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ABSTRACT Subthreshold solutions of the Hodgkin-Huxley
equations are considered here by means of the linearized forms
of these equations. An asymptotic theory is obtained, based on
dimensional analysis and scaling arguments. Explicit expres-
sions for the crest speed are obtained and are shown to be in
good agreement wit experiment, with computation, and with
an exact asymptotic value which is also obtained here.

The firing of an impulse in a nerve requires that the membrane
potential attain a threshold value. Experiment and computation
based on the Hodgkin-Huxley (HH) equations (1) have shown
that subthreshold responses appear as decrementing waves that
have a velocity close to that of the full nerve impulse (2). Be-
cause subthreshold potential excursions are relatively small, a
linearized theory should be applicable. Indeed, a numerical
integration of the linearized HH equations has been shown to
agree with the comparable numerical integration of the full
nonlinear HH equations (3). Because the linearized HH
equations are essentially diffusive, whereas the velocity of the
full impulse is due to nonlinear mechanisms, the analytical
investigation of the linear problem is of mathematical as well
as physical interest. In this report we outline an investigation
of this problem that proceeds by means of scaling arguments
and asymptotic analysis.

Linearized equations and scaling
According to the theory of Hodgkin and Huxley (1, 4), the
membrane potential (V) is controlled by three currents: sodium,
potassium, and leakage. The sodium current in turn is controlled
by two kinetic variables, an activation variable m, and an in-
activation variable h. Potassium current is controlled by the
single kinetic variable n. The first step of a linear analysis is to
assume that all four dependent variables of the HH equations
are independent of both space and time. Set all derivatives equal
to zero, and solve the four equations for their equilibrium or
so-called resting values (VOmohono). In what follows, we use
the variables (V,m,h,n) to denote the small departures of the
HH variables from these resting values. The linearized HH
equations then have the form:

a V=aV + avmm + avhh + avnn + G 2 [at ax2 [1

atah,,nvV + ammm [2]
at

anv ann 4a= a,,,V + a,,,n. [4]

We have used letter subscripts so that comparison with the
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nonlinear equations (4) may be made easily. The coefficients
that occur in the equations for the kinetic variables are de-
pendent upon temperature and, at the reference temperature
of 6.3', to which we restrict attention here, assume the
values:

a,, = -0.677354 at,,,, = 69.1479 asA = 2.04667 am,, = -55.3988

amp,= 0.02637 amm = -4.22356

an, = -0.004107

am, = 0.002806

ah = -0.117426

a,,. = -0.183198.

Customary practice has been followed: the units are millivolts,
millimeters, and milliseconds. The perturbations m,h,n carry
no dimensions and, by hypothesis, are assumed to be small
compared to unity. An appropriate normalization for the per-
turbed membrane potential is

V =vVo; Vo = Iamm. I/amv< 160 mV.

We introduce this normalization and rearrange terms somewhat
to obtain Eqs. 1 and 2 in the form,

0dV = (at+ V v + Vn n + G?
+I (m-v) + v hJ [5]

aim at
Here 1/lam, 1, the sodium turn-on time, is the fastest time scale
of the problem and for t >> 1/ Iamm 1, the lower equation yields
v - m. Therefore, from this and the smallness of avh/Vo, we
may neglect the terms contained in the curly bracket of Eq. 5.
Potassium activation, n, is then easily eliminated by means of
Eq. 4, to give:

(at Lann) at = av + VviT at _ an )v
+a(nanvv + a a2V [6]

Next, if we set
v = soexp (ann 0t),

the diffusion term in Eq. 6 is eliminated, whence
,02/P avw a~p a3

-*= (avv-ann + V i + aunanv(P + U (Pd,at2 - Vol 3t ax2,at
It now is natural to normalize t and x as follows:

T = avnant, X = [-avnanv/62]1/4X [7]

Abbreviation: HH, Hodgkin-Huxley.
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which yields

LIP-=t2 + 2A at + (P OtaX2
in which

180r

[81

A = 2 (-a, + ann- a./Vo)/ -anvam. [9]

Thus, the problem has been reduced to a third-order equation,
Eq. 8, which has a single temperature-dependent parameter,
A. At the reference temperature X(6.3°) = 0.079. Because it is
2A - 0.16 which enters into the equation, we will not neglect
this term in what follows.

Source and pulse solutions
Both the experiments and the computations in ref. 2 consider
a current source that is uniform in time and that is located at
the origin. The wave velocity of the resulting response then may
be determined by following the crest of the voltage displace-
ment. An equivalent procedure is to consider a source that is
a delta function both in space and in time and follow the first
zero crossing of the response. This is the approach taken here;
we consider

Lp = IOb'(r)6(x) [10]
in which the value of the constant IO is unimportant. (The de-
rivative of the delta function appears on the right of Eq. 10
rather than the delta function, because of the various manip-
ulations leading to this equation.) Because the current source
is the only perturbation to the system, the initial value of
(V~m,h,n) is zero. From this it follows that the initial values of
sp and (Pt, which must enter into the solution of Eq. 10, are also
zero, initially.
The solution to the problem just posed may be obtained by

Laplace transform and a convenient form is
IO f exp (Ty-x Y+2A+- [11]

The path of integration lies to the right of the branch points of
Vy + 2X + 1/y and, for large I yI becomes asymptotic to the

imaginary axis. We consider the first zero of v (corresponding
to the crest locus of the steady current source problem) in two
different limits.

Asymptotic calculations
Small x: If we set v, as given by Eq. 11, to zero and expand for
x small, we obtain

0 = FO(T) + X2Fi(T) +0(X3) [12]
in which

Fo =
a [- * (exp -Xr)Jo(rv/i77-)]

F2 /1 [X2 1r (exp-XT)Jl(Trl -2)]
2 LX& I J.

Here, Jo and J, denote Bessel functions, and the asterisk indi-
cates convolution. To solve for the zero locus, we express this
trajectory in perturbation form:

r = ro + X2T2 + O(X3).
Then, from Eq. 12 we obtain

FO(TO) = 0

T2 =-F2(ro)/Fo'(TO).
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FIG. 1. Crest locus as a function of time (see text). (X), Numerical
integration ofHH equations; (0) numerical integration of linearized
HH equations (J. W. Cooley, personal communication).

The first-order relationship, Fo(ro) = 0, has an infinite number
of positive roots, signifying oscillations; however, it is the first
zero which corresponds to the observed crest. For the indicated
value of X, Eq. 9, we find

7o = 1.261, T2 = 0.4542.

In dimensional terms, the time of the first appearance of the
crest (see Eq. 7) is given by

7o/V , -- 3.198 msec.

This compares with 3.315 msec found in ref. 2 from the nu-
merical integration of the exact HH equations. (Note that this
time is large compared to the sodium "turn-on" time I/ Iamm
- 0.2368 msec, which fact underlines the basic correctness of
the asymptotic procedure.)
A plot, in dimensional terms, of the small x locus is shown in

Fig. 1. If we solve for x from the above we obtain

X = T O)/T2 + O(T- TO)
which implies an initial crest speed that is infinite. This feature
is found also in experiment and in computation (2).

Large r: Set x = Ur, whereupon Eq. 11 becomes
= JO exp (dr(y;U))_

16iri Jt -/y+ 2x +i/y
[13]

with

6(y;U) = y - Uvy+ 2A + /y.
We now consider Eq. 13 for T t O. Under this limit, for any
fixed U, the maximal contribution comes from the saddle point
(5) which is obtained from the condition that the coefficient of
r be stationary, (d6/dy) = 0, which yields

1
=

1-1/y2
U 2Vy+2X+l/y [14]

Fig. 2 contains a plot of the right hand side of Eq. 14. For U >
U.na,[ two real roots are possible; however, only a saddle point
to the right of ym is accessible.t For U < U.., complex con-
jugate saddle point locations are obtained. Clearly, because ym
is a point of coalescence of two stationary points, the second

t Evaluation by the saddle point method requires passage of the inte-
gration contour from a valley over a saddle point to an adjoining
valley (5).

Proc. Nati. Acad. Sci. USA 74 (1977)



Applied Mathematical Sciences: Sirovich and Knight

0.26

um 0.22

0.18

0.14

U 0.1

0.06

0.02

0

0.07k

Um

U

I

I

I

I I I I

21 4 6 8 10 12 14 16
YM y

FIG. 2. Asymptotic saddle locus, Eq. 14 in dimensionless form. FIG. 3. Exact saddle locus (see text).

derivative of the exponent, 6, vanishes at this point.
On applying the saddle point method to Eq. 13, we find that

v # 0 for U > Umax. The first zero of v occurs when U lies in
the neighborhood of Umax, and the resulting evaluation of U
requires a stationary point analysis about the point Yin. If U =
Um, then at yin, both the first and second derivatives of 6
vanish-i.e., it is a "monkey saddle."
To evaluate Eq. 13 in the neighborhood of yi, we expand

6 as follows:

6' 6'Am + 6(Y- Yi) + c(y - Yi)

with

6m = 6(ym;Um)
c = 3U/(ym - J/ym)Um3

e = - U/UM.
If we substitute this into Eq. 13 we obtain

exp (6Cm) Ai(E2/3/C'/3) [15]

in which Ai is the Airy integral (6, 7). From tables of the Airy
function (7), we find the first zero of the Airy function and from
this the asymptotic crest locus

X U-mT - 2.338,r/3(3UM/ym - 1/ym)1/3. [16]
A dimensional plot of Eq. 16 is shown in Fig. 1. The asymptotic
speed is Um = 4.1612, which in dimensional form is (see Eq.
7 for the normalization factor)

[G21anvavn I ]1/4Um = 15.148 mm/msec. [17]
Before discussing these results further, we consider the exact
asymptotic speed as given by the linearized Eqs. 1-4.
Exact crest speed
We return to the linearized HH system, Eqs. 1-4. These may
be solved by transform methods. For the case of a source pulse
of current, Iob(x)S(t), the solution for V is

V = Cl° J;Cexp [a - k(of)U]t duV=~4irj Jt k(u)
with

k(a) = - amvarmv _ anvan_ ahvavh 1/2
0T-amm o -ann or-ahh

and x = Ot (note that we now are dealing with dimensional
quantities). A saddle point argument similar to the previous one
again applies. A plot of (dk/du) versus a is shown in Fig. 3. The
value of U corresponding to the monkey saddle, ymi, is easily
obtained and is given by

Urn = 14.562 mm/msec
which is to be compared with the asymptotic value given by Eq.
17.

Discussion
The two asymptotic forms of the crest speed locus can be joined
by resorting to an analysis based on the complex valued saddle
points, when U < UM. This results in the broken line sketched
in Fig. 1. Our asymptotic analysis indicates that the crest speed,
after an initial infinite value, falls below its asymptotic value,
given by Eq. 17, and, as t t oa, only very slowly, approaches its
asymptote. This is indicated explicitly in the speed locus shown
in Fig. 4 where the dashed curve refers to results of an ap-
proximate method. Although the paper by Mauro et al. (2) does
not indicate this crest speed minimum, subsequent numerical
calculations by J. W. Cooley (personal communication) based
both on the nonlinear and linear HH equations show this fea-
ture. The results of Cooley's calculations are indicated by
symbols in Fig. 1. We have also used finite differences on these
to calculate the speeds which are indicated by symbols in Fig.
4. In both figures, small and large x asymptotics are indicated
by solid lines.
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FIG. 4. Crest speed locus (see text and legend to Fig. 1).
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In summary we have shown how simple approximation
procedures, based upon general scaling arguments and upon
asymptotic analysis, may be used to reduce the linearized HH
equations to a simple model system that involves a single pa-

rameter. This model system yields tractably to a method of
solution which, upon further asymptotic approximation, rep-

licates, to within less than 10%, the locations of distinguished
features found in the corresponding solution to the full HH
system. A prominent feature that emerges naturally from the
analysis is a decrementing propagating wave.
Our method may be of some interest in connection with the

subthreshold propagation of synaptic signals in dendritic
trees.
The close numerical correspondence between the speed of

the decrementing wave and the speed of the full-sized action
potential holds out the hope that salient features of the full
nonlinear analysis as well may be found in this simple linear
analysis.
We are grateful to Alex Mauro for bringing this problem to our at-

tention. Also our deep gratitude to Jim Cooley for his kindness in
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