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Abstract. A typical functional region in cortex contains thousands of neurons, therefore direct
neuronal simulation of the dynamics of such a region necessarily involves massive computation. A
recent efficient alternative formulation is in terms of kinetic equations that describe the collective
activity of the whole population of similar neurons. A previous paper has shown that these equations
produce results that agree well with detailed direct simulations. Here we illustrate the power of this
new technique by applying it to the investigation of the effect of recurrent connections upon the
dynamics of orientation tuning in the visual cortex. Our equations express the kinetic counterpart of
the hypercolumn model from which Somers et al (Somers D, Nelson S and Sur M 1995 J. Neurosci.
15 5448–65) computed steady-state cortical responses to static stimuli by direct simulation. We
confirm their static results. Our method presents the opportunity to simulate the data-intensive
dynamical experiments of Ringach et al (Ringach D, Hawken M and Shapley R 1997 Nature 387
281–4), in which 60 randomly oriented stimuli were presented each second for 15 min, to gather
adequate statistics of responses to multiple presentations. Without readjustment of the previously
defined parameters, our simulations yield substantial agreement with the experimental results. Our
calculations suggest that differences in the experimental dynamical responses of cells in different
cortical layers originate from differences in their recurrent connections with other cells. Thus
our method of efficient simulation furnishes a variety of information that is not available from
experiment alone.

1. Introduction

Although the orientation tuning of neurons in the visual cortex was discovered well over three
decades ago (Hubel and Wiesel 1962, 1968), its underlying mechanism remains controversial.
While there is a consensus that the early suggestion of a parallel layout of orientation selectivity
(Hubel and Wiesel 1968, 1974) should be replaced by a pinwheel arrangement (Bonhoeffer and
Grinvald 1991, Blasdel 1992) on the cortex, there is no such accord with respect to the origin of
orientation tuning. In simplest terms the issue rests on whether the connectivity pattern from the
lateral geniculate nucleus (LGN) suffices to account for orientation tuning, or whether cortical
processing of the LGN input is needed as well. The issues and evidence for both views have
been the subject of recent reviews (Das 1996, Sompolinsky and Shapley 1997). New support
for the role of cortical processing has come from recent innovative experiments (Ringach et al
1997), in which the dynamics of orientation tuning was determined by the method of reverse
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248 A Omurtag et al

correlation (de Boer and Kuyper 1968, Jones and Palmer 1987). Some additional evidence
comes from the recent direct simulation of the cortical steady-state response to static orientation
stimuli by Somers et al (1995), in which the phenomenon is modelled by cortical feedback
acting in conjunction with the LGN input. Another recent model (Adorjan et al 1999) is based
on anisotropic intracortical excitatory connections, which provide both an initial orientation
bias and its subsequent amplification. In the present investigation we consider a dynamical
model of early vision, which appends the recently quantified dynamics of retinal ganglion
and LGN neurons (Benardete and Kaplan 1999) to the cortical model advanced by Somers
and his colleagues. A major difference in approach lies in our use of a kinetic description of
the neuronal sub-populations that subserve orientation tuning. This approach provides a far
more efficient method for simulating the dynamics of the relevant neuronal sub-populations,
and enables us also to simulate experiments in which rapid changes of stimuli are presented
continually over extended periods of time.

Any attempt to simulate the dynamics of cortical populations of neurons must deal with
the immensity of their number, the complexity of their connections and the observed range
of dynamic timescales. To face these issues we have developed a probabilistic formulation
that follows the dynamics in terms of interacting sub-populations of neurons (Knight et al
1996, Knight 2000, Omurtag et al 2000). In the cited references we derive general kinetic
equations for populations of neurons which follow from individual neuronal dynamics without
introducing approximations.

Based on the deliberations presented in these papers we have developed a general purpose,
flexible numerical code that follows the dynamics of interacting sub-populations of neurons
under prescribed conditions. In this paper we use this tool for the exploration of orientation
tuning in the primary visual cortex.

When static orientation stimuli are introduced in our kinetic equation simulations we obtain
excellent agreement with the direct simulations of Somers et al (1995), which underline the
suggestion that intra-cortical processing plays an important role in the sharpening of tuning.
We have gone on to simulate the experimental paradigm used by Ringach et al (1997) to
investigate the dynamics of the orientation hypercolumn† constructed in our numerical cortex.
This gives us the simulated spatio-temporal response of the hypercolumn to a random sequence
of short-duration flashes of oriented grating patterns, which we then analyse in accordance
with the method of reverse correlation, as was done in the experiment. Good qualitative
agreement with the experiments of Ringach et al (1997) is obtained, and comparisons are
presented in the conclusions. Preliminary numerical results in this direction were reported
by Omurtag et al (1999) and by Nykamp and Tranchina (2000). Our investigation thus
supports the idea that the feedforward connectivity pattern is insufficient to generate the sharp,
contrast-invariant orientation tuning of neurons observed experimentally. The presence or
absence of recurrent cortical feedback gives us reverse-correlation responses which match
their experimental counterparts for neurons recorded in different cortical layers. Thus, in
conjunction with the simulation, the experiment suggests a relationship between cortical layer
and connectivity, which the experiment would not have indicated without the simulation.

2. Kinetic equation

To set the stage for the treatment of a hypercolumn of sub-populations, we briefly review the
kinetic description of a single population, and follow the notation of the prior publications

† An orientation hypercolumn is a region of cortex that contains neurons tuned to the full range of orientations
(0◦–180◦).
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Cortical dynamics 249

(Knight 2000, Omurtag et al 2000, Sirovich et al 2000).
In general, the internal state of a neuron is specified by the membrane potential, v, and

neuron specific variables that monitor the ionic channels. Since our simulations use the standard
integrate-and-fire dynamical model (Tuckwell 1988)

dv

dt
= −γ v + s(t); 0 � v � 1 (1)

we take the potential v, governed by (1), as a specification of the state of a neuron. Note
that the membrane potential has been normalized so that v = 0 refers to rest and v = 1 to
threshold. The coefficient γ , a rate, specifies leakage current, and s(t), also a rate, specifies
the synaptic input current. As usual the potential that follows (1) is reset to v = 0, on reaching
the threshold v = 1.

The description of a sub-population begins with the probability density

ρ = ρ(v, t) (2)

which states the probability ρ dv that we can find a neuron in the population within the
membrane potential range (v, v + dv) at the time t . Then, under general circumstances it
can be shown that the time derivative of ρ is equal to minus the divergence of a flux J . In our
case this is simply

∂ρ

∂t
= −∂J

∂v
. (3)

For the integrate-and-fire model the flux is given by

J (v, t) = −γ vρ + σ e
∫ v

v−h
ρ(v′, t) dv′ − σ i

∫ v/(1−κ)

v

ρ(v′, t) dv′. (4)

The first term on the right gives the left-moving flux due to membrane leakage current. In the
second term on the right, σ e = σ e(t) denotes the excitatory synaptic arrival rate, and the entire
term states that each arrival produces a jump h in the potential (σ eh is thus the corresponding
current). Finally, σ i denotes the inhibitory arrival rate, and the term follows the shunting
model of inhibition (Tuckwell 1988) for which a voltage-driven, finite synaptic event removes
sufficient intracellular electric charge to change the intracellular voltage from v/(1 − κ) to
v. Partially ‘subtractive’ inhibition could be incorporated with ease into our model. However
this is unlikely to have a significant effect on the firing rates and is not considered. Both h
and κ are fairly small compared to unity, and in the simulations described later equation (4) is
generalized to accommodate a Gaussian distribution in each of these.

The flux is formally linear in the density ρ, and we emphasize this by writing (3) as

∂

∂t
ρ = Q(σ e, σ i)ρ (5)

where Q is the linear operator that follows if we substitute (4) into (3). Of particular interest
is the firing rate r(t) of the population. Clearly, this is given by the flux of neurons that leave
the interval with a jump past threshold at v = 1, so that

r(t) = J (1, t) = R[ρ(t)]. (6)

The last form is meant to indicate that the firing rate is a linear functional of ρ, and the notation
is introduced for later convenience. The threshold-reset condition on (1) is taken into account
by the periodicity condition on the flux, J (0, t) = J (1, t).
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250 A Omurtag et al

3. The orientation hypercolumn

Our network model is comprised of sub-populations, each of which is described by its own
kinetic equation and interactively linked to the others. It consists of interconnected groups
of neurons in primary visual cortex that receive input from a small patch of the visual field
that projects 0.5 mm2 on the cortex. We confine our model to orientation tuning, namely,
we consider neurons that respond preferentially to edges or bars with a particular orientation.
Therefore, the model network is made up of sub-populations that respond preferentially to
stimuli presented in each of a range of orientations. The neurons in the model receive direct
thalamic input and are interconnected. The populations are parametrized by their orientation
preference, θj = jπ/N, j = 1, . . . , N . At each orientation, one excitatory (e) and one
inhibitory (i) population is represented. Hence the total number of distinct populations is 2N .
Direction selectivity is not included. Hence the orientation space has a period π . Higher
values of N correspond to finer discretization of orientation space. As described above the
neurons follow integrate-and-fire dynamics with post-synaptic events, characterized as small
jumps in membrane voltage, distributed randomly about a relatively small mean value. We
will use the pair of indices, (k, j) to identify the population density ρk(θj ) of type k (= e or i)
and preferred orientation θj . The population ρk(θj ) is stimulated by excitatory and inhibitory
impulse rates σ e

k (θj ) and σ i
k(θj ). Each sub-population is governed by a population equation

of the form (5):
∂ρk(θj )

∂t
= Q(σ e

k (θj ), σ
i
k(θj ))ρk(θj ); k = e, i; j = 1, . . . , N. (7)

To fully specify the equation we need to determine the arrival rates σmn (θj ), for each choice of
m and n, both of which can take the values e, i, for each orientation θj . These we take to be

σnk (θj ) =
∑
m∈Pn

∑
l

ckm(|θj − θl|) rn(θl) + δne bk σ
o(θj );

n = e, i; j = 1, . . . , N
(8)

an expression whose various features we now discuss in some detail.
Pn is the set of populations that contain neurons of type n. Here rn(θl, t) = R[ρn(θl, t)]

is the firing rate of population (n, l), given by (6), and σo(θj ) denotes input from the LGN.
The latter is purely excitatory; hence it appears as multiplied by the Kronecker delta (δne = 1
when n = e, δne = 0 otherwise) in the equation. The coupling strength, ckm(|θj − θl|), is
a function of only the angle difference in orientation space. This expresses the assumption
that all orientations are equally represented in the cortex (see Sirovich et al 1996 for a general
derivation of this form of the assumption and for further discussion of this point).

In order to model the mild orientation selectivity that arrives at the cortex we express the
LGN input as a Gaussian profile that is superimposed on a pedestal,

σo(θj ) = A0 + A1e
[

−(θj−θ0)2

2β2 ] ≡ W(|θj − θ0|), (9)

and is broadly tuned (β = π/5 radians = 36◦). Evidence in support of this form is presented by
Somers et al (1995), and appears to agree with experimental recordings in the cortex (Ferster
et al 1996). A0 and A1 are fixed parameters that determine the amplitudes of the untuned
pedestal and the orientationally tuned profile, respectively. The external input per neuron to
the cortex is weighted by the parameter bk , which indicates the fraction of synapses from the
LGN that are made respectively on the inhibitory and excitatory populations. The stimulus
orientation is designated by θ0.

The connectivity between elements in different sub-populations of the hypercolumn is
established by a 2 × 2 matrix that is dependent on the angle difference. A typical component
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Cortical dynamics 251

ckm(|θj − θl|) determines the strength of the input from (m, l) to (k, j), wherem can be either
e or i and similarly for k. The connectivity can be written as a product of two terms

ckm(|θj − θl|) = Tkmqm(|θj − θl|) (10)

where Tkm is determined by the total number of connections between types of neuron in the
hypercolumn, regardless of their tuning. Here we follow the modelling of Somers et al (1995),
which is based on anatomical and electrophysiological data. In particular, we adopt their values
of Tee = 36, Tei = 24, Tie = 56, Tii = 8.

The distribution of connections in the orientation domain is fixed by qm(|θj − θl|), which
expresses the fraction of connections from (m, l) neurons to neurons tuned to the orientation
angle θj . The dependence of the distribution on the donor type is significant, since excitatory
and inhibitory neurons appear to be characterized by different ranges and distributions of
synapses. (See, e.g., cross correlation studies by Michalski et al (1983) and Hata et al (1988),
also see references in Somers et al (1995); see McLaughlin et al (2000) for a different view
and model.) We use the general form

qm(|θj − θl|) ∝
{

exp{−(θj − θl)
2/(2α2

m)}; |θj − θl| � θc

0; otherwise
(11)

where θc = 60◦ is a cut-off distance, beyond which orientation columns are uncoupled. This
conforms to the modelling found in Somers et al (1995), where the inhibitory inputs have a
broader distribution than the excitatory inputs, αi = 60◦ and αe = 7.5◦, respectively. Since
qm(|θj − θl|) is defined as the fraction of connections, it follows that

∑
j qm(|θj − θl|) = 1 for

all pairs m, l.
The modelling considerations above are sufficient to compute the hypercolumn response

to time-independent input as in Somers et al (1995). However, computation of response to long
sequences of brief stimuli requires modelling of the dynamics of the earlier part of the visual
system as well. Temporal input will be confined to signals that arise in M-type retinal ganglion
cells, and the relay cells of the LGN will be treated as simple spike-repeaters. (We chose the
M-cell response because we are simulating cortical layers with pure M input (4cα) and mixed
M input (4B).) To implement the ganglion cell response we use the experimentally determined
retinal ganglion cell (M-cell) dynamics recently published by Benardete and Kaplan (1999),
who include the effects of a retinal contrast gain-control. At 100% contrast and 60 stimuli s−1,
according to their measurements, this gain-control would be maximal. In particular they report
that for macaque the impulse response increases sharply after the presentation of the stimulus,
reaches a peak at approximately 40 ms, then falls to a negative minimum at 60 ms and finally
decays exponentially. This measured impulse response integrates to zero over time and is well
expressed by

E(t) = E0

{
t (NL−1)e− t

τL − Hs

τs

∫ t

0
ds e− t−s

τs s(NL−1)e− s
τL

}
(12)

where NL = 22.71, τL = 1.85 ms, Hs = 0.97 ms, τs = 20 ms. (Equation (12) is the inverse
Fourier transform of the frequency response, determined by measurements, which Benardete
and Kaplan (1999) present.) The temporal convolution of this function with the Gaussian
distribution W(|θi − θ0|) described in (9) yields the time-dependent LGN input to cortex:

σo(θj , t) =
∫ t

0
W(|θj − θ0(s)|)E(t − s) ds. (13)

HereW is as in equation (9), and θ(0)(t) repeatedly holds steady for 1/60 s at values randomly
chosen from the set of orientations, as in the experiment of Ringach et al (1997). Rather
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than the set of 18 orientations used experimentally by Ringach et al (1997), we have chosen
32 orientations in order to obtain smoother curves. In all other respects we again use the
network and parameters that were advanced by Somers et al (1995) as representative, and
which were employed in that simulation.

4. Orientation tuning

We first confirm the model’s response to time-independent input. Figure 1 (top) shows
the anatomically and physiologically based input from the LGN, which we have assumed
following Somers et al (1995) (right ordinate) and, from solution of the kinetic equations,
the corresponding excitatory responses in the cortical hypercolumn (left ordinate, where ‘ips’
stands for impulses per second). The firing rate per neuron of each orientation column is shown
by a solid line connecting successive computed points. Without loss of generality the stimulus
orientation has been chosen as θ0 = 0. These profiles may be interpreted as tuning curves:
each shows the variation in response of a typical neuron as stimulus orientation varies from
the neuron’s preferred orientation. Despite the broadly spread LGN input (dotted curves), the
cortical responses are seen to fall rapidly from their maxima, and nearly vanish at approximately
20◦ away from the preferred orientation. While the amplitude of the response near the preferred
orientation increases with contrast, its half-width remains essentially constant. This is in
agreement with the contrast invariance of tuning width that was found experimentally by
Sclar and Freeman (1982) and by Skottun et al (1987). Scrutiny of the data used in plotting
figure 1 (top) shows that, as contrast increases, a slight increase in response is elicited at
orientations nearly orthogonal to the preferred orientation. This can be attributed to neurons
that are tuned to orientations beyond the cut-off distance from the preferred orientation and
do not receive inhibitory input from the activity at the preferred orientation. These nearly
orthogonal sub-populations, in the model, are therefore the first neural populations tuned to
the non-preferred orientations to become active as the contrast increases. Evidence of such
behaviour is found in the simulations of Somers et al (1995), as well as in experiments (see
Sompolinsky and Shapley 1997). The orientation tuning sharpness in figure 1 (top) is robust,
within limits, with respect to parameters of the model. A major change, such as reversing the
broadness of excitatory and inhibitory connections (by exchanging the values of αi and αe)
leads to a significant decrease in the sharpness of tuning. If the cortico-cortical coupling is
turned off by setting ckm(|θj − θl|) = 0 for all values of its indices, then the hypercolumn
responds with a lower firing rate, and the tuning profile approximately reflects the profile of
the input. This is the purely feedforward response that is shown in figure 1 (bottom).

5. Orientation dynamics

In a recent study of Ringach et al (1997) the dynamics of orientation tuning was examined
experimentally. Cortical cells were stimulated with brief (1/60 s) consecutive presentations of
gratings at a set of randomized orientations and four evenly spaced grating phases. The data
were analysed by the reverse correlation of nerve impulses with prior presented orientations.

A typical example of the input at the level of cortex is shown in figure 2 (top). We note
that its general rate of change with orientation angle is gradual and resembles that of the input
in figure 1. The transient peaks along the time axis that are seen in the input become prominent
when, by chance, a run of nearby orientations occurs in sequence.

The response of the excitatory neural sub-populations to the input shown in figure 2 (top)
is shown in figure 2 (bottom), as calculated by numerical integration of equation (7). We note
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Figure 1. The response (left ordinate) of excitatory cortical neurons receiving steady inputs (right
ordinate) from the LGN. Each input is distributed in orientation space (the abscissa) as a broadly
tuned Gaussian superimposed on a uniform pedestal. A series of increasingly more intense inputs
is shown with the corresponding increasingly larger responses (see (9)). The top panel shows the
responses of neurons in the fully connected cortical model. The lower panel shows the responses
of neurons for a feedforward network without intra-cortical connections.

that the response has a much sharper orientation profile than does the input, a result that is in
agreement with the static case, as seen in figure 1.

6. Reverse correlation methodology

A long-time run of output similar to the sample shown in figure 2 has been analysed in the
same way that Ringach et al (1997) analysed their experimental data. In the experiment, at
the occurrence of a recorded nerve impulse, one goes back τ ms in the orientation time series
to record the orientation at that time. This is done for each spike in the experimental record
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Figure 2. Typical example of time-dependent LGN input to the cortex (top) and the corresponding
response of the fully connected cortical network (bottom). The stimuli are briefly (1/60 s) flashed
oriented grating patterns. The main figure in the top panel shows that the LGN input varies in a
highly complicated way in time and in orientation, while maintaining at any given instant a broad
profile in orientation. The inset in the top panel shows the experimentally determined (Benardete
and Kaplan 1999) impulse response of M retinal ganglion cells used in modelling the LGN input.
The lower panel shows the sharply tuned cortical responses.

and results in an orientation histogram. This process is repeated for all suitable delays τ . The
response is the time-sequence of histograms. Our procedure is modified to let us deal with a
firing rate instead of discrete spikes.

The visual pathway is stimulated with randomly sequenced short duration (1/60 s) oriented
patterns. As above we denote the orientation sequence by

θ0 = θ0(t). (14)

The short duration of a flash will be denoted by +t . From the simulation of the hypercolumn
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of the populations we obtain the temporal response function

r = r(θ, t) (15)

that furnishes the temporal response of the sub-population that has θ for its principal orientation.
For the moment θ can be regarded as continuous.

For formal purposes we introduce the characteristic function

I (x) =
{

1, x = 0

0, x �= 0.
(16)

Thus, if θ denotes some fixed orientation then

T =
∫ T/2

−T/2
I (θ − θ0(t)) dt (17)

measures the total time, in the interval (−T/2, T /2), that the oriented stimulus is at θ . In the
interval (−T/2, T /2) all orientations are equally presented, so T is independent of θ . The
average response to this oriented stimulus at a time τ after θ is presented is then given by

P(θ, θ, τ ) = 1

T

∫ T/2

−T/2
I (θ − θ0(t))r(θ, t + τ) dt. (18)

Since the duration T is taken to be sufficiently large (formally infinite), we can effect a variable
change, which brings (18) to

P(θ, θ, τ ) = 1

T

∫ T/2

−T/2
I (θ − θ0(t − τ))r(θ, t) dt. (19)

To make contact with the experiment, denote by {t j (τ )} the initial times for which

θ − θ0(t − τ) = 0. (20)

We may express (19) as

P(θ, θ, τ ) = 1

T

∑
j

∫ tj+�t

tj

r(θ, tj (τ ) + s) ds ≈ +t

T

∑
j

r(θ, tj (τ )). (21)

This yields a histogram for each τ , and incidentally shows that the τ dependent histograms
yield the averaged response.

If we denote the angular deviation from θ by

φ = θ − θ (22)

then we can write

P = P(θ, θ, τ ) = f (φ, θ, τ ). (23)

Since all orientations are on an equal footing we can expect the dependence on θ to vanish as
T ↑ ∞. Equivalently we can average over θ and we write

f (φ, τ) = 〈f (φ, θ, τ )〉θ . (24)

The average response (24), as a function of orientation disparity and of post-stimulus time,
may be directly evaluated from our simulation.

The results below show that, as in Ringach et al (1997), the response extracted by
reverse correlation has an oriented and sharply peaked early component, followed by a delayed
inhibitory component with similar preferred orientation but with broader orientation tuning.
This type of response is clearly inconsistent with a simple feedforward architecture, and
suggests that cortical processing is involved in the generation of orientation tuning.
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Figure 3. Reverse correlation results for a purely feedforward model (top panel) and for
experimentally determined spike trains from layer 4Cα of macaque V1 (lower panel).

7. Reverse correlation results

The measurements of Ringach et al (1997) were made in most of the six layers of V1. While
it is known that V1 receives input from the LGN in layer 4C and that vertical connections
with other layers are present, no unique blueprint for the circuitry has been established. Thus
the comparison between the responses of model cells that have different recurrent feedback
connectivities and experimentally measured responses of actual cells may be regarded as early
evidence concerning what the unknown feedback connectivities of those actual cells might be.
In figure 3 we compare our reverse correlation results for a purely feedforward model (lateral
connections disabled) with the results of Ringach et al (1997) for a cell in layer 4Cα. In both
instances there is broad orientation tuning. As in the (Ringach et al 1997) experiment, our time
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Figure 4. Reverse correlation results for the fully connected cortical network model (top panel)
and for experimentally determined spike trains from macaque V1 layer 4B (lower panel).

sequence is nearly monophasic (single rise and fall), even though the M-cell input undergoes
both excitatory and inhibitory phases.

In figure 4 we compare the time sequence of orientation traces in the presence of full intra-
cortical connections with the (Ringach et al 1997) records for a cell in layer 4B. Again we
obtain good qualitative agreement. Our time to maximum is 55 ms compared to 53 ms found
in the experiment for layer 4B. It should be observed that inhibitory skirts are a consequence
of the simulation, in agreement with the experimental record for layer 4B. Figure 4 shows a
passage from peak to trough, another feature common to the simulation and the experimental
record. Ringach et al (1997) re-normalized the dynamic tuning curve at each τ so that the
area under the curve is unity, while we have chosen instead to preserve the equality between
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reverse correlation and average response, embodied in (18) and (21). There is little qualitative
difference between the two presentations.

Ringach et al (1997) point out that many of their recordings exhibit a ‘secondary tuning’
peak, by which is meant a second peak π/2 away from the primary peak that occurs at a later
time. This same feature appears in our results. In our calculations this feature stems from
the fact that the repetitive flashes at random orientations confer a noise floor to the system.
For the pure feedforward case, shown in figure 3, this is 1.5 ips, while for the interactive case
of figure 4 the level is 5.5 ips. For the response exhibited in figure 4, at the maximum time
of 55 ms there is a wide inhibitory skirt, so at π/2 away from the preferred orientation the
response vanishes. As remarked for the static tuning curve (figure 1), this is the location that
is the first to recover. After the response to the flash at the preferred orientation falls off there
is a gradual growth in response to the noise, at π/2 away from the preferred orientation. The
time course then follows that dictated by the M-cell impulse response. The result, for the cases
shown in figures 3 and 4, are secondary peaks that are local maxima away from and on both
sides of the main response at 90◦.

8. Discussion

In figure 4 the main features of the experimental reverse-correlation response are replicated by
the model response. While systematic discrepancies are visible—the experimental response is
somewhat narrower in angle and its rise to peak and return from trough are a little faster—we
remember that there has been no fitting of parameters: the cortical parameters are those used
by Somers et al (1995) to explore the response to time-independent stimuli, while the retinal
M-ganglion cell dynamical parameters were taken directly from Benardete and Kaplan (1999).
That recurrent cortical feedback is important in forming this response is strongly suggested
by the very different dynamical response shown in figure 3, where the cortical feedback was
absent. Thus we see that neural simulation of the data-intensive dynamical experiment of
Ringach et al (1997) contributes further evidence that cortical feedback is important in the
response of a cortical orientation hypercolumn.

Our simulation of cortical dynamics in a data-intensive experiment was made feasible
by employing the population kinetics equations, which represent the dynamics of a large
collection of neurons in a manner that is far more efficient than is the use of many individual
neuron replicas in a direct simulation. Depending on details of the approach, several orders of
magnitude in computational speed are easily realizable in this way.

For time-independent calculations such as that of Somers et al (1995), an efficient
alternative for obtaining approximate features is the use of mean-field theory as advanced
by Wilson and Cowan (1973), which postulates a simplified dynamics for the firing rate itself.
In the context of an orientation hypercolumn this has been carried out by Ben-Yishai et al
(1995), with results comparable to those of Somers et al (1995) and to the time-independent
results shown in figure 1. However, several central features of neuron population dynamics,
which are brought to the foreground by the population kinetics equations, are absent from such
firing rate or mean-field approaches. The mean-field approach has difficulty following stimuli
that are changing rapidly (Gerstner 1995 and references therein). Population equations as
developed here respond immediately to inputs and follow the rapid dynamics neglected in the
mean-field approximation. Three recent studies (Gerstner 2000, Knight et al 2000, Nykamp
and Tranchina 2000), in which a step transient response is investigated, all show a hunting
oscillatory response which is absent from a mean-field theory.

A population kinetics, in the diffusion limit, applied to visual cortex, that appears to share
some features with our presentation, is reported in the recent brief note of Adorjan et al (1999).
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(See Omurtag et al 2000 for limitations of the diffusion approximation.) Similar population
kinetics is applied to the time-independent stimulus case of Somers et al (1995) by Nykamp
and Tranchina (2000).

9. Concluding remarks

We have shown that the use of the kinetic equation enables a cortical simulation of a data-
intensive dynamical experiment. Our simulation supports the notion that cortical processing
plays an important role in the orientation selectivity of visual cortex. The functional
significance of cortical connections is strongly supported by anatomical estimates of the relative
size of cortical input compared to thalamic input in layer 4 (e.g. Peters et al 1994). Modelling of
the same phenomena by direct simulation would have presented a prohibitive computational
effort, whereas our present approach leads to a modest calculation†. The technique is a
general one, and its computational advantage can be used to address other large-scale cortical
simulations.
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