
Theoret. Comput. Fluid Dynamics (1999) 13: 115–127
Theoretical and Computational

© Springer-Verlag 1999

Fluid Dynamics

On Low-Dimensional Modeling of Channel Turbulence1

Ahmet Omurtag and Larry Sirovich

Laboratory of Applied Mathematics, Box 1012, CUNY/Mt. Sinai,
New York, NY 10029, U.S.A.

{ahmet,chico}@camelot.mssm.edu

Communicated by M.Y. Hussaini

Received 13 July 1998 and accepted 8 January 1999

Abstract. We investigate a sequence of low-dimensional models of turbulent channel flows. These models
are based on the extraction of the Karhunen–Lo`eve (KL) eigenfunctions from a large-scale simulation in
a wide channel withR∗ = 180 (based on the friction velocity). KL eigenfunctions provide an optimal
coordinate system in which to represent the dynamics of the turbulent flow. The hierarchy of KL modes
identifies the most energetic independent phenomena in the system. A series of Galerkin projections is then
used to derive a dynamical approximation to flows. In order to capture essential aspects of the flow in a
low-dimensional system, a careful selection of modes is carried out. The resulting models satisfy momentum
and energy conservation as well as yielding the amount of viscous dissipation found in the exact system.
Their dynamics includes modes which characterize the flux, rolls, and propagating waves. Unlike previous
treatments the instantaneous streamwise flow is time dependent and represented by KL flux modes. The rolls
correspond to the streaks observed in experiments in the viscous sublayer. Propagating waves which first
appear in the model flow at low Reynolds number (R∗ ∼ 60) persist through the chaotic regime that appears
as the Reynolds number is increased. Statistical measures of the chaotic flows which have been generated by
the models compare favorably with those found in full-scale simulations.

1. Introduction

We consider a fluid forced to move along an infinite channel by a steady pressure gradient or, equivalently,
a body force. At sufficiently high Reynolds numbers, turbulence sets into the flow. The energy introduced
into the fluid results in a time-dependent net flux as well as in irregularly fluctuating velocity components.
In such wall-bounded turbulent flows, mean quantities take on standard spatial distributions. In addition,
coherent structures, relatively large energy-bearing modes, are known to exist. Some of this energy can be
associated with a cascade process similar to that in homogeneous isotropic turbulence [1], [2]. A diverse
collection of studies (e.g., [3]–[5]) suggest that such turbulent flows lie on a strange attractor of (relatively)
small dimension. This suggests that a low-dimensional description may be plausible. This is the direction
taken in a number of studies [6], [7].

In this paper we investigate a set of low-dimensional descriptions constructed by approximating the
fluid’s velocity fieldu(x, t) along with its evolution equation (in this case the incompressible Navier–Stokes
equations) by means of a set of orthonormal functions{Vm(x)}. For a proper description, the choice of
functionsVm constitutes an important step. By well-defined criteria explained further below, Karhunen–
Loève (KL) or empirical eigenfunctions [8] (or [9] and [10]) are best suited for this task. We note, in
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Figure 1. The Cartesian coordinate system of the computational volume.

particular, the properties of optimal convergence and the statistical independence of their coefficients. This
approach was first adopted in a study of the Ginzburg–Landau equation [6], a model partial differential
equation in fluid mechanics. In a number of other investigations, empirical eigenfunctions have been used in
identifying coherent structures in turbulent flows as well as in modeling their dynamics [11], [7], [12]–[20].

In the present context, the homogeneity of the streamwise,x, and spanwise,z, directions reduces empirical
eigenfunctions to Fourier modes. In order to resolve the cross-channel,y, variations inu(x, t) we have utilized
the results of a direct numerical simulation withR∗ = 180 (based on wall scale) kindly provided by R. Moser.
This computation was conducted with (x, y, z)-directions discretized as (128, 129, 128) with Fourier modes
in the homogeneous directions and Tchebycheff polynomials in they-direction. The domain isLx = 4πH,
Ly = 2H, andLz = 4πH/3 (2300, 360, and 767, respectively, in wall units). The symmetries of the
channel have been employed in increasing the size of the dataset used in calculating the KL eigenfunctions
[21]. Through a careful selection of KL eigenfunctions we build and study a series of dynamical systems
describing turbulent flow in the channel.

2. Formulation

2.1. Notation

We write u = (u, v, w) andx = (x, y, z) and consider the flow in the channel:−∞ < x, z < ∞;
−H < y < H driven by the gravity forcek (or uniform pressure gradient) in thex-direction. The Navier–
Stokes (NS) equations and boundary conditions are

∇ · u = 0,

ρ

(
∂

∂t
+ u ·∇

)
u+∇p = kex + µ∇2u,

u(x, y = ±H, z, t) = 0.

 (1)

Figure 1 shows a sketch of the coordinate system. In all our deliberations, the flow is taken to beLx andLz
periodic in thex- andz-directions.

2.2. Normalizations

To normalize the problem we observe that a simple force balance shows that the wall skin frictionτ satisfies

τ = kH, (2)

and therefore the friction velocity is given by
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u∗ =
√
τ

ρ
=

√
kH

ρ
. (3)

We normalize as follows:

u
u∗
→ ũ;

x
H
→ x;

tu∗
H
→ t;

p

ρu2
∗
→ p; (4)

in which case (1) becomes
∇ · ũ = 0

∂ũ
∂t

+ ũ · ∇ũ +∇p = ex +
1
R∗
∇2ũ

ũ(x, y = ±1, z, t) = 0

 (5)

with Reynolds number

R∗ =
u∗H

ν
=
H

l∗
, (6)

wherel∗ is the wall scale. In (5) and thereafterũ, x, t, andp refer to dimensionless quantities normalized as
in (4).

2.3. Mean Flow

One definition of mean flow is

U(y, t) = U (y, t)ex = 〈ũ〉 =
1
A

∫
A

ũ(x, t) dx dz, (7)

whereA = LxLz. If A ↑ ∞, thenU = U (y)ex, i.e., the mean flow becomes time independent. As pointed out
in [5] and [19] finite areaA forces a time dependence on the “mean flow” and in a number of formulations
ignoring this fact lead to inconsistencies. It is our intention to treat this point with some care.

If we write
ũ(x, t) = U(y, t)+u(x, t), (8)

whereu now represents the departure from the fluxU and satisfies

〈u〉 = 0, (9)

it then follows that

LU =
(
∂U

∂t
− 1
R∗

∂2U

∂y2

)
= 1− ∂

∂y
〈uv〉. (10)

The quantity−〈uv〉 is the Reynolds stress, averaged over the portion of thex–z plane denotedA, and is
thereforetime dependent.

If (10) is substituted into (5) we obtain

∂u
∂t

+U
∂u
∂x

+ v
∂U
∂y

+ u · ∇u−∂〈uv〉
∂y

ex +∇p =
1
R∗
∇2u. (11)

If (10) is averaged in time, denoted by overbar we obtain

∂

∂y
〈uv〉 = 1 +

1
R∗

∂2U

∂y2
, (12)

which formally integrates to

U (y) = R∗

∫ y

−1
〈uv〉dy +

R∗
2

(1− y2). (13)

In the same formal sense the flux equation (10) is as indicated a linear operator and its solution may be
written as
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U (y, t) = L−1 ∂

∂y
〈uv〉 +

R∗
2

(1− y2). (14)

The details ofL−1 are straightforward. The set of functions{sin(nπy)} (integern) is complete in the interval
−1≤ y ≤ 1 and satisfies the boundary conditions. These may be used by standard methods to solve formally
the inhomogeneous diffusion equation and hence to giveL−1 explicitly.

The NS equations are equivalent to the coupled set of equations (10) and (11) for the mean flow and
fluctuations, respectively. (10) may be solved to yield (14) which, substituted into (11), eliminates the mean
flow. This gives a complicated cubic integrodifferential equation foru. An alternative procedure [7], [9] for
eliminatingU (y, t) involves assuming∂U/∂t ≈ 0 in order to obtain an approximate and simpler solution
of (10):

U (y, t) ≈ R∗
∫ y

−1
〈uv〉dy +

R∗
2

(1− y2). (15)

This expression, which is the instantaneous counterpart of (13), implies thatU is time dependent through
〈uv〉. As stated in [22] this is inconsistent with the assumption from which it is derived. Numerical results
in model systems give strong time dependence ofU in this formulation. In our model ODEs, the mean
flow is noteliminated whether by the exact method using (14) or the approximate procedure. This is further
elaborated in the final section.

2.4. Energy

If (10) is multiplied byU it can be put in the form

∂U2/2
∂t

=
1
R∗

∂2U2/2
∂y2

− 1
R∗

(
∂U

∂y

)2

+U − ∂(〈uv〉U )
∂y

+ 〈uv〉∂U
∂y

, (16)

which if integrated across the channel yields

∂

∂t

∫ 1

−1

U2

2
dy = − 1

R∗

∫ 1

−1

(
∂U

∂y

)2

dy +
∫ 1

−1
〈uv〉∂U

∂y
dy + 2Ub, (17)

where we have defined the instantaneous bulk velocity as

Ub(t) = 1
2

∫ 1

−1
U (y, t) dy. (18)

The second term on the right hand side of (17) represents the total rate of kinetic energy absorbed by the
fluctuating velocity field from the mean flow, the turbulence production.

3. Symmetries

The NS equations respect certain symmetries of the data. In particular, if the initial data isLx-periodic in
thex-direction andLz-periodic in thez-direction, i.e.,

ũ(x +Lx, y, z +Lz,0) = ũ(x,0) (19)

then in the absence of perturbations the resulting solution inherits the same periodicity

ũ(x +Lx, y, z +Lz, t) = ũ(x, t). (20)

This property lies at the heart of numerical simulations. For the most part, in such simulations, the flow is
taken to be periodic in thex–z plane. Thus the computation takes place in a computational volume, which
in dimensional terms is given by 2HLxLz = V.
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There are other symmetries that involve the parity of the elements ofũ. This can be discussed concisely
in terms of the four-group of transformations under which the problem is invariant. Thus ifũ is a solution
to (5), then  ũ(x,−y, z, t)

−ṽ(x,−y, z, t)
w̃(x,−y, z, t)

 ,
 ũ(x, y,−z, t)

ṽ(x, y,−z, t)
−w̃(x, y,−z, t)

 ,
 ũ(x,−y,−z, t)
−ṽ(x,−y,−z, t)
−w̃(x,−y,−z, t)

 (21)

also satisfy (5) and each generates a new solution. The three flows of (21) along withũ itself make up the
flows generated by the four-group of symmetries.

The dynamical models which we will construct use databases generated from numerical simulations. If
in the present notatioñu(x, t) = U(y, t) + u(x, t) represents such a solution, then the correlation

Kij(x, y) = (ũi(x, t), ũj(y, t))t (22)

may be used to generate the empirical eigenfunctions [8]{V(k)} from the eigenfunction analysis∫
Kij(x, y)V (k)

j (y) dy = λkV
(k)
i (x). (23)

These functions are orthonormal,

(V(k),V(l))x =
∫
V

V ∗(k)
j (x)V (l)

j (x) dx = δkl. (24)

In view of the translational invariance of the problem in thex- andz-directions these functions are sinusoidal
in these directions. Specifically if the underlying simulation isLx andLz periodic in thex andz directions
respectively then

V(k)(x)→ Vm(x) = ψ(m,n,q)(y) e2πi(mx/Lx+nz/Lz). (25)

Thus the indicesm andn generate the wave numbers,kx = 2πm/Lx andkz = 2πn/Lz, while q will be
referred to as the vertical quantum number. SinceKij(x, y) in (22) is real, both the real and imaginary parts
of Vm(x) are eigenfunctions of (23), corresponding to some (real) eigenvalue.

In such terms we can represent or analyze the flow through the decomposition

ũ(x, t) =
∑

m

am(t)ψm(y) e2πi(mx/Lx+nz/Lz). (26)

A number of simulations have appeared in the literature, naturally at various R∗, but also for differing
(Lx, Lz). The latter has caused some confusion in the past and some attention to this point will be worthwhile.
For example, in comparing the minimal channel simulation of Jimenez and Moin (JM) [23] with the channel
calculation of Kim, Moin, and Moser (KMM) [24], then, roughly, the termsLz(JM) = 1

6Lz(KMM) and
Lx(JM) = 1

3Lx(KMM).
Suppose more generally that it is of interest to consider two flowsu andu′ for the same R∗ such that

L′x =
1
k
Lx, L′z =

1
l
Lz, (27)

with k andl integers. If{ψm(x)} represents the KL basis for the unprimed flow then we can express the
primed flow by

ũ(x, t) =
∑

am(t)ψ(km, ln, q)(y) e2πi(kmx/Lx+lnz/Lz). (28)

This decomposition is important in understanding the relationship between the two flows. The narrower
shorter channel only requires a sparse set of the basis set (25). The indicesm andn specify the number of
cycles (periods)in thex- andz-direction. Thus, for example, in comparing JM with KMM, according to
(27) the former requires three cycles in thex-direction and six cycles in thez-direction—and all integer
multiples of these.

Another consequence of this discussion is that indices (m,n) should not be compared in flows
of differing (Lx, Lz). The appropriate kinematical comparison is in terms of wave numbers. Thus if
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Figure 2. Part of the velocity field generated by the KL function (m,n, q) = (0, 8, 1).

(kx, kz) = (2πm/Lx, 2πn/Lz) and (k′x, k
′
z) = (2πm′/L′x, 2πn′/L′z) are wave numbers for two chan-

nel flows, thepropagation directionsand wavelengths are the same if

m

Lx
=
m′

L′x
and

n

Lz
=
n′

L′z
. (29)

Appreciation of these simple minded observations can avoid some of the confusion that has appeared in the
literature.

4. Flux, Roll, and Propagating Modes

As already mentioned only modes for whichm = n = 0 contribute to the net flux of fluid in the streamwise
directions. These modes are collected together inU (y, t). If m or n is not zero there is no net flux of
momentum in the streamwise direction. Since flux modes encompass the mean flow they naturally contain
the overwhelming portion of the flow energy.

As for the remaining modes, those which show no streamwise dependencem = 0, n 6= 0 are termed
roll modes. Such modes can be associated with the streaks that are observed in wall-bounded turbulence
[25]–[30]. As characterized in physical flows these modes are seen to be counterrotating pairs ofrolls across
the span of the channel. In actual experiment they are roughly 100l∗ in wavelength [31].

Another feature of these, as seen in Figure 2, is the very large component of velocity in the streamline
direction. Thus as pointed out in [5] the counterrotating rolls are also counterflowing streamwise jets. In
considering fluctuations from the mean, one finds that roll modes contain the dominant amount of energy.
The roll-like structures near the walls are clearly visible on they–z plane in Figure 2. The velocity field on
thex–z plane shown at the top is located aty = ±0.68 (near the center of the rolls). It is also evident that
roll-like structures correspond to alternating high- and low-speed streaks.

The remaining classification of modes, namely,m 6= 0, have been termed propagating modes [32], [33].
In the studies reported on in the cited references it was shown that such modes show a secular trend in
phase and the result is therefore a propagation of all such modes, as it turns out at a near fixed velocity. As
discussed in [5] this velocity should be the mean velocity at the location of maximal Reynolds’ stress.

5. Model Dynamical Systems

Any CFD simulation is really a “reduction” of the NS equations to a dynamical system. In a modern
computation one is not surprised to find such dynamical systems which substantially exceed 106 dynamical
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equations. In this section we discuss modeling the flow by relatively few equations based on the use of
empirical eigenfunctions and a Galerkin procedure.

The first such effort [6] applied this approach to the Ginzburg–Landau (GL) equation, a model fluids
partial differential equation. This effort was an overwhelming success but this was fortuitous due to the fact
that the GL chaotic flows which were studied were virtually free of spatial chaos. The application of the
general approach to the NS equations is presented in [8]. There then follows a number of investigations in
which this general approach was applied [11], [7], [20], [12]–[19]. See especially [9]. We note that while the
KL mode expansion is optimum in the energy norm representation of the velocity, this does not in principle
ensure that it is optimum for capturing NS dynamics. Some investigations have used KL basis functions to
represent the acceleration and vorticity [34], [35]. A general discussion of the KL method is given in [36].

5.1. Galerkin Procedure

A critique of many of these approaches appears in [5], and is not repeated here. The basic procedure for
determining a reduced dynamical system rests first in approximatingũ by a reduced set of modes, say
{Vm(x)},m ∈ S i.e.,

ũ ≈ ũs =
∑
m∈S

am(t)Vm(x). (30)

The Galerkin procedure is then applied,

(Vm′ , NS(̃us))x = 0, (31)

where NS(̃us) = 0 refers to the NS equations (5). The result is a system which we can write as

d
dt
am′ = Fm′(am), m,m′ ∈ S. (32)

The direction fieldFm′(am) is at most quadratic in the dependent variables,am. Its explicit form is given in
the Appendix.

In almost all instances low-dimensional model approximations take the mean flow to be given by (15),
with the Reynolds stress determined by the dynamical system. ThusFm′ is cubic in this approximation. (An
exception is a study of Rayleigh–Benard convection [18]). Since our formulation is based on (5) and (30)
we avoid the inconsistency (see Sections 2.3 and 6) entailed by this approximation.

5.2. Flux Velocity

We observe that there are two means for determiningU(y, t). From the approximation (30), we get

U ≈ Us(y, t) =
∑

m(m=n=0)

am(t)Vm(x). (33)

On the other hand the Galerkin form of (14) gives another approximation ofU(y, t). Mean flow obtained
by time averaging (33) may be compared with the mean flow given by (13). It turns out that for the two
determinations to be consistent, a rich enough basis is necessary. In all model systems described below, a
sufficient number of flux modes is included to ensure that the two methods give nearly identical results.

5.3. Eddy Viscosity

In truncating the full NS system one limits the means for dissipating energy. As a result such a system can be
expected to behave more energetically than the physical system. One remedy is the introduction of an eddy
viscosity in order to facilitate energy loss by dissipation. A full discussion of this, in the present context, is
given in [9].

Here we adopt a simpler, but similar approach based on energy considerations. The inner product of (5)
with ũ integrated over the channel volumeV yields
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d
dt

∫
V

|ũ|2
2

dx
V

= Ub(t)− 1
R∗

∫
V

(|∇U|2 + |∇u|2)
dx
V
. (34)

If this is averaged in time we obtain

Ub =
1
R∗

∫
V

(|∇U|2 + |∇u|2)
dx
V
, (35)

which in dimensionless terms states that the total dissipation is equal to the mean bulk velocity. If the modes
are truncated, as they will be in low-dimensional models, the energy dissipated will be altered. In order to
restore this to the correct value and hence to obtain the proper value ofUb we introduce an eddy viscosity.
If we are to preserve the dimensionless form of (2), namely,

1
R∗

dU (y = −1)
dy

= 1, (36)

then no eddy viscosity should be introduced in (10) which also has (36) as a consequence. Instead we only
introduce eddy viscosity into the fluctuation equation (11). In particular we take

1
R∗
∇2u→ 1 + e

R∗
∇2u. (37)

where the parametere ≥ 0 is fixed at a value where the temporal mean of the total viscous dissipation in
the model is the same as in the full simulation In all cases, it is found thate = 0 gives a value of mean
dissipation much lower than in the full system, indicating that the fluctuating field is too active. In addition,
given a fixed value of the total dissipation, a larger system always requires smallere as expected.

5.4. Galerkin Modes

While the Galerkin procedure is mathematically attractive its ability to produce scientific results depends in
large part on the choice of functions that are included in the setS. It has been shown within this framework
that false “physics” can appear and true physics be lost with an improper choice of modes [5], [19]. We have
tried to avoid such errors.

Numerical experiments were carried out with model systems containing the following set of modes. Flux:
(m,n) = (0,0), q = 1, ...,32. Fluctuations: (m,n) = (km′, ln′), q = 1, ..., Q. In all the systemsm′ = 0,
±1,±2 andn′ = 0,±1,±2,±3. By lettingk andl take positive integer values it is possible to construct
a computational region in any desired fraction of thex–z plane of the basic wide channel (Lx = 4πH,
Lz = 4πH/3). In our simulations we have chosen to takek = l = 3. This corresponds to a channel width
of 256l∗ containing approximately two pairs of rolls in the full simulation. Having thus determined the set
of modes (m,n) to be used, models of various sizes are constructed by including an increasing number of
quantum numbers for each mode. The mean velocity profiles forQ = 2, 4, 8, and 16 are shown in Figure 3.
The number of real ODEs in these dynamical systems is (a) 92, (b) 168, (c) 304, and (d) 576. It is of interest
to note that, given a system of fixed size, containing more vertical quantum numbers is more important for
a low-dimensional system than having a wide range of modes with different mode numbers (m,n).

We choose the system in Figure 3(b) as an example to illustrate further properties typical of all the systems
studied. Figure 4(a) shows that the quantity∂U (y = −1, t)/∂y computed from a low-dimensional model
has the mean valueR∗ (with 0.41% deviation) and therefore satisfies this conservation property implied
by (36). Figure 4(b) shows, for the same system, the instantaneous rates of energy added and viscous
dissipation. These correspond to the first and second terms on the right-hand side of (12). In this case their
averages differ by 1.58% and the difference tends to decrease with increasing time of integration. The flux
and fluctuating contributions to the dissipation are also indicated in Figure 4(b). The model clearly satisfies
energy conservation predicted by (17). These hold for all systems depicted in Figure 3. However, in order
to maintain this level of accuracy, the model must have a minimum size comparable with the one shown in
Figure 3(a).

The cross-channel distribution of Reynolds stress shown in Figure 5 is remarkable for its agreement with
the full simulation. The decomposition into propagating and roll components of Reynolds stress also closely
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Figure 3. Comparison of the mean velocity obtained from various related dynamical systems. All the systems shown contain the same
set of modes (m,n) (see (26)). The quantum numbers included for each fluctuating mode is different in each case. (a)q ≤ 2, e = 2.4,
(b) q ≤ 4, e = 1.83, (c)q ≤ 8, e = 1.35, (d)q ≤ 16,e = 0.853. The mean flow obtained by (13) and by the time average of (33) are
indistinguishable; both are indicated by the thicker curves in (a)–(d).

Figure 4. Momentum and energy conservation in a typical model are illustrated by (a) the skin friction,∂U (y = −1, t)/∂y; (b) the rate
of energy added,Ub(t), and viscous dissipation (34) calculated from the dynamical equations. This and all subsequent cases correspond
to the model containing the set of modes described in Figure 3(b).

Figure 5. 〈uv〉 from the dynamical equations compared with the same quantity from the direct numerical simulation. The decomposition
of the Reynolds stress into the roll- and propagating-mode components is also shown. The roll contribution which peaks near the wall
indicates that roll modes (Section 4) play a greater role in viscous dissipation. The results are from the system described in Figure 3(b).
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Figure 6. The half-channel distribution of r.m.s. velocities in the three coordinate directions obtained from the dynamical equations are
shown. The corresponding quantities from the full simulation are shown as dashed curves. The results are from the system described in
Figure 3(b).

matches the decomposition in the full simulation. The roll contribution peaks very close to the wall and plays
a greater role in the transfer of energy to the fluctuating velocity components. The r.m.s. quantities plotted
in Figure 6 for the half channel demonstrate the effect of truncation of modes in the dynamical system. The
modes that are retained are a small fraction of those in the full system. Hence the total kinetic energy in the
model must be less as seen in the figure. On the other hand, the fluctuating modes retained in the model must
represent the entire fluctuating field and dissipate an equal amount of energy. Consequently, their average
total kinetic energy within the model turns out to be significantly larger then the fraction captured by direct
projection onto the corresponding KL modes in the full simulation. Figure 6 shows that the position of the
peaks and the shape of the profile of the r.m.s. quantities in the model closely reproduce the full simulation
results.

Figures 7 and 8 illustrate the phase and moduli of the modal coefficients of some of the propagating
modes in the dynamical system. Propagating waves have been studied in turbulent channel flow simulations
as well as in low-dimensional models [33], [13]. In the dynamical systems studied in this paper propagating
waves first appear when the solution becomes periodic asR∗ is increased beyondR∗ ' 60. At smallerR∗

Figure 7. The phase (radians) of propagating modes has secular
time-evolution. The phases of modes withm = 3 andm = 6
are shown. For each case modes with spanwise mode numbers
n = 0, 3, 6 andq = 1 are shown. Each mode has a slightly dif-
ferent phase speed. The results are from the system described in
Figure 3(b).

Figure 8. An example of the chaotic behavior of propagating
modes. The moduli of the coefficientsa1

31 anda1
61 from the system

in Figure 7 are shown. Their phases evolve secularly as shown in
Figure 7.
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the system remains steady and the corresponding velocity profile is parabolic. With further increase inR∗,
as the system becomes chaotic (presumably via the Ruelle–Takens scenario), the propagating waves persist
on the average. The secular evolution of their phases in the turbulent regime,R∗ ' 180, is illustrated by
Figure 7.

For a preliminary understanding of their behavior we tentatively use the decomposition of the total velocity
ũ(x, t) = Ubex + u(x, t) and substitute this into (5). The resulting equation can be written

∂u
∂t

= −Ub
∂u
∂x
−u · ∇u−∇p +

1
R∗
∇2u + ex. (38)

The first term on the right is nonzero only for propagating modes since no other mode has streamwise
variation. This gives an indication of the special interaction between the flux and propagating modes. We
also know thatUb tends to increase withR∗ and, as a result, this interaction may dominate the right-hand side
of (38) with sufficiently highR∗. In any case if we approximate (38) as∂u/∂t ≈ −Ub∂u/∂x, and substitute
into this an arbitrary periodic function,u ∝ ei(k·x+ωt) + c.c., thenu turns out to be a wave propagating with
streamwise velocitycx = −ω/kx ≈ Ub. The phase speedω ≈ −(2πm/Lx)Ub agrees very well with slopes
of the lines in Figure 7. The roll modes (m = 0) appear as a degenerate case with no propagation. This is also
verified by their behavior in dynamical systems. As discussed in [5] a more careful analysis of the behavior
of propagating modes indicates that the wave speed should be the mean velocity at the location of maximum
Reynolds stress. Interestingly this secular trend in phase coexists with chaotic behavior. The moduli of two
representative propagating modes’ coefficients are shown in Figure 8.

6. Further Observations and Conclusion

Figure 9 compares the behavior of the instantaneous bulk flow (18) for three different systems. The thick
solid curve is calculated using the expansion (33) in the dynamical system described in Figure 3(b). The
dashed curve is the result of the full simulation described in [37] performed atR∗ = 125; hence the lower
mean value of the bulk velocity. The time scales as well as the mean fluctuations ofUb in both cases appear
to be very similar. These plots contrast sharply with the value ofUb from the cubic dynamical system. The
latter is similar to the system in Figure 3(b) but contains no flux modes. It consists of model equations
formulated by eliminatingU (y, t) from (11) via (15). The value ofUb in this system given by (15) turns out
to be strongly time dependent (thin solid curve).

The models of channel turbulence studied in this paper have been shown to satisfy momentum and energy
conservation as well as yielding the same amount of viscous dissipation found in the exact system. In addition,
the mean flow and Reynolds stress profiles of the exact system is reproduced by systems containing a small
fraction of the modes in the full simulation. As in the full simulation, the dynamics of the models includes
modes which characterize the flux, rolls, and propagating waves. Their behavior and significance have been
discussed. Unlike previous treatments the instantaneous streamwise flux is not slaved to the fluctuating flow
field. It is represented by KL flux modes.

Figure 9. The instantaneous bulk velocity from three different
systems.Ub based on the representation by KL flux modes in a
typical dynamical system (Figure 3(b)) is shown as the thick curve.
The thin curve shows the same quantity obtained from a similar
system but with the mean flow eliminated from the dynamics by
substituting (15) into (11). This is a cubic set of equations for the
fluctuating velocity field. The dashed curve showsUb from a direct
numerical simulation [34] withR∗ = 125.
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Theoretical estimates of the dimension of the attractor for channel turbulence appear to preclude truly low-
dimensional descriptions [5]. This is supported in the present results. It is found that a rich basis is necessary
in order to arrive at aconsistentrepresentation of the mean streamwise flux and in order to satisfy momentum
and energy conservation in the model equations. In particular,O(100) real ordinary differential equations
appear to be needed in our case to arrive at faithful descriptions of the spatial distribution of the mean
flow, the Reynolds stress, and other statistical measures. When the size of the system increases, the superior
convergence rate of the KL representation relative to other spectral representations begins to diminish. For
example, at roughly 200 modes the Chebycheff spectral representation captures about 55% of the energy
compared with 80% for the KL modes. Some of the appeal associated with applying tools of dynamical
systems theory is no longer there. However, the computational advantages are still considerable. It needs
to be mentioned that low-dimensional dynamics at more severe truncations do not have the conservation
properties or the level of accuracy demonstrated in this paper. However, properties of the KL basis ensures
that they continue to capture qualitatively features found in full simulations.

Appendix

The explicit form of the dynamical system (32) can be written

d
dt
aqkl =

∑
r

µqrkla
r
kl +

∑
mnrs

βqrsklmna
r
mna

s
k−m,l−n + gqδk0δl0. (A1)

The coefficients are given in terms of KL eigenfunctions:

µqrkl = −1 + e
R∗

{[(
2πk
Lx

)2

+
(

2πl
Lz

)2]
δqr +

∫ 1

−1

dψ∗qkl
dy
· dψrkl

dy
dy
}
, (A2)

βqrsklmn = −
∫ 1

−1

{
(2πi)(ψ∗qkl ·ψsk−m,l−n)Qrklmn +

(
ψ∗qkl ·

dψsk−m,l−n
dy

)
(ψ2)rmn

}
dy, (A3)

Qrklmn =
k −m
Lx

(ψ1)rmn +
l − n
Lx

(ψ3)rmn, (A4)

gq =
∫ 1

−1
(ψ1)q00 dy. (A5)
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