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Abstract. The dynamics of large populations of interacting neurons is investigated. Redundancy present in sub-
populations of cortical networks is exploited through the introduction of a probabilistic description. A derivation of
the kinetic equations for such subpopulations, under general transmembrane dynamics, is presented.

The particular case of integrate-and-fire membrane dynamics is considered in detail. A variety of direct sim-
ulations of neuronal populations, under varying conditions and with as many asO(105) neurons, is reported.
Comparison is made with analogous kinetic equations under the same conditions. Excellent agreement, down to
fine detail, is obtained. It is emphasized that no free parameters enter in the comparisons that are made.
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1. Introduction

The ability to faithfully simulate interacting neural pop-
ulations can significantly deepen our understanding
of neural network function. However, even very el-
ementary estimates show this to be a very daunting
goal. Our initial challenge, the mammalian primary
visual cortex, hasO(108) neurons, many of which
make contact withO(104) other neurons. The un-
derlying dynamics of individual neurons, which con-
tain a variety of voltage dependent ionic channels,
requires complex Hodgkin-Huxley-like systems of

differential equations. The time scales of the dynam-
ics range from fractions of a millisecond to at least
many seconds. In spite of these obstacles some lim-
ited but important attempts at simulation have ap-
peared (Worgotter and Koch, 1991; Chee-Orts et al.,
1996), and recently Somers et al. (1995) have gen-
erated a serious simulation of an orientation hyper-
column of the visual cortex. This last simulation has
been very valuable in many ways; most particularly,
it has considerably sharpened the lines in the contro-
versy that surrounds the nature and origin of orientation
tuning in the visual cortex (Hubel and Wiesel, 1962;
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Albrecht and Geisler, 1994; Sillito, 1975; Ferster et al.,
1996).

The simulations mentioned above are of the type
called direct simulations, which are discussed below in
Section 3. In brief this is an approach based on follow-
ing the dynamics of individual neurons that are con-
nected to other neurons according to a specified wiring
blueprint and synaptic dynamics.

In this article we present another approach, which
seeks to make use of the redundancy that appears in
the cortex. To some degree our approach is motivated
by the highly suggestive results that are now emerging
from optical imaging (Blasdel, 1992a, 1992b; Grinvald
et al., 1991; Sirovich et al., 1996). These and other
results imply that the cortex is tiled by patches of tis-
sue that correspond to the visual modalities. Nomi-
nally, thepatchesthat are involved in like activity are
found to containO(104) neurons. On this basis we
approach the task of simulating an ensemble of inter-
acting neurons by means of a statistical description of
the population. Historically, our approach is newer
and less studied than direct simulation. An early effort,
along essentially modern lines, appears in the thesis
of Johannesma (1969). Our approach is based on an
early effort by one of us (Knight, 1972) and the more
recent expositions (Knight et al., 1996; Knight, 1998;
see also Sirovich et al., 1998, where this approach is
used to obtain equilibrium solutions, and Nykamp and
Tranchina, 1998). Other allied treatments have been
presented by Kuramoto (1991) and Abbott and van
Vreeswijk (1991). In this connection we also mention
the relatedmean field approximationsfound in Som-
polinsky et al. (1991), McLaughlin et al. (1998), and
Chawanya et al. (1993).

2. Theoretical Principles

In what follows we develop two contrasting frame-
works for describing the evolution of subpopulations
of neurons. The termsubpopulationhere refers to an
essentially homogeneous collection of interacting neu-
rons orencoders,the internal states of which vary in
time. In general the neurons of a subpopulation interact
with one another and may couple to other subpopula-
tions.

The internal state of a neuron is specified by a
set of biophysical variables that includes its mem-
brane potential and also several variables that specify
the conductances of ionic channels. For the original
Hodgkin-Huxley (H-H) system, which describes the

electrophysiology of the giant squid axon, the state
is specified byv = (v1, v2, v3, v4) = (V,m, h, n),
whereV is the membrane potential and wherem gov-
erns sodium activation,h sodium inactivation, andn
potassium activation. In this instance the neuronal state
space is four dimensional. For complex neurons, such
as LGN relay cells or electrically compartmentalized
neurons (Keener and Sneyd, 1998; Segev et al., 1995),
the dimension of state space can be quite large.

In the general case we regard the state of a neuronv
to be governed by the dynamical system

dv
dt
= F(v)+ S(v, g(t)). (1)

For example, the direction fieldF could be that of the
H-H-like system.S(v, g(t)) refers to the incoming
synapticcurrentsto the neuron and as indicated gen-
erally depends onv as well as conductanceg(t). Gen-
erally, a number of conductances can be involved. For
expository reasons only one is considered here.

The view we take is that synaptic arrivals cause con-
ductance changesg(t), which in turn produce the cur-
rents. As a matter of convention we regard the first
equation of (1) as describing the membrane potential,
v1=V . For example, in the context of the H-H system,
in a standard notation (see Keener and Sneyd, 1998),
the system (1) is

dV

dt
= 1

C
{gNm3h(VN − V)+ gK n4(VK − V)

+ gL(VL − V)} + 1

C
{gs(t)(Vs − V)}.

dm

dt
= 1

τm(V)
(m∞(V)−m)

dh

dt
= 1

τh(V)
(h∞(V)− h)

dn

dt
= 1

τn(V)
(n∞(V)− n).


(2)

As indicated above, the variables(m, h, n) for H-H
would be(v2, v3, v4), so that the first bracketed term in
the first equation is the first element of the vectorF—
namely,F1(v). The last term of in this equation is the
first component and only component ofS, S1(v, g(t))
and represents conductance changes due to synaptic
arrivals. More generally, a range of excitatory and
inhibitory conductances can appear so that for each of
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theseVs refers to the appropriate reversal potential. For
the H-H systemS1 is the only nonzero entry ofS, but
in more general situations, for example when calcium
concentration plays a role,S may contain additional
entries.

A heavily used illustrative case, below and in the
literature, is the leaky (or forgetful) integrate and fire
model of neuronal activity (Knight, 1972; Tuckwell,
1988; Peskin, 1975; Mirollo and Strogatz, 1990;
Abbott and van Vreeswijk, 1993). In this case, the
membrane potentialV is governed by

C
dV

dt
= S(t)− 1

R
(V − Vr ), (3)

whereC is the capacitance,R the resistance, andS(t)
the current associated with the neuron’s membrane.
When the membrane potential reaches thresholdVT ,
it is reset to the resting valueVr . If we set

v = V − Vr

VT − Vr
, s= S

C(VT − Vr )
, γ = 1

RC
, (4)

then

dv

dt
= −γ v + s(t), 0≤ v ≤ 1. (5)

Equation (5) is a minimal form of the integrate-and-fire
model and will be used as a basis for later extension.
This Eq. (5) is the single dynamical equation governing
the single state variable v and in a sense represents the
simplest form that the system (1) can assume.

The two frameworks we consider represent philo-
sophically different approaches for describing the be-
havior of subpopulations. First, in the next section, we
will describe direct simulations, in which the wiring
of the network is specified and we follow the dynam-
ics of each neuron. The second approach, presented
in Section 4, follows the subpopulation via astatis-
tical mechanics. In a well-defined sense, the popula-
tion approach is exactly defined by the dynamical sys-
tem of the direct approach. Finally, in the last section
we compare the two approaches through numerical
simulations.

3. Direct Simulation

Direct simulation furnishes us with the gold standard
by which to compare any further modeling.

We enumerate the members of the assembly of neu-
rons so that

v j = v j (t) (6)

specifies the state of thejth neuron at timet . Each
neuron of the homogeneous subpopulation follows a
time course governed by

d

dt
v j = F(v j )+ S(v j , gj (t)), (7)

where the functionF, thejth direction field, is the same
for all neurons, but the conductancegj (t), varies with
the neuron. Thecurrent to the jth neuron is due to
synaptic arrivals from all neurons of the population as
well as sources external to the population. Although
we continue within the generality of (7), for purposes
of exposition we make some inessential simplifying as-
sumptions. Since typical synaptic time scales are rela-
tively brief, we will ignore them. For the same reason
we will ignore the delay in time that occurs in neuronal
signaling.

Next we denote the firing times of thelth neuron by
{t l

n}, so this neuron connected to any other neuron will
produce in it the conductance changes given by

gl (t) = ĝ
∑

n

δ
(
t − t l

n

)
. (8)

This states that a synaptic arrival will appear in the con-
ductance as an impulse of fixed strengthĝ. Once the
circuitry of the network is fixed, we can determine the
set0 j of indices such thatlε0 j implies that thelth neu-
ron is presynaptically connected to thejth neuron. Thus
gj (t) is given by

gj (t) =
∑
lε0 j

gl = ĝ
∑
lε0 j

∑
n

δ
(
t − t l

n

)
. (9)

Provisionally, the circuitry is fixed by letting each neu-
ron receive inputs from an average ofG distinct ran-
domly chosen other neurons (and hence sends out, on
average,G afferents). (G, in effect, is the feedback
gain.) The zero subscript sequence of timestl denotes
synaptic arrival times from external sources. In actual
simulations this is drawn from a Poisson distribution,
individually selected for each neuronal encoder.

The selection of a circuitry bears further discussion.
As indicated above, neuronal connections are chosen at
random so that on average each neuron hasG afferents.
The so chosenblueprint of interconnections may be
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thought of as a matrix drawn from an ensemble of such
connectivity matrices. There are several reasons why
this matrix should be chosen anew at each neuronal
firing. First, if this is not done, a particular choice of
a matrix confers an identity on each neuron, and this
is contrary to the hypothesis that all members of the
population are on an equal footing. Second, laboratory
observations show that synapses can have a significant
failure rate (Abeles, 1991).

Finally, it is well known that assemblies of intercon-
nectedoscillatorsare capable of synchrony even under
steady stimulation (Peskin, 1975; Mirollo and Strogatz,
1990; Golomb and Rinzel, 1993; Gerstner et al., 1996;
Usher et al., 1993; Kuramoto, 1991; Abbott and van
Vreeswijk, 1993; Tsodyks et al., 1993), and if the con-
nectivity matrix is fixed physically, local oscillations
can appear. However, in the limit of relatively sparse
feedback we have verified computationally that sim-
ulations with a fixed matrix will produce the same
results as those gotten from the temporally stochas-
tic matrix. Synchronous versus asynchronous behavior
is closely connected to the stability analysis of equi-
librium solutions, the asynchronous state. This issue
has been addressed analytically in the case of all-to-
all coupling with synaptic failures. We have confirmed
that the theoretical limit of feedback strength, which
leads to instability of the asynchronous state, agrees
with the common empirical limit that is observed for
bothsimulations with synaptic failure and simulations
with sparse interconnections. The loss of stability that
occurs under feedback results in (at least) partial syn-
chrony (Sirovich et al., 1999) and may be related to its
occurrence in experiment (see Singer and Gray, 1995).

In principle, these remarks indicate how to fully
specify the dynamical system (7), and the dynamics
then follows from integration. It should be mentioned
that in all the simulations reported here we are well
away from the synchronous state.

For the purposes of exposition we have kept the
development of this section simple. Several exten-
sions will be given below in the illustrations—namely,
stochasticĝ, inhibitory connections, and interacting
subpopulations.

4. Population Equations

There is an alternative to the direct computation of the
detailed time-course of every neuron as demanded in
a direct simulation. Instead, we can turn to a proba-
bilistic description of the manner in which the whole

population is distributed, in analogy with the view
adopted in statistical mechanics. In more detail we en-
vision following the evolution of a probability density
ρ = ρ(v, t) in the phase space determined byv—that
is, we seek the probability that a neuron of the popu-
lation is in a statev at a timet . To determineρ, we
imagine a large number of replicas—say,N—of the
direct simulation. As discussed in the previous section,
the connectivity matrix is drawn from an ensemble,
and so also is the external stimulus. Both of these can
be thought of as generatingN replicas of the popu-
lation. If dv is a small volume in the phase space, so
thatnk(v, t) dv is the number of neurons indv, at time
t of the kth replica, then the number density atv is
defined as

n(v, t) = 〈nk〉 = lim
N↑∞

1

N

∑
k

nk(v, t), (10)

and

ρ(v, t) = n(v, t)∫
n(v, t) dv

= n(v, t)
P

(11)

is the required probability density, whereP is the num-
ber of neurons in each replicate population.

In preparation for the derivation of the equation that
governsρ, we calculate the average firing rate per neu-
ron, r (t). As above, if{tm

n } designates the firing times
of themth neuron the firing rate is given by

r (t) = 1

P
lim
4t↓0

〈
1

4t

∫ t+4t

t
dt
∑
m6=0

∑
n

δ
(
t − tm

n

)〉
,

(12)

where, as in (10),〈 〉 denotes an average over the en-
semble of replicas. In the same way, the part of the
arriving firing rate that is due to the external sources
will be denoted by a zero superscript and is given by

σ 0(t) = lim
4t↓0

〈
1

4t

∫ t+4t

t
dt
∑

n

δ
(
t − t0

n

)〉
. (13)

Thus a neuron feels, on average, the impulse rate

σ(t) = σ 0(t)+Gr(t), (14)

where, as in the previous section,G is the (average)
number of afferents. Equation (14) might be referred
to descriptively as adynamic mean fieldapproximation
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(Gerstner, 1995; see also Schuster and Wagner, 1990,
for an earlier mean field approach). Next, denote byD
a small enough fixed volume inv space, and consider
the time rate of change of the number of elements inD.
This is given by

∂

∂t

∫
D
ρ dv = −

∫
∂D

F(v) · nρ dω −
∫

D
dv
(
δρ

δt

)−
imp

+
∫

D
dv
(
δρ

δt

)+
imp

. (15)

The first term on the right is the rate of loss of probabil-
ity within D (n is the outward normal to the surface∂D
for which dω is a surface element) due to the stream-
ing term of (1),F(v). The next two terms represent
the effect of synaptic impulses—that is, the contribu-
tion arising fromS(v, g(t)) in (1); hence the subscript
imp. The first of these is the loss rate, and if we takeD
small enough so that any neuron withinD leavesD on
receiving an impulse, then the loss rate is given by1

(
δρ

δt

)−
imp

= σ(t)ρ(v, t). (16)

At the time of a synaptic impulse the conductivity
experiences a delta function. Therefore, the respond-
ing membrane potential is discontinuous, but all other
elements ofv are continuous. IfV is the potential, and
after an impulse it becomesV ′, then we write

(V, v2, v3, . . .) = v→ v′ = (V ′, v2, v3, . . .). (17)

The relation betweenV andV ′ follows from integrat-
ing the first equation of (1) (the membrane potential
equation) across the instant of the impulse. For the
particular forms shown in (2) and (9), this yields

V ′ = V + h, (18)

where we have assumed thatĝ and h = ĝVs/C are
small. Thus the volumeD goes to a volume—say,D′—
under (18). See Fig. 1 for a schematic illustration.

These observations indicate how to construct the
gain rate that is the last term of (15). For this purpose we
consider the volumeD′′, constructed so that ifv′′εD′′,
then under an impulse it goes intoD, symbolically

v′′(D′′)→ v(D). (19)

Figure 1. Phase space defined by the state vectorv= (v1, . . . , vn)

of an individual neuron. Phase points in regionD′′ representing neu-
rons are bumped by synaptic impulses into regionD. They are sim-
ilarly removed fromD into D′.

See Fig. 1. Since only the membrane potential changes
under an impulse, we make the substitutionsV → V ′,
V ′′ → V in (18) and solve forV ′′ to obtain

V ′′ = V ′′(V) = V − h. (20)

It then follows that the gain rate is∫
D

(
δρ

δt

)+
imp

dv = σ(t)
∫

D′′
ρ(v′′) dv′′

= σ(t)
∫

D
ρ(v′′(v))

∂v′′

∂v
dv, (21)

where to obtain the last expression we have transformed
from D′′ to D, and thus the Jacobian of the transfor-
mation,∂v′′/∂v, appears.

To complete the derivation we observe that sinceD
is small but otherwise arbitrary, it follows that

∂ρ

∂t
= − ∂

∂v
· (F(v)ρ)− σ(t)

×
{
ρ(v, t)− ρ(v′′(v), t)∂v′′

∂v

}
. (22)

We observe that for the particular case indicated by
(20),

∂v′′

∂v
= ∂V ′′

∂V
= 1. (23)
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If we define

Jimp = −σ(t)
∫ V ′′(V)

V
eVρ(W, v2, . . .)dW, (24)

whereeV is the unit vector in theV-direction and

Jstr = ρF(v), (25)

then (22) can be written as

∂ρ

∂t
= − ∂

∂v
· J, (26)

whereJ is the flux

J = Jstr+ Jimp. (27)

The form (27) is convenient for formal purposes.
Thus we see that the fluxJ has the form of a linear

operator acting on the density

J = C(σ )ρ, (28)

where as indicated the linear operator depends on the
incoming firing rate.

The firing of a single neuron can be based on the
action potential reaching its maximum. This criterion
is inconvenient for dealing with populations. Alterna-
tively the firing rate per neuron of the population,r , can
be determined by the flux of neurons of the population
passing a threshold. It therefore is a functional ofJ,

r (t) = R[J]. (29)

To determiner construct a Poincar´e surface at a thresh-
old value of the potential and determine the flux through
this surface. Becauser , through (28) and (29), is a func-
tional of ρ and, through (14), contributes toσ which
appears in (28), the problem is nonlinear. Nevertheless,
the framework for dealing with the population equation
is largely determined by linear theory.

Integration of (26) over the domain,–D of the dynam-
ical space yields

∂

∂t

∫
-D
ρ(v) dv′ = −

∫
∂-D

n · J dS, (30)

where∂–D refers to the bounding surface of–D. –D con-
tains all possible trajectories of the dynamical system.

We require that the probability be conserved so that∫
∂-D

n · J dS= 0. (31)

A resting state surface may be introduced in anal-
ogy with the threshold surface, as is the case for the
integrate-and-fire example. If this is done, then–D
has a segment removed and condition (31) is met,
if the probability flux leaving thethreshold surface
equals the probability flux entering thereset surface.
As we will see in the next section, for integrate-and-
fire dynamics this can require additional boundary
conditions.

The above deliberations show that exactly as in sta-
tistical mechanics, the population dynamics is derived
from the dynamics of individual units with the addition
of a reasonable assumption of a statistical nature. No
free parameters or constants enter into this relationship.

We will discuss further details of the population
equation for specific cases in Section 5 below. For
the moment we present the generalization to interact-
ing subpopulations. Suppose each subpopulation is de-
scribed by its own probability density

ρk = ρk(v, t), k = 1, 2, . . . ,M, (32)

each with a probability flux

Jk = Ck
(
s0
k , r1, . . . , r M

)
ρk, (33)

which satisfies the continuity equation

∂ρk

∂t
= − ∂

∂v
· Jk, k = 1, 2, . . . ,M. (34)

Heres0 = s0(t) denotes the external firing rate to the
kth population andrk, the firing rate of thekth popula-
tion is a functional ofJk,

rk = R [Jk] , k = 1, 2, . . . ,M. (35)

This general form allows for each subpopulation to
receive excitatory (and inhibitory) input from all sub-
populations. In the interest of simplicity, we will not
go into details of weighting and connectivity.

It should be observed that the formalism applies in-
dependently of the detailed model of the population.
This is also taken up in Knight (1998).
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5. Integrate-and-Fire Model

We now specialize the above deliberations to the case of
integrate-and-fire dynamics, (5). The probability flux
is now given by

J = −γ vρ(v, t)+ σ(t)
∫ v

v−h
ρ(v′) dv′. (36)

Here h represents a normalized form that occurs in
(18). Since each impulse arrival elevates the membrane
potential by an incrementh, the current that appears in
the integrate-and-fire equation, (5) is given by

s= σh = (σ 0+Gr)h. (37)

The population equation is

∂ρ

∂t
= γ ∂(vρ)

∂v
+ σ(t) {ρ(v − h)− ρ(v)} . (38)

To obtain this we have usedv′′ = v − h with a fixed
small value forh. The firing rate of the population is
simply given by

r (t) = J(v = 1) = −γρ(1, t)+ σ
∫ 1

1−h
ρ(v′) dv′.

(39)

As stated in the previous section one boundary con-
dition, (31), is

J(0) = J(1). (40)

The presence of the offset term,ρ(v− h), requires an-
other boundary condition. Examination of (39) shows
that r (t) the flux of probability atv= 1 is due to im-
pulses driving neurons past the threshold. This is made
up of an integral term and a term due to leakage. The
latter is actually a flux to the left and hence cannot
really contribute to the firing rate. Hence this requires

ρ(v = 1, t) = 0, (41)

which is the necessary additional boundary condition.
Next, if (14) is substituted into (39) and (41) im-

posed, we find

r (t) = σ 0(t)
∫ 1

1−h ρ(v
′) dv′

1− G
∫ 1

1−h ρ(v
′) dv′

, (42)

and therefore (38) maybe rewritten as

∂ρ

∂t
= γ ∂(vρ)

∂v
+ σ 0(t)

1− G
∫ 1

1−h ρ(v
′) dv′

× {ρ(v − h)− ρ(v)} . (43)

This form clearly illustrates that the problem is gov-
erned by a nonlinear integral-differential equation. In
this respect it is akin to the Boltzmann equation of sta-
tistical mechanics.

We conclude this section with three extensions that
figure in the examples that are discussed in the next
section.

Stochastic Jumps

First we wish to include the effect of stochastic jumps
in response to neuronal impulses. If we denote the
probability of a voltage jumph by p(h), then evidently
(38)

∂ρ

∂t
= γ ∂(vρ)

∂v
− σ(t)

×
{
ρ(v)−

∫ v

0
dhp(h)ρ(v − h)

}
. (44)

Another form is

∂ρ

∂t
= − ∂

∂v

{
−γ vρ + σ(t)

∫ v

0
τ(v − v′)ρ(v′) dv

}
,

(45)

where

τ(h) =
∫ 1

h
p(h′) dh′. (46)

Inhibition

To illustrate how inhibitory interactions may be in-
troduced by following the general formulation in the
previous section, let us assume that (18) has the spe-
cial form v′ = v(1 − κ), and hence (19) becomes
v′′ = v/(1 − κ). This places the reversal potential
for synaptic inhibition at the originv = 0, where the
leakage and reset equilibrium potentials also are lo-
cated in our integrate-and-fire model. Further assume
that the probability of connection is distributed uni-
formly over all neurons. For a given neuron, then, the
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fraction of postsynaptic neurons that are excitatory is
simply equal to the fraction,f , of excitatory neurons
in the population. Consequently, the probability flux
is expressed as

J = −γ vρ + [σ 0(t)+ G f r (t)]
∫ v

v−h
ρ(v′) dv′

−G(1− f )r (t)
∫ v/(1−κ)

v

ρ(v′) dv′ (47)

instead of (36). The constantκ is small and will be
discussed later. For a general treatment, we should
consider inhibitory and excitatory neurons as separate
populations. Purely for expository reasons we have
chosen uniform probability of connections that results
in (47). Further generalizations can be included in the
framework of the more general format considered in
Section 4.

Diffusion Approximation

Finally, the diffusion limit will be considered for pur-
poses of comparison. Simply stated, forh ↓ 0 we can
consider the Taylor expansion∫ v

v−h
ρ(v′) dv′ ≈ hρ − 1

2
h2 ∂

∂v
ρ. (48)

If this expansion is inserted in (36), we obtain instead
of (38) the diffusion equation

∂ρ

∂t
= ∂

∂v
(γ v − σh) ρ + σ

2
h2 ∂

2

∂v2
ρ

= ∂

∂v
(γ v − s)+ s

h

2

∂2

∂v2
ρ. (49)

6. Simulations

The purpose of this section is to compare solutions of
the population equation with the results of the direct
simulation. Since the population equation is derived
essentially from the same assumptions that specify the
direct simulation (but see note 1), the results of the
two views should converge as the number of neurons
P becomes large. To verify this and to explore the
population approach, we have numerically solved the
partial differential equation that describes the evolu-
tion of the probability density. Concurrently, the direct
simulation is performed by solving large sets of ordi-
nary differential equations each of which represents an

Figure 2. The firing ratesν, of three populations consisting of 900,
9,000, and 90,000 neurons. They are driven by a sinusoidally modu-
lated input with mean frequencyσ , shown as the dashed curve. Neu-
ron firings have been averaged over each millisecond. Main figure
shows the last of the four periodic oscillations shown in the inset. As
the number of neurons is increased, the random fluctuations in the
firing rate diminish as the square root of population size. The popu-
lations receive no feedback.

individual neuron. Details of the numerical methods
are provided in the appendix.

To demonstrate the effect that the number of neurons
has on the results of the direct simulation, we compare
the time-dependent firing rate of three direct simula-
tions containing 900, 9,000, and 90,000 neurons. The
results are shown in Fig. 2. Each population in the
figure consists of an uncoupled set of leaky integrate-
and-fire neurons described by (5). The synaptic input to
every neuron is purely external and consists of individ-
ual Poisson distributed impulses arriving with a time-
dependent mean frequency,σ. For the cases shown
the frequency is sinusoidally modulated in accordance
with σ(t) = σ0 (1+ B sin(ωt)) whereσ0 = 800s−1,
B = 0.6, andω = 8πs−1. In this calculation the im-
pulse strength is kept at the constanth = 0.03. In
this and all subsequent calculations we have taken the
ohmic time constant to beγ = 20s−1.

To examine fine details in the evolution of the pop-
ulation activity, Fig. 2 focuses on a time interval that
spans one full period of the synaptic input. The start-
ing transient has been allowed to die away and leaves
only the periodic oscillation. Neuron firings have been
averaged over each millisecond. In Fig. 2 the popu-
lation with 90,000 neurons displays irregular fluctua-
tions that are an order of magnitude smaller than those
produced by the population with 900 neurons. Thus
the figure supports the expectation that the average
magnitude of the irregular fluctuations decreases as
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the square root of the number of neurons in the
population.

The population of 90,000 neurons in Fig. 2 reveals
most clearly the underlying smooth variations in the
firing rate. Systematic changes have the same period as
the inputσ(t). In addition, we observe that the firing
rate initially increases with the input. Then it reaches
its first peak att = 0.77 even though the input contin-
ues to rise. This and the following downturn may be
explained as follows. The average time it takes a neu-
ron to cross the domain 0<v<1, the transit time, can
be estimated as the reciprocal of the firing rate. In the
initial period the mean firing rate is about 30ips. The
transit time is thus about .033s, which corresponds to
the interval between the first two peaks. At the first
peak a large fraction of the neurons have fired and
have been reintroduced at the origin. Thus the second
peak occurs when these reappear at threshold. Simi-
larly, the third peak in part is diminished due to the
slower mean firing rate present at the occurrence of the
third peak. Finally, the mean rate becomes too small
to overcome leakage and the firing rate drops to nearly
zero.

We now compare these results with the firing-rate
calculations that follow from the population Eq. (38)
under the same conditions as those of the simula-
tion. We plot the results of the population equation
with the direct simulation. Figure 3 shows that there is

Figure 3. The firing rateν of the directly simulated population with
90,000 neurons shows small fluctuations about the smooth curve
predicted by the population equation. The diffusion equation gives a
firing rate with significant deviations. The time period shown and the
input are the same as in Fig. 2. The populations contain no feedback.

Figure 4. The probability density at equilibrium given by a direct
simulation of 90,000 neurons, the population equation, and the dif-
fusion approximation. The state shown in the main figure is reached
at the end of the period shown in the inset. The inset shows the firing
rates of the direct simulation and population equation as they con-
verge on the steady state. The input is a step current withσ = 800
ips starting att = 0. The populations contain no feedback.

excellent agreement in the firing rates for the two meth-
ods throughout the time-course. The figure shows, in
addition, that the firing rate predicted by the diffusion
approximation contains significant deviations from the
other calculations. As would be predicted, we have
found that these deviations in the diffusion approxi-
mation decrease as the value ofh used in the model
becomes smaller.

Next we consider the response to a step increase
in the driving term,σ 0(t), from 0 to 800s−1 at t = 0.
Figure 4 presents a comparison between the direct sim-
ulation and the corresponding results obtained with
the population Eq. (38) forG= 0 for the asymptotic
time-independent equilibrium state,ρ0(v). In the case
shown, the initial condition was a delta function of unit
strength located at the origin. The inset in Fig. 4 shows
the transient firing rate of the population as it oscillates
about its equilibrium value within an exponentially di-
minishing envelope. To explain the order of magnitude
of the response, it is useful to note that, in the absence
of leakage (γ = 0), the firing rate would equal 24 ips.
It follows naturally that the firing rate obtained in the
numerical solution is somewhat lower than this value
since leakage is included (γ = 20s−1) in our equations.
The firing rate of the population at equilibrium with-
out feedback can be evaluated analytically and equals
11.82 s−1 in this case (Sirovich et al., 1998). The
main part of Fig. 3 shows the probability density at
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equilibrium. The figure indicates that the firing rate
and the probability density obtained by the popula-
tion equation are in excellent agreement with the direct
simulation.

Figure 4 shows that near the origin the equilibrium
probability density contains severe excursions that de-
crease and finally disappear asv increases. These ex-
cursions inρ0(v) are due to the behavior of the neurons
shortly after reentering the unit interval at the origin
after reaching the threshold at the right. Similar struc-
tures were discovered by Wilbur and Rinzel (1982).
The membrane potential is incremented by a step of
size h at every Poisson-distributed impulse, and de-
cays smoothly due to leakage during each stochasti-
cally distributed interpulse interval. The accumulation
of random amounts of leakage eventually washes out
the concentration of neurons at multiples ofh. A full
mathematical discussion of the equilibrium solution is
presented in Sirovich et al. (1998).

Figure 5 shows that the oscillations inρ0(v)are much
smaller if the stepsh are distributed randomly. In Fig. 5
the impulse strengths are distributed normally around
the value they have in Fig. 4 with a fixed standard de-
viation. A probability distribution

p(h) ∝
{

exp[−(h− h̄)2/(2α2)] if h ≥ 0

0 if h < 0
(50)

with h̄= 0.03 andα= 0.3h̄ has been used in (44) to
calculate the evolution of the probability density.

The equilibrium probability densities as shown in
Figs. 4 and 5 each include a delta function at the origin.

Figure 5. Same as Fig. 4 with the exception that the voltage steph
is a random variable Gaussian distributed around the valueh̄ = 0.03
(used in previous figures) and standard deviation equal to 30% ofh̄.
In comparison with the result in Fig. 4, the oscillations inρ near
v = 0 are drastically reduced The population has no feedback.

Figure 6. The firing rates of a directly simulated population with
90,000 neurons and the population equation with inhibitory and ex-
citatory feedback are shown. The number of outgoing connection per
neuronG = 10 and 80% of all neurons are inhibitory. The uncou-
pled populations firing rate from previous figures is included as the
dashed curve for comparison. The input and the time window shown
are the same as in Figs. 2 and 3.

This reflects the fact that on the average there is in the
population a finite number of neurons located exactly
at the origin. Figures 4 and 5 also show the probability
density obtained from the population equation at the
diffusion limit (49).

The model has also been tested with a fixed frac-
tion of inhibitory neurons present in the population.
In Fig. 6 we show, as an example, a numerical exper-
iment performed with the same external stimulus as
in Figs. 2 and 3. Every neuron in this population is
connected toG= 10 postsynaptic neurons in the same
population. The fraction of neurons that are excitatory
has been set to the valuef = 0.2 in (47). As Fig. 6
indicates, the presence of inhibitory connections de-
presses the firing rate in relation to the results obtained
from the decoupled population. The direct simula-
tion for the latter is included in the figure for com-
parison. The figure again shows excellent agreement
between the direct simulation and the population equa-
tion.

Finally, we mention that the methods presented here
have been applied by us to the modeling of an orien-
tation hypercolumn (Omurtag et al., 1999). The model
incorporated thewiring that appears in the study by
Somers et al. (1995). Our results showed remarkable
qualitative agreement with the cortical dynamics of V1
as recently found by Ringach et al. (1997). A fuller
report on these simulations is in preparation.
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Appendix

Numerical Methods

Population Equation. In our model the state space
of a neuron is simply the rescaled membrane potential
v in (5), which ranges over the unit interval. We first
define1v= 1/N andvi = i1v. The grid points (or
nodes) where the probability density and the flux are
represented are staggered with respect to one another:
we defineρi (t)= ρ(vi −1v/2, t) andJi (t)= J(vi , t).
With this notation the continuity Eq. (26) can be written
as

∂ρi

∂t
= − Ji − Ji−1

1v
+ O[(1v)2]. (51)

Here we focus on the case of stochastic jumps. The
expression for flux that appears in (45) is discretized
as

Ji (t) = −γ vi
ρi + ρi+1

2
+ σ(t)1v

i∑
k=1

ρkqk−i

+O[(1v)2], (52)

where

qk−i = 1

2
erfc

{
[vk − (vi − h̄)]2

√
2α

}
(53)

is the discretization ofτ in (46) with p(h′) taken as
in (50). In this expression,̄h andα are the mean and
standard deviation of the strength of delta impulses.
The firing rate of the population is obtained from the
expression for flux by lettingi = N.

As a standard numerical technique for implement-
ing the right boundary condition (41) for the probabil-
ity density, we include an additional node,N+ 1, in
the computational domain atv = 1 + 1v/2, where
ρN+1(t) = −ρN(t). This ensures that the probability

density vanishes at the right boundary with second-
order accuracy. When this is used in the expression for
JN(t), the flux associated with leakage is seen to be
zero. Fori = 2, . . . , N, (45) is discretized as

∂ρi

∂t
= γ

2
[−(i − 1)ρi−1+ ρi + iρi+1]

− σ(t)
[
ρi q0+

i−1∑
k=1

ρk(qk−i − qk+1−i )

]

+O[(1v)2]. (54)

This equation does not apply at the first node,i = 1.
There the periodic boundary condition (40) on flux,
J0(t) = JN(t), must be used along with the continuity
Eq. (51).

Eq. (54) and the equation fori = 1 are of the form

∂ρi

∂t
=

N∑
j=1

[
A(0)i j + σ(t)A(1)i j

]
ρ j , i = 1, . . . , N.

(55)

The constant matricesA(0)i j andA(1)i j are associated with
leakage and excitatory behavior, respectively. For the
sake of brevity inhibitory input to the population de-
scribed by (47) was not included in this description. Its
effect is represented in our computations by an addi-
tional matrix multiplying the probability vector in the
above equation.

We note here that the probability vector must satisfy∑
i ∂ρi /∂t = 0. This confers on the above matrices the

property
∑

i A(k)i j = 0, for all j andk. That is, every
column of each matrix must sum to zero. This general
requirement is satisfied by (54).

The above sets areN-coupled (nonlinear with feed-
back) ODEs. They are solved by a standard second-
order explicit Runge-Kutta scheme. In the computa-
tions in this article we have found thatN= 100 and
1t = 10−5 result in near convergence of the calcula-
tions. Since the computational load is light, we have
usedN= 210 and1t = 10−5. In the figures, firing rates
are averaged over every 103 time steps.

Direct Simulation. In the direct simulations a set
of ordinary differential equations (5) are numerically
solved simultaneously. In the minimal model the equa-
tions are driven by impulses with Poisson-distributed
arrival times. The strengths of impulses are distributed
according to Eq. (50). In the presence of these sources
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of noise a simple and accurate method for numerically
performing a direct simulation is to proceed by taking
small steps,1t , in time and to evaluate the membrane
potential of each neuron in turn at each time step.

We let1t be sufficiently small so that the probability
of receiving more than one impulse during this time,
which isO[(1t)2], is negligible. For a leaky integrate-
and-fire neuron if an impulse with strengthh∗ arrives
at time t∗ where t ≤ t∗ ≤ t + 1t, the membrane
potential at the end of the time step is analytically found
to be

v(t+1t) = v(t)e−γ1t+h∗e−γ (t−t∗)H(t− t∗), (56)

whereH(t − t∗) is the Heaviside step function. This
we can write as

v(t +1t) = v(t)e−γ1t + h∗ + O[(h∗γ1t)]. (57)

The algorithm we use for updating the membrane
potential of each neuron at every time-step is

v(t +1t) =
{
v(t)e−γ1t , n = 0

v(t)e−γ1t + h∗, n = 1
, (58)

wheren denotes the number of impulses arriving at a
neuron in the interval(t, t + 1t). In the present cal-
culationsh∗ has meanh = 0.03, γ = 20s−1, and
1t = 10−5 s. Therefore the algorithm has an accuracy
of O[(hγ1t)] ∼ 10−6. The firing rate of the popu-
lation is obtained by simply counting the number of
neurons that exceed the threshold during a time-step
and dividing this number by the number of neurons in
the population. As in the population equation the val-
ues of the firing rate given in the figures are averaged
over every 103 time steps.

Note

1. In expressing this rate as a product in the form (16), we make an
assumption of the type called aStosszahlansatzin kinetic theory.
In principle, the coefficient ofρ in (16) should be a function ofv.
This is valid for the gain rate (21) as well.
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