear from the above proof that condition (vii)
immediately leads to (4). In fact, it seems that a many-
term expansion of p(k) leads to an asymptotic ex-
pansion. There would be no value in this, since,if
p = O(k), a simple estimate on [ shows that I, =
O*(+-#¥+1) je., it is of the same order as already
neglected terms. Therefore, if p(k) satisfies (vii), Eq.
(4) is obtained, i.e.,

I=1%, + 0*(,—%(N+1))’

SIROVICH

where I° is the same as defined through (4):

I(x, ) = f ek n—iti=at (19)

@)
For reasons which are discussed in the next section, it
is sometimes best not to use the expansion of p(k) even
if p satisfies (vii). In these cases, we can write, instead
of (3),
I=1°% p(x) + 0*(t—%(N+1)), (20)
where??

p(x) = f e *%(k) dk.

The asterisk in the first term of (20) denotes the N-
dimensional spatial convolution product.

An examination of the proof of the main result
given in this section shows that it depends in no
essential way on the form ¢™*, in which the vector x
appears. In fact, if this exponential is replaced by any
function F(x, k) which is uniformly bounded, no
alteration in the proof is necessary. Hence, writing

(viii) [F(x, k)| < o uniformly,

we extend our main result.

Extension of the Main Result

Consider the integral

P S —alit
rec f Fx, e (k) dk, (21

with o admissible, p satisfying (vi), and F satisfying
(viii). Then, for large ¢, we have

I =f F(X, k)e—if(k)t-a(k)tp(k) dk + 0*(t—§(N+1))'
(22)

If p satisfies (vii), an expression similar to (4) may
also be written.

It is clear that the above generalization is quite ex-
tensive, and we have chosen to focus attention on
Fourier transform type integrals (1) only because of
their natural importance.

4. SPECIAL CASES AND EXTENSIONS
Case (1):
N
o~ia-k+ 3 B kk;
1

1, =

in the neighborhood of the origin: If, in addition
to being admissible, we have also that ¢ has two
continuous derivatives at the origin, then we may
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conclude that

f=0a-k,
N
g= 2 Bikik; s
i,=1

where a« is a real constant vector and P is a real,
symmetric, positive-definite matrix of order N. In this
case, [° takes the form

10 _ 1 fw eik-(X—ut)—k‘B-kt dk, (23)

TN e

which may be integrated immediately and gives

10 = (41”)—%Ne—-(x—at)-p“-(x~at)/4t/(det p)i (24)

In the above forms, the dot product denotes the inner
product in Euclidean N space.

Now, having the form (24) for I, we can, in this
case, give a precise characterization to the region in
x space for which the asymptotic approximation is
valid. Writing, for example,

] =1%, + 0*(,—!(N+1))’
we clearly have that x must be such that

(x—at):B1.(x—at)=o0(tInt). (25)

Using the properties of @, a cruder estimate is that
|x — at| = o((t In t)}¥). Outside these regions we have
the estimate that J = O*(r~3V-11),

Case (2): 1-Dimensional Integrals: For N = 1,k =
k and the admissibility condition (iv) is clearly equiv-
alent to o having two derivatives at the origin. In
this case I° [Eq. (24)]has the form

I° (N=1)= e"(m_“t)2/4pt/(4ﬂﬂt)%. (26)

The range of validity is still given by (25). In terms of
the integral®?

J = L e—a(k)t+ikm dk

- bl
21

we can write

3 =14 0¥ . (27)

We now consider the next term in the asymptotic
development of J or I. To accomplish this, we assume
that o(k) satisfies

(iv'): o = iak + Bk* — iyk® + O(k%)

instead of (iv). (f > 0and « and y real.) The condition
(13) is now replaced by

lo — iok — Bk® + iyk®| < ck*, |k| < €. (28)

1369

Also, instead of condition (vii), we now let p(k) be
such that

(vii'): p = py + prk + O(K?).

Then, using (iv’) and repeating an argument analogous
to that given in the previous section, we can directly
prove the following:

-1
2
Equivalently, instead of (27) we can write

1= 3+ 0%}
_ (" iRa—ati=BRt I gl 4 0*(t‘%). (30)

27 )

® 3
eik(w—at)—/ik’t+iyk3tp(k) dk + 0*(t—?2')' (29)

—o0

Finally, with the additional requirement (vii") on p(k),
we can write

l=(p,,_

where 3° is defined through (30). On setting
k=mn—ip/3y

in 3°, we can reduce it to a standard representation of
the Airy function Ai (x), and we obtain?

2 %
Aj (Fo gt (3
=3yt ' ((3yt)* + (3;»)*) (32

This, in turn, may be expanded for ¢ large and we
obtain®

—(2—at)?/4pt
~0 - e x—a [l

(4mpot

L i)au o*rh,  @n
o Ox

eﬂ(z—ut)/swzp“t/zw’

1

O 3(x — )
43

(x — at)®
8%
It is also clear that the range of validity is only mar-

ginally extended. That is, the form in (33) holds in the
basically parabolic region

+ Iy ] (33)

(x —at) = o(tlny),

and outside this region we have the estimate O*(t~%).
The further development for, say, J may be con-
tinued in this way. Further differentiability conditions
on ¢ at the origin have to be assumed, and their series
development substituted. It is clear that the exact
evaluation of 3° given by (32) was fortuitous and that
the integrals in the general case cannot be expected to
have known forms. However, as (33) already indicates,
such an evaluation is not really necessary and a direct
(second) asymptotic analysis of §° for t — co could
have to be performed. This is also true in the general
case, although we do not pursue this line of study.
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The same remarks are also valid in the N-dimen-
sional case. In general, the estimate O*(t~3¥+1) may
be improved upon by assuming further differentiability
conditions on o, and the development of I may be
obtained. Since this is straightforward and, perhaps,
of only limited value, we do not pursue it further.
Finally, we remark on the distinction between using
the development of p(k) directly in I and, on the
other hand, leaving this intact and only developing J in

I'=13(x, 1) * p(x).

This distinction is important and even crucial in
certain problems. Referring back to the formal prob-
lem posed by (5)-(8) in Sec. 2, we recognize that, in
expanding in small k, two distinct expansions are in
play. There is, of course, the expansion of the under-
lying operator, but there is also the expansion of the
data of the problem. In general, this involves two
entirely different time scales. For example, in
problems involving gas dynamics, the expansion of the
operator is tantamount to considering times large
compared to the time between molecular collisions
(which is extremely small under ordinary conditions).
If the initial data is also expanded, the circumstances
become more involved and the time it takes a sound-
wave to traverse the data comes into play. This latter
quantity can be quite large, and the utility of the
resulting asymptotic development becomes quite
limited. These remarks manifest themselves in the
modulus of the error term O*(:~*W+1), The constant
that is implicit in this symbol can be radically different
under the two different expansions. This is already
clear in (31), where the presence of p; can signal that ¢
must be extremely large for the development to be
valid. As a practical rule, one may say that only that
portion of p(k) arising from the underlying operator
should be expanded and that expanding the remaining
portion can badly inhibit the usefulness of the asymp-
totic development.

The above remarks are applicable without modi-
fication to the N-space case.

Case (3): o = o(]k]). In a number of applications
(see, e.g., Refs. 12 and 13), due to the isotropy of the
underlying equations, an admissible ¢ is a function of
only k = |k|. Although o is not differentiable in this
case, the admissibility condition immediately leads to

o = iak + Bk* + O(K®)

with « real and 8 > 0. As shown in the previous dis-
cussion, when N = 1, the calculation is straight-
forward. This important case, however, in more than

SIROVICH

one dimension is far from trivial, and we now consider
the case N > 2 in some detail.

We first note that the estimate of the error term may
be greatly improved. To accomplish this, we can start
with [ itself, (1) or, alternatively, we may consider

J\e—a(klﬂ-ik'x dk' (34)

i Qm¥
since

I = 3(x, 1) * p(x).

The limits of integration in (34) have been purposely
left out since, if convergence problems appear with
infinite limits, we may take the limits of integration in
(34) to be finite without loss of generality. [We have
already demonstrated through (14) that the contri-
bution from outside the neighborhood of the origin is
exponentially small in time, uniformly in x.%%}

The integration of (34) can be carried out most
easily by introducing spherical coordinates in N-space.
Integrating over all angles but the polar angle yields

J = V—-l
@mY

where

f d{)e'zknnso A 2 9 46 e——ct(k)th\'ai (H(,

kZ0

Q, = 2ntT(3k) (35)

is the area of unit sphere in k space. The remaining
angular integration can be carried in terms of Bessel
functions and yields,?

r1~%N
(2 )éz\f
We now focus attention on

f J;N_l(kr)klwe‘””"” dk.

5 — %N—ls — (zw)—i?\’f ) J%N_l(kr)k‘lfx\?e—a(k)t dk.
k=0
(36)

As mentioned before,?® the upper limit of integration
may be taken to be finite if convergence difficulties
appear with infinite limits of integration.

Since
Wl L1,

the integral § clearly falls under the hypothesis (viii)
of the extension of the main result and we may apply
(22). The modification due to the presence of k¥ is, of
course, of no consequence. Therefore, writing

v20,

%o = Qny W f Tyys(kr)e == g (37)
]

and using the arguments leading to (18), we can easily
show that

oX Ny, (38)

3”30+
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As preparation for the evaluation of §,, we first

express the Hankel expansion of the Bessel function®:

J(x) = (;f;)%

P
8 (éo(—')m(”’ 2m)(2x)7" + o(!xl‘“"z))
+ sin (x — }(2» + 1))

Q
X (Z (= D™, 2m + 1)(2x)~*m"

+ OZ:I‘W‘“))]

If » is of half-odd-integer order (N = 3, 5, - - *), these
series are known to terminate with

P=[}2v— D] 20,
0= [2v—-3)]20, (40)

i.e., with the limits (40), the finite expansions in (39)
are exact. In this case, N odd, the integration may be
carried out explicitly and, in fact, if N = 3, then

30 (N = 3)
= [16r5(Btm)iT?
X [(r + at)e” " B erfe (i(r + at)[2(81)F)
+ (r — af)e™ = Bterfe (i(at — P)2(BOH]. (A1)

The argument in the first expression of the bracket is
large, and, on performing the required asymptotic

expansion, we find
_(r—xt)2/ (at — r
0 (r—at)?/48t erfc (( ))

30 (N = 3) =
+ 0. (42

16/} (Btm)?
{In this last expression, r should be regarded as being
r > O(1). For r small the entire expression (36) will be
shown below to be of negligible order.]

The general case for N odd may be obtained, but we
do not give it, since it is tedious to express and, as we
will shortly see, it carries already neglected orders.
For N even, no explicit integration seems to be avail-
able.?” At this point of the analysis, we abandon the
search for an explicit calculation of (37), and perform
a second asymptotic analysis. As will be seen, this is
at no expense to the O*(+-13~1) estimate, and we
find an explicit calculation independently of the di-
mension N.

The asymptotic analysis of §, (37), under the con-
dition r = o(t), is fairly straightforward and we merely
quote the result:

3 (—iMT(N — 1) N1
F(%N)W%Nz"v—-laxv tN

[cos x — 32 + D)

(39)

r— ot

, r=o(t).

1371

It is, therefore, clear that, for all N > 2, this is already
small, compared with neglected terms. In what follows,
therefore, we may restrict attention to

r> 0(@).

Using this and returning to J in (34) and (36), we see
the superiority of the estimate (38) over the estimate
given by (4).

As a first step in our evaluation of ¥,, we demon-
strate that

% 1 O(t~?)
*T mty L

with p such that O(+7?) = O*(t?) is of an already
neglected order. To avoid carrying unimportant con-

stants in our estimates, we consider instead O(ffo).
Then, clearly,

Pt
0(%) Sf JQN_l(kr)k%N dk.
0

Jpya(kr)IN giet=p¥ g

The integral on the right may be explicitly evaluated?:

0(Go) < r =) gy (rfe0).

In view of the fact that r > O(¢) and p < 1, we can
asymptotically evaluate the Bessel function and find
O(dy) < (o),
which is, clearly, of an already neglected order. We

next consider

A o

1 N —iakt—pK®
8—8=——f pna(kr kAN tokt =B g
v Qm Jown hv-a(kr)k e

From the limits of integration and the condition on r,
kr is large, and we therefore write

Jyv_alkr) = Qfmkr)t cos (kr — }(N — 1)m)

+ O(lkr| D).
Hence, we consider

o«

1
A= (Zw)é‘v J;(H) [J&N_l(kr)

3
_ (-%) cos (kr — J(N — 1)77)] KN giakt—pR% g

TKY

Proceeding as before, we have

< L, fm k%(zv—s)e—ﬁtk? dk

—D

L_ <o,

< %ti(xv—l) -

_r

which is also of a neglected order. Finally, it only
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remains for us to consider

1 J-ou—v)kw 7\t
et o (wkr)

x cos (kr — ¥(N — l)ﬂ)e—iakt-ﬂkat dk,
from which we directly obtain
0B < [r%t%p(zv+1)]-1

and which again is of negligible order. We have,
therefore, demonstrated that

f ?t(N—l) PR —iakt

é(zﬂ)i(N+1)
x cos (kr — N — 1)7) dk + 0*(~ V7). (43)

The resulting integral may now be carried out in terms
of confluent hypergeometric functions® and, due to
their special form in our case, these may in turn be
written as parabolic cylinder functions.*® Choosing
these latter forms, we find that

TN + 1)TEN + 3))2tw+y
ré(Zﬂ)é(N‘H)Z(ﬂt)i(N"‘”F(%)

—~3(N+1) (%;t—)&_r))

i (N—1) 7 (rtat)?/8pt i(r + at))]
+ e D_ (
HN+1) ) ﬂt)é

&o =

% {:e-—i‘i(N—l)r——(r——at)z/Wt D

+ O*(t iV, (44)
If N is set equal to 3 in (44), we get our previous result
(42). Noting that the argument of the second term is
large, and using the asymptotic estimate®!

D(Z) = 721 + 0(Z7?), largZ| <

we conclude that this term is of negligible order.
Therefore, we finaily have

(ri‘N—l)J

(l(N + 1))F(1(N + 3))e—i‘z(N—-l);r—(r—at)zlsﬂt
2]-‘(%)"%(2‘#2/3&}“\”—1)
ot — 7 )) *(~dN-1
x D_ + 0¥, (45)
1}<zv+1)( (2/3t)%

where we have used (38) to replace §, by &. In the
interest of completeness, we note that, if N is odd,
$#(N + 1) is integer and the following formula is of
the value® (n integer)

D@ =} L dz"n[e%Z’erfc(jzi)].

For N even, the followmg may be useful®?:

D_y(Z) = w1z Ky (12D — K1(329)

477’
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and

3,2 d 2
vD, (Z) = ¢ 1Z = [t2' D (2)],

where the K|, refer to the modified Bessel functions.

We once again note from (45) that the estimate (38)
is superior to (3) and (4) (except in the case N = 2,
when it gives the same result). Also, note that the
range of validity may be obtained from (45). Without
going into details, we further note that, since D, =
O(1) in the neighborhood of the origin, (45) is valid
for at least

|r — at] = O(}).

Before ending this section, we add a cautionary
example. Consider the following integral:

b
f(t) =f% e——t(l—e‘ )dk

In this case, ¢ = 1 — e in the interval (—}w, }»)
certainly satisfies all the admissibility conditions.
Then, applying the main result, we obtain

ft) = @ajt)ted + 0*().

Hence, the result of the asymptotic analysis is less than
the error estimate. This signals the failure of the main
result for this integral, as it should, since standard
methods show that f(f) ~ 2mie~t.

5. APPLICATIONS

We consider three applications in the following.
These have been chosen to demonstrate the range of
the main result, rather than for their physical impor-
tance. Applications to a number of specific physical
problems have already been cited. 1017

Although in each problem below a mathematically
rigorous analysis may be given, our discussion is only
meant to be formal.

Problem 1: Consider the following initial-value
problem?3:

a2
(o

s (t = 0) = §(x),

—VE_ v %)s(x, f) =0,

BL=0)_ vrs),
ot

(46)
with the constant x4 > 0. The partial differential
equation (46) is probably the simplest one demonstrat-
ing wave propagation and diffusion. Introducing the
Fourier transform

s(k, £) =f°° ~xg(x f) dx,
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we see that the solution to (46) is

(2 l)Nf eik-X(ea+t + ea_t) dk,
k3 —00

s(x, 1) =
where
o* = J—pk® & (k' — 41
Both ¢t and ¢~ satisfy the conditions of admissibility
and, at the origin,

ot = ik — buk? + O(KY).

The main result is, therefore, applicable. In particular,
the results of Case (2) of the previous section apply.
On using (45), we have, for N > 2,

_ TGN + D))LHEN + 3))e—ii(N—1),_(r_”z/4ut
= 2r§(N+1)F(%)("2Mt)i(N+1)

X D_gne1) (i((t/;);)) + 0¥V,

s(x, 1)

and from (26), for N =1,

s(x, 1) = e—(:c—t)’/2ut/(2ﬂ_[ut)i + e—(:c-+—t)’/2ut/(2"”t)§
+ O*(r™).

Problem 2: Consider the following transport equa-
tion34.35; :

(§t+ E-V+ v(&))f
= v(E)( f )yt ts ds) / ( f Qmyte ey d&)

= (v/v)B(x, 1) = Kf. (47)

The collision frequency » is a positive, monotonically
increasing function of the magnitude of the molecular
velocity § = (&;, &;, &). We attempt to solve (47)
in an unbounded domain and subject to the initial
data

St =0) = d(x). (48)

We first consider the Fourier-transformed problem

<2+ik.§+v—K)f=0,

ot
fi=0=1. (49)
Next, writing

L=—ik-E—v+ K,

we write the Eq. (49) as

1373

Following the formalism given in Sec. 2, the solution
to Eqs. (49) is

[k, E 1) = e (50)

The operator 'K is clearly a projector and, hence,
v — K is nonpositive. Further, we may prove that L
has just one eigenvalue A(k) and that it satisfies all the
admissibility conditions. (For k sufficiently large this
eigenvalue may disappear.) In addition, the operator
L has a continuous spectrum which covers a 2-
dimensional region to the left of

Re o = »(0)

in the complex o plane.®s (For » constant, this region
degenerates to a single line Re 0 = —».) Denoting
this region by C(k) and an element of area in the com-
plex ¢ plane by ds, we can write (50) in the form

F 1) = gt k) + f e*'a(0, &, K) ds, (51)
Ck)

where the eigenfunction g, and the “improper eigen-
function” g are still to be determined. The eigenvalue
determination leads to

(A+ik-E+ v)go = Kgo.

On using the perturbation analysis outlined in Sec. 2,
we easily find
A= —ak®+ O(KY),

= ()

g = f + O(k), B = const.

Since C(k) lies to the left of Re ¢ = —»(0), the
contribution from the continuous spectrum is asymp-
totically small when compared with the point spectrum
contribution. Therefore, for large times, we may
neglect the integral term on the right of (51). On in-
verting the Fourier transforms and making use of the
main result, we find

g
( 3 3 t) ~
S8 2y

with

and

o0

J‘ e—akzt+ik-x dk
—aon

and, from the evaluation given in (24),

F(x, E, 1) ~ Be™" 1Y (4amp)?

Finally, to calculate the constant 8, we note that (47)
leads to the continuity equation and, hence, the total
number of particles at the initial instant is conserved.
Carrying out the required integration, we find that
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g = 1 and, therefore,
F(%, B, 1) ~ e Y damt)?.

Problem 3: Consider the following 3 problems:

ow d°w
_5; = 5; s W (t = 0) = (S(X), (523)
0 0° %\
— — — — — 1w = ()d(x), 52b
(at = axz)w 00G),  (52b)
d*w  d*w  ow ow
—_— — — — 0, —(t = 0 = (S >
x| or 5 =0 =0

w(t=0)=0. (5)

Using transform techniques, we can easily analyze
each of these and make them fall under the hypothesis
leading to the main. result. In fact, for  — oo, each
problem leads to the same asymptotic result:

w = e~"4/(4nt)t 4 O*(1).

[Problem (52b), of course, should be considered in the
complete (x, t) plane; for < 0, however, the solution
is exponentially small.]

Each of the problems (52) can, of course, be exactly
solved; however, this is not the point. Equations (52)
represent the three basic types of partial differential
equations of second order. It is, of course, amusing
that all three have the same asymptotic solution, but
of more importance is the fact that the main result and
the methods associated with it can be used independ-
ently of the type of partial differential equation.
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