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We examine consequences of image-forming inhomogeneity in the form of a point-spread function that changes
with position on the image plane. The familiar self-replicating sinusoids, which a homogeneous system simply
multiplies by its spatial modulation-transfer function, generalize to eigenfunctions, which the system multiplies by
eigenvalues. We give a way to calculate the eigenfunctions and eigenvalues from the variable point-spread
function. We illustrate this with data from the visual system and show that these lead to a discrete set of most-

sensitive eigenfunctions, which we construct.

1. INTRODUCTION

Analyses of vision must include some consideration of the
consequences of retinal inhomogeneity. The intercone
spacing, the interganglion cell distances, and therefore the
natural space scale of the retina are smallest in the fovea and
increase by large factors in the periphery and far periphery
of the retina. Such inhomogeneity has yet to be taken into
account in theories of spatial vision. This paper presents a
theory of linear, spatially inhomogeneous transformations,
motivated by the problem of analyzing the effects of retinal
inhomogeneity.

In general we show new features that emerge in the perfor-
mance of any imaging system that is inhomogeneous in the
sense that its point-spread function changes in shape at
different places on the image plane. In a system for which
this inhomogeneity is important it is no longer possible to
characterize imaging performance in terms of the usual spa-
tial modulation-transfer function, which simply attenuates
sine waves according to their spatial frequency.!-® Howev-
er, we will show how one still may find characteristic object
patterns that reappear as image patterns unaltered except
in contrast, and we will show how that contrast change may
be calculated. Unlike the case of a homogeneous imaging
system, we will see that such characteristic patterns may
form a discrete set. The application to the human visual
system is presented in Sections 4 and 5.

The sort of transformation explored here is given by

r(x) = j dyKix, vle(y) (1)

between the object’s distribution of brightness e(y) at points
y (in two dimensions for simplicity) and an image whose
intensity is r(x) at corresponding points x. The transforma-
tion kernel (or point-spread function) K{x, y} specifies how
the intensity at each point of the input is weighted at each
point of the output. A transformation of the type of Eq. (1)
is linear in the sense that it respects superposition: Weight-
ed and summed inputs yield corresponding weighted and
summed outputs: for constants a and b,
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e, (y) — ri(x),
ex(y) = ro(X) : aey(y) + bey(y) — ar;(x) + bry(x). (2)

Under mild and reasonable conditions on K, transforma-
tions of the type of Eq. (1) generically possess characteristic
functions, each of which replicates itself under transforma-
tion with a characteristic size change A:

j dyKix, yi() = \(x), @)

and generically such eigenfunctions compose a set complete
enough so that any reasonable object function e(y) may be
expressed as a linear superposition of them. In the special
case of a spatially homogeneous transformation K{x, y} =
K{x-y}, the eigenfunctions are (for arbitrary real vector p
and constant A)

Y(y) = A exp(ip - y), (4)

whose corresponding eigenvalues are

A= f duK(u) exp(—ip - ), (5)

as substitution of Eq. (4) into Eq. (3) shows. Equations (4)
and (5) summarize the familiar spatial-modulation transfer-
function approach to characterizing an imaging system in
terms of response to spatial sine waves? and assume that the
point-spread function K{x, y} is the same function of only
two-point separation throughout the image plane. Below
we present the appropriate generalization of Eqgs. (4) and (5)
to the much more broadly applicable situation in which the
point-spread function changes only slightly within its own
spread but may undergo major changes across the whole
image plane.

As an illustrative example we will present an application
to the human visual nervous system. Over the visual field,
which extends across about 180 deg, its psychophysical
point-spread function undergoes orders-of-magnitude
changes, and although a proper experiment shows inhomo-
geneity already at about 1/2 deg from the center of best
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resolution, the limit of resolution there indicates a point-
spread function an order of magnitude narrower. The re-
quirements of our procedure are fulfilled.

The application of linear Eq. (1) to the human visual
response deserves comment beyond the observation that the
spatial transfer function method, which assumes this rela-
tion, has had a long history of success in numerous visual
applications. Quite generally, any rule that gives smooth
change in output for smooth change in input and null output
for null input may be shown? to satisfy an expression of the
form

r(x) = j dyK,{x, yle(y) + j [ dy,dy,Kyfx, y;, yole(ye(yy)

+ j [ ] dy,dy,dys. . . » ©)

for which Eq. (1) is a first approximation that retains the
leading term. More forcefully, if in addition the quantita-
tive rule under examination transforms spatially uniform
input to uniform output, and if we let e(y), r(x) be the
departures from those uniform conditions, then Eq. (8) still
holds with K3, Ks, etc. now dependent on that uniform input
from which e(y) departs. Again Eq. (1) is a leading-term
approximation with K{x, y} now dependent on the average
intensity of the object. Such an approximation has in fact
led to extremely accurate detailed predictions of the mea-
sured neutral response in an invertebrate visual system.§12

Equation (1) is fully compatible with the numerous stud-
ies on subjective scaling of contrast!3-17 in which subjects
choose a wide variety of nonlinear (including linear) subjec-
tive scales for contrast, depending on experimental condi-
tions. In these experiments the subject is faced with an
additional judgment of how to apply the scale, which choice
(in the absence of highly influential advice, like “scale these
contrasts logarithmically”) is made in a manner highly de-
pendent on what is shown.

The general linear relation (1) may be tried (and has been)
under a wide variety of circumstances encompassing many
different ways in which the observer quantifies what he sees.
For illustrative purposes, we apply it below to two separate
somewhat speculative channel mechanisms isolated by fair-
ly involved experimental paradigm!8!? in which inhomoge-
neity appears (see also Refs. 20-23). We do this in the spirit
that a lucid procedure for treating measurements, even when
applied in conjuction with a still maturing theory such as the
channel model, can nonetheless further our ultimate under-
taking by arranging the experimental facts with a different
perspective.

2, FORMULATION

In keeping with experiment we consider a one-dimensional
caricature of Eq. (1):

rx) = j Kix, yle(y)dy. )

In writing Eq. (7) or Eq. (1) we suppress a time variable since
dynamics will not be considered in this paper. We make the
further approximation, in part borne out by experience, of
the reciprocity of cause and effect, namely, that a unit stimu-
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lus at y elicits at x the same response that a unit stimulus at x
produces at y. As aresult, K is symmetric:

Kix, y} = Kly, «}, (8)
and without loss of generality we may write
Kix, y} = K(z~y, (x + y)/2), 9)

which from Eq. (8) is symmetric in the first argument.

As mentioned in the introduction, homogeneity is an ap-
proximation; the more accurate picture is one that includes
the slow departure from homogeneity. Formally, such a
two-scale situation is represented by a kernel having the
form

Kix,y} = K(x-y, e(x + ¥)/2), (10)

where e is a small parameter. The channel models of Wilson
and Bergen'® can be put in the framework of Eq. (10). A
typical kernel of theirs is represented as a difference of
Gaussians,

4y __x=-y?
1+ dx| {eXp[ aX(1 + K|x|)?

(x = 3)*
B exp[ B22(1 + k]ﬂ)Q]} an
Spatial variables x and y carry an overbar in anticipation of
the renormalization that is given below. The space con-
stants, which measure the resolution of the system, are seen
to vary linearly. Ingeneral, inhibition occurs over a broader
scaleso b> 1. Therelative balance of excitation and inhibi-
tion is measured by the constant B. Finally, we note that
the amplitude (or sensitivity) of the mechanism decreases
inversely with distance.
It proves useful to normalize with respect to a natural
scale of the network; in this case the space constant ¢ is
appropriate. Thus we write

x=xlo, y=ylo (12)

and also set

¢ = ko, k= k/a. (13)

From the values reported in Ref. 19, ¢ is typically 0(10-2).
(See Table 1.)

We see that Eq. (11) is not in symmetric form. To repair
this, observe first that both terms of Eq. (11) are peaking
functions in x~y and hence fall off rapidly when the magni-
tude of this difference increases. Secondly, we observe
Tty

elx] = ¢ + 0[e(x — »)]-

It therefore follows that €| x| can be replaced by ¢|x + y|/2 in
Eq. (11). The result is

Table 1. Parameter Values

K € Ao 7 k
N mechanism  0.543  0.0035 865  0.028deg 0.125
S mechanism 0.321 0.0068 1275 0.055deg  0.125
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K=—"2 —lexp| - _ oy P
1+ ¢x +y]/(2) (1+¢x+y|/2)

_r (x =) ) "
73 eXP[ 31+ ex + y|/2)2]} (14)

For convenience we have taken B = /3 and b2 = 3, which in
fact lie quite close to the measured values for the so-called S
and N mechanisms of Ref. 19.

3. EIGENFUNCTION THEORY

The eigenfunction analysis for kernels of the type of Egs.
(10) and in particular (14) does not generally yield exact
results. Nevertheless a highly accurate approximate analy-
sis, based on the WKB method,2*?% can be performed, the
details of which can be found elsewhere.?6-28

The eigenfunctions and corresponding eigenvalues of Eq.
(10) are defined by

[Hr=s5eenpoay-me.

An approximate representation of ¢ can be obtained in the
form

¥~ AQ) exp[f jqp(s)ds]; g=ex.  (16)

After expression (16) is introduced into Eq. (15), an asymp-
totic analysis shows that p(q) is defined implicitly by

r=K(p,q) = JK(u, q)exp[—ipu]du, 17

in which K(u, q) is the kernel that appears in Eq. (15). The
eigenvalue \ is defined by the condition that the area includ-
ed inside a contour in the (p, q) plane defined by Eq. (17) and
denoted by A(A) is such that

AN = (2n + De, (18)

where n is a nonnegative integer. The amplitude coefficient
of expression (16) is then given by

A(g) =|K,[p(g), gl 2. (19)

Thus the entire structure of the eigenfunction (16), in-
cluding the value of the eigenvalue A, follows from examining
K(p, q). K is defined by Eq. (17) and is termed the Wigner
transform of K. It is important to note that in view of
symmetry (8), K is a real function, and the construction is
well defined.

Before turning to an explicit calculation we remark on two
aspects of our deliberations that bear on (1) how measure-
ments are made and (2) the phenomenon of cortical magnifi-
cation.

In view of the assumed smallness of ¢ it might be supposed
that across small patches of neural tissue the eigenfunctions
are sinusoids and that simple Fourier techniques apply.
This in fact is often the approach taken in experiment.
Actually this approach is borne out by the above analysis.
To see this we consider expression (16) in the neighborhood
of an arbitrary reference point,
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; (9
¥~ Jl(q)exp[f f p(S)d5] = explip(exy)(x — xo)]

X {./l (ex)exp[é Fcop(s)ds + O(e)]}- (20)
0 ;

The first factor on the right-hand side bears out the con-
tention that y is locally a sinusoid. A problem in adopting
this point of view is that it does not tell us how to connect the
sinusoids on contiguous patches. Looking at the second

"factor on the right-hand side of Eq. (20), we see that this

involves both a phase and an amplitude matchup. The
approach that we have presented takes care of this problem
in a natural way.

It is of interest at this point to mention studies of cortical
or foveal magnification.29-3¢ Such studies imply that the
projection of the retina onto the visual cortex introduces a
degree of homogeneity at the cortical level. It is of interest
to observe that the WKB approach, by forcing the form of
the eigenfunction into a sinusoid, expression (16), intro-
duces a mapping, viz.,

Q= [ * p(s)ds, (21)

so that in the mapped space the description becomes homo-
geneous. This can be accomplished only to lowest order
since the amplitude term in expression (16) in general must
vary with position. This is reminiscent of the physiological
observations of Dow et al.,3” who, in an extension of earlier
research, have shown that the apparent homogeneity is lost
in the foveal projection region.

4. VISUAL EIGENFUNCTIONS

The construction of the eigenfunctions and determination of
the eigenvalues follows from an analysis of the Wigner trans-
form (17). For the retinal model given by Eq. (14) this is

K(p,q) = Agr % (X - X9, (22)
where
2
X= exp[— (g +4!q|) pg]' (23)

With regard to the research of Wilson and Bergen,!® the
model (14) and its Wigner transform (22) apply to what they
refer to as the N and S mechanisms. Table 1 indicates
appropriate parameter values valid in the two cases.

In Figs. 1 and 2 we plot contour lines of Eq. (22) in these
two instances. Itis clear from the symmetry of Eq. (22) that
only the first quadrant need be shown, since the full picture
follows from reflection in coordinate axes. In these figures
continuous lines represent closed contours and correspond
to eigenvalues. The unclosed pair of continuous lines actu-
ally close at infinity and are asymptotic to the long-dashed
curve. This pair represents the last closed curve and, as
calculation shows, it contains an infinite area. The discrete
eigenvalues, which lie in the range

2k A < 2 , (24)
38  AgT 33
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3.2

Fig. 1. Level lines of the Wigner transform, Eq. (17), of the retinal
model (13), for the N mechanism. Only the first quadrant is shown.
Complete contour lines are obtained by reflection in the vertical and
horizontal axes.

2.8

Fig. 2. Same as Fig. 1 except for the S mechanism.

are infinite in number and accumulate at A = (2kAg\/7)/
3y3. In addition to the discrete eigenvalues there is a con-
tinuous spectrum

A 2

<—=k,
Agfm  3Y3
and the pair of short-dashed lines corresponds to a value of A
in this range.

The eigenfunctions of most importance in a psychophysi-
cal or physiological context are those that correspond to the
largest eigenvalues. These will elicit the greatest responses,
and thus a neural structure should be most sensitive to these.
For the kernels under investigation, these correspond to the
allowable curves closest to the peaks of K(p, ¢) and thus
correspond to the eigenfunctions of smallest indices. Such
eigenfunctions are termed principal eigenfunctions. For
such eigenfunctions, an improvement over the representa-
tion (16) may be obtained. Since this is somewhat technical
we forgo such a discussion and simply state that these eigen-

0< (25)
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functions may be more accurately represented in terms of
Airy functions,?” and plots discussed below were obtained
from this representation.

Corresponding to each eigenvalue there are two eigen-
functions, one even and one odd. The first four eigenfunc-
tions of the S mechanism are shown in Fig. 3. The abscissa
is given in degrees, whereas the ordinate is arbitrary. All the
eigenfunction patterns have been normalized to have a unit
square integral.

A similar set of eigenfunctions can be exhibited for the N
mechanism. As the values of ¢ in Table 1 indicate, the
scaling is different in the two cases. To illustrate this differ-
ence, we have plotted in Fig. 4 the first eigenfunctions of the
S and N mechanisms. This comparison suggests that each
of these maximally sensitive stimuli is poorly matched to the
neural mechanism of the other. In fact, the inner product of
these two eigenfunctions is roughly 0.01.

The underlying spatial frequency of the.S mechanism is
found to be 3.6 cycles/deg, whereas that of the N mechanism
is 7.2 cycles/deg. In this connection we mention the recent
study by Watson et al.3® in which a best pattern is sought
and is found to have an underlying spatial frequency of
roughly 7 cycles/deg. In view of the diversity of treatments
this general agreement can be regarded as quite encourag-
ing. There is, however, a disquieting aspect to this compari-
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Fig. 3. First four eigenfunctions of the S mechanism, to be read
from bottom to top. Abscissa in degrees and ordinate in arbitrary
units.
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Fig. 4. Comparison of first eigenfunctions of the S mechanism
(lower) and the N mechanism (upper).

son. An accurate estimate of the relative sensitivity of each
mechanism is given by the product Ago; thus Table 1 then
implies that the S mechanism is almost three times as sensi-
tive as the N mechanism. From the research of Wilson and
Bergen!® we see that the S mechanism was not explicitly
measured. Rather, it is what is left after the channels have
been determined. This commentary on the model suggests
that further research is necessary.

5. THE TWO-DIMENSIONAL RETINA

Although the above treatment follows from a general formal-
ism, it depends for particular details on the results of Wilson
and Bergen!®. In using their or any line-spread function one
is at best approximating the true physical situation. In the
present section we attempt to give this some perspective by
generalizing the discussion to the two-dimensional retina.

Although most of the remarks in this section apply to
general retinal models, it will be convenient to deal with the
following somewhat specific model of a point-spread func-
tion:

(x—y)? (x—y)?
Kix, v} = A B Bexp - XYL,
o} = 4@ {exp[ di(q) ] exp[ d3(q) ]}

(26)
where

x+y
2

qg=c¢ 27

and x = (x1, x9) and y = (y1, ¥2) are each two-component
vectors. The kernel, Eq. (26), represents a center-surround
opponent mechanism based on the collection areas d;? and
ds? and a sensitivity measured by A(g). In writing K in the
form of Eq. (26) we adopt our earlier normalization, Eq. (12),
so that e again measures the (slow) departure from homoge-
neity, and x and y have been made dimensionless with re-
spect to a characteristic space constant. Within certain
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bounds we will show that Eq. (26) may be reduced to Eq. (14)
for one-dimensional patterns.

From measurements of resolution versus eccentricity39-4!
there is strong evidence that outside the fovea the collection
radius d in Eq. (26) varies directly with distance. Thus we
take

d1=1+ex+y

|=1+q=d. - (28)

In general both collection areas, d;% and dy2, may vary inde-
pendently, but for simplicity and in keeping with the one-
dimensional model, Eq. (14), we take

d, = 3d. (29)

Although data exist on which to base the form of A in Eq.
(26), there is some disagreement. Evidence for the form
taken by A comes primarily from experiments on sensitivity
versus eccentricity. Shapley*? and Fischer and May*! find
that A should fall off with the inverse square of distance,
whereas Linsenmaier et al.*3 suggest a less rapid falloff. As
we now show, the model of Eq. (14) is consistent with the
inverse square falloff.

To derive the one-dimensional kernel (14) from Eq. (26),
we recall the circumstances under which Eq. (14) was deter-
mined.!® A stimulus pattern varying in only the x; direction
appeared in a slot that subtended 1.5 deg vertically and 8 deg
horizontally acrossthe fovea. It thus appears that the slot’s
vertical extent is quite large compared with the collection
radius d over the full horizontal range of the illuminated
slot. It follows that the equivalent one-dimensional kernel
(line-spread function) is

K, = Kix, yidy,, (30)

L2<D/2o'

where the limits of integration in this form take into consid-
eration the normalization, Eqgs. (12), and the height of the
slot (D = 1.5 deg). It is then a simple calculation to show
that this is well approximated by

K~ \/;A(q)d{exp[— (x_l’;z—yi]

— 2
- By3 exp[" (ilg—dgl)—]} - (3D)

In view of the limited range in the vertical direction we can to
good approximation put x; = 0, where it occurs in d in the
above, and hence

d~1+§|x1+y1|. (32)

On comparison with Eq. (14) we take B = 1/3.
A comparison of the amplitude coefficient of expression
(31) with Eq. (14) implies that A(q) is 0(g~2) for large q, as
mentioned earlier. If also
Ay
_—
V(1 + euq)?

then the one-dimensional form, Eq. (27), becomes

A(g) = (33)
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_Al+9q) I CEr2 0 B e 20 |
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(34)

For a suitable choice of ¢ in Eq. (34) there is little discern-
ible difference in the amplitude functions of Egs. (14) and
(34). Wilson and Bergen!® present data at only three eccen-
tricities, and as a result there would be little to distinguish
Eq. (34) and Eq. (14). The eigenfunction analysis of the
former does not differ significantly from that of the latter
and so will not be presented. In the same vein we mention
that other reasonable functional forms for both A and d also
lie within the experimental data of Wilson and Bergen. In
particular we mention that d2 = 1 + ¢%, A = (1 + xq?)~! (for
suitable x) leads to a model of interest.

An analysis of characteristic functions for the fully two-
dimensional form (26) may also be performed. Although it
is too lengthy to be presented here, one result bears mention-
ing. If the falloff in the sensitivity A(g) in Eq. (26) is less
rapid than 0(g~2), the retina will always be most sensitive to
illumination patterns of relatively low spatial frequency and
restricted to the periphery. With regard to most-sensitive
patterns, a retina organized in this way is qualitatively dif-
ferent from what we have explored above. Thus our meth-
odology furnishes an incentive and perhaps a means to in-
vestigate further the tentative slow falloff observations of
Linsenmeir et al.*3

Finally, it should be noted that temporal effects have been
ignored in the above treatment. This is of some importance
but requires a greatly extended analysis. Such a treatment
is now in preparation.
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