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ABSTRACT The spectral problem for linear operators on
fully infinite domains is considered. A transformation first in-
troduced by Wigner is used to show a number of asymptotic
results. The method leads to a WKB (Wentzel-Kromers-Bril-
louin) theory for operators in more than one dimension. This
includes practical tools for the approximate evaluation of spec-
tra and eigenfunctions. Several general examples are devel-
oped.

In a fully infinite N-dimensional space, with typical points x
and y, the spectral problem is stated by

K = fdy K{x, y}q(y) = A+(x), [1]

with eigenvalues X and eigenfunctions +i(x). Without being
specific the integral in Eq. 1 is regarded as defined in some
general sense. Included in the definition are differential op-
erators. For example, the Schrodinger operator is given by
the kernel,

K{x, y} = --V2(8S(x - y)) + V([x + y]/2)8(x - y). [2]2

In terms of mean and relative positions the kernel be-
comes

K{x, y} = K((x + y)/2, (x - y)). [3]

The eigenvalue problem is now recast as a special case (E =
1) of the general problem

fdy K(E(x + y)/2, x - y)qi(y; e) = Xq(x; E), [4]

for which asymptotic results in small E may be developed. If
in some sense K depends "gently" on the first argument of
Eq. 3, the asymptotic results yield an approximation when E
= 1.

Alternative formulations of Eq. 4 are given by

incorporates both these features. In adopting Eq. 4 as our
starting point we follow an earlier convention (1-3). In what
follows, we refer to the first variables of Eq. 3 as "slow," the
second as "fast," and when convenient refer to Eq. 3 as a
peaking function of its second argument.

Asymptotic Development

If e is set to zero in Eq. 4 the kernel becomes translationally
invariant in its second argument. This suggests that the ei-
genfunctions be developed in WKB (Wentzel-Kromers-
Brillouin) form [a procedure usually associated with differ-
ential operators (4, 5)]

qm = Am(ex; E)exp[i4m(Ex)/E] = exp[im(Ex; E)/E]. [7]

(Each of the two equivalent forms proves to be useful in the
following.) The subscript m in Eq. 7 signifies that a number
of branches can be expected, and the solution to Eq. 4 will
be in the form of a sum of terms of the form of Eq. 7 (6, 7).
The subscript in Eq. 7 will be suppressed until necessary.

The variable change

q = Ex, u = x - y [8]

in Eq. 4 yields

XA(q; E) = f duK(q - Eu/2, u)A(q - Eu; E)

x exp[i{'f(q - Eu) - O(q)}/E].

Under the limit E I 0, q fixed, Eq. 9 becomes

fdu K(q, u)exp[-iu -aD (q) = X.uePl aq

[9]

[10]

The structure of Eq. 10 becomes more transparent with the
definition

fdy K((x + y)/2, (x - y)/E)Of(y;.e) = V

fdy K(\/P(x + y)/2, (x - y)/\/P-)q,(y; x/7) = A,

K(q, p) = du K(q, u)exp[-ip * u]
[5]

[6]

[11]

introduced by Wigner (8) in another context, which we term
the Wigner transform. Eq. 10 then becomes the first-order
partial differential equation,

where X = ENX' = EN/2XA, with related transformations of the
dependent variables and eigenfunctions. Each such formula-
tion has formal features that make it attractive. Thus Eq. 4
brings out the slow dependence on the first argument, Eq. 5
brings out the peakiness in the second argument, and Eq. 6

K(q, p) = X, p =-d8q
If K is hermitian, then K is real for real p and q.
On taking the expansion of Eq. 9 to O(E) we find

8K.A 1 aK 1du K.- + -Au -

L aq 2 aq 2 aqmfqnl]
x exp[-iu p] = 0.
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In Eq. 13 A represents the first term of the development in E.
Since higher orders will not be pursued a notational change
is not deemed necessary. As a consequence of Eq. 11, Eq. 13
may be written in the form of the continuity equation,

a-* (A kP) = 01 [14]
aq

in which IKp = a/Op K(q, p) plays the role of a streaming
velocity.

It is of interest to note that in spite of the nonlocal charac-
ter of the basic equation (1), the development results in local
equations (12 and 14). Thus, asymptotically the Wigner
transform (11) produces a local equation in (q, p) space irre-
spective of whether the original formulation (1) in (x, y)
space is local or not.

Integration of Eq. 12 follows standard lines (9). Along
characteristic curves

dq aK
dt ap '

dp _ ok
dt aq

from the Kolmogorov-Arnold-Moser theorem (15), the be-
havior of the irregular spectrum remains unclear and the rel-
evance of the WKB method itself for such situations is not
certain (16).

It should not go unnoticed that such well-understood ob-
jects as say regular Fredholm operators lead to the rich vari-
ety of nonlinear dynamical problems that are widely dis-
cussed in the current literature (17).

One-Dimensional Case-An Area Rule (1-3)

In this instance, the dynamics may be avoided since the solu-
tions of Eq. 15 are simply the contours of Eq. 12. A typical
contour is sketched in Fig. 1. If we denote the branches by
pm(q; X), then "time" is trivially eliminated from Eq. 16 and
we write

dqm = p.(q; X).dq [19]

[15] The amplitude equation (14) yields

The phase changes according to

d(D Idq
dt dt [16]

The time t is simply the natural coordinate along the trajec-
tories (Eq. 15). Viewed as a dynamical system Eq. 15 has the
hamiltonian K as an invariant, K = X (Eq. 12). Unlike a true
dynamical system, neither the time nor the dependence of q
on it is of essential importance in the solution of the original
problem.

Features of the eigenvalue problem follow from consider-
ation of the hamiltonian system (Eq. 15). A clear dichotomy
is based on the question of whether Eq. 15 is completely
integrable (10, 11). In the event that it is, then the orbit of the
dynamical system (Eq. 15) is restricted to an N-torus, and
the system (Eq. 15) possesses N invariants-(the actions)

[17]

where the curves Vk refer to the N independent irreducible
circuits of the torus. This is the case treated by Keller (6) in
his classic paper. Our derivation shows that his treatment
applies to the more general case developed above.
From Eq. 14 it is seen that the amplitude, A, diverges

when bundles of characteristics constrict so that the cross-
section loses dimensions or when the flux velocity vanishes.
The loci of such points form the caustics of the integrated
equations, and the solution undergoes a change in phase at
such boundaries. The generic result is that a phase change of
ir/2 results for each dimension lost or for each momemtum
that changes signature (6). As a consequence, Eq. 7 will
yield a single-valued solution only if

Jk =2'(Vk +/k/4)E, k = 1, . . ., Ng

Am m [Kp(pr(q), q)]f1/2, [20]
which diverges at the four vertical tangents, or turning
points, indicated in the figure. In traversing the contour in
the sense shown, the phase is found to increment at convex
turning points by ir/2 while at concave turning points it dec-
rements by ir/2 (1). For any simple closed loop there are two
more convex than concave turning points and we obtain

fypdq = si(A) = 27(v + 2 E, [21]

where v is an integer and s4(X) refers to the area enclosed by
the curve K(q, p) = X. (The Maslov index is 2.) We refer to
Eq. 21 as the area rule.

A Class of Separable Problems

Consider the class of kernels, invariant under rotation and of
the form

K(q, u) = K(q, u) = K(elx + yj/2, Ix - yI). [22]

Kernels of this type occur in the study of vision, in which
case they operate in two dimensions (18). To introduce nota-
tion and for later use we briefly consider the eigenvalue
problem based on the Laplace operator,

V2q,=-k * [23]

PI (q)

[18]

which is known as the Einstein-Brillouin-Keller formula
(11). Both vk and a are integers and the latter is referred to
as the Maslov index (12). A consequence of this discussion is
that operators having the same action integrals have, asymp-
totically, the same eigenvalues. Under certain circumstances
this is exact (13).

In the event that Eq. 15 is not completely integrable the
situation is more difficult to treat and the corresponding ei-
genvalues have been termed the irregular spectrum (14). Al-
though such hamiltonian systems now are better understood

FIG. 1. Typical contour for K(q, p) = X. Turning points are indi-
cated by vertical tangents and branches by pk(q), k = 1, . . ., 4.
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In N dimensions,

1 a a 1'V2 = ~j rn-1-+ -.Trn-1ar r r2 [24]

where £ refers to the angular part of the laplacian. We de-
note spherical harmonics by Sm(,) so that

2Sm(n) = -n(n + N - 2)Sm(n). [25]

By m(n) is meant theN - 1 indices associated with the "radi-
al" index n. Thus, if we write

O/In = n(r)Sm(n) [26]

we find

[27]

where Jm refers to the Bessel function of index m.
The spherical symmetry of Eq. 22 implies that its eigen-

functions are products of radial eigenfunctions and spherical
harmonics. Therefore, instead of Eq. 7 we write

Orm(n) = Sm(n)An(q; e)exp[i4In(q)/e]. [28]

If Eq. 28 is introduced into Eq. 4, then under the limit e I 0
we find

K(qp) = ,

where

p = p(p, q) = [p2(q) + e2(n - 1 + N/2)2/q2]492
a4)(q)
aq

p

q

FIG. 2. Typical contour of Eq. 29 when K is even in p and two
branches occur.

the particular topology of Eq. 29 and particularly on the
[29] branch structure that is implied by Eq. 29. As an illustration

we consider the case in which a typical level line of Eq. 29
has the form shown in Fig. 2; the assumption is that K is
even in p and that only two branches appear. The form of p
= p(q) then follows from Eq. 30 and the two limits e I 0, n
fixed and n = 0(1/e) and are shown in Figs. 3 and 4, respec-

[301 tively. In the second case since the contour is bounded away[30] from the origin the one-dimensional analysis applies. Thus,

In terms of the underlying dynamical problem as represented
by Eq. 15, Eq. 30 represents the radial momentum compo-
nent. It is interesting to note that if Eq. 28 is introduced into
the Helmholtz equation (23), we get the "exact" value n(n +
N - 2) instead of the above asymptotic value [n + (N/2) -
1]2 = n(n + N - 2) + [(N/2) - 1]2. It should also be noted
that for n fixed E X 0, the second term of the first argument
disappears (see discussion below). This term is retained for n
large and Eq. 29; Eq. 30 represents a uniform approxima-
tion.
At the next order we obtain the amplitude equation (14),

which yields in this case,

A ( q -p K(q,p(p, q)) [31]

For the class of kernels (22) the problem is reduced to an
equivalent one-dimensional problem as specified by Eqs. 29
and 31. At this point the procedure depends on the contour
plots of Eq. 29 in the (p - q) plane and the one-dimensional
treatment given above can be referred to (1-3). In particular,
the various turning points as determined by the vanishing of
Kp in Eq. 31 locate the points of attachment for the corre-
sponding branches of Eq. 29. An important modification is
that the origin q = 0 is an additional critical point as Eq. 31
indicates. An analysis of this region demonstrates that solu-
tions there take on the behavior of the Bessel functions as in
Eq. 27 and that these must be attached to the conventional
WKB form of the solution. Further discussion depends on

p

FIG. 3. Inner curve, typical contour ofp = p(q) as determined by
Eq. 30, when m = 0(1); outer curve corresponds to m = 0 and is the
same as Fig. 2.
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p briefly indicate the modification we now regard K as a ma-
trix and 4i a vector in Eq. 4, and thus A in Eq. 7 is a vector
while 4 remains a scalar. At lowest order we find

[34]
[35]

(K(q, p) - X)l = 0

A X 1.

The eigenvector 1 is a function of position. The constant X is
forced to be the characteristic value of Eq. 34 through the
condition

X X ~~~~~~~~q

FIG. 4. Inner curve, m = O(E-1); outer curve, as in Fig. 3.

the condition that X be an eigenvalue is the same as Eq. 21,
namely,

giy p(q)dq = 2r(v + 2 ) [32]

(v an integer), where the area is the hatched portion shown in
Fig. 4. On the other hand, the case depicted in Fig. 3 is com-
plicated by the fact that the Bessel function behavior in the
neighborhood of the origin overlaps the inner turning point.
In this case it may be shown that the condition that X be an
eigenvalue is that

Mp(q)dq = 21r(v + m +
1

e, [33]

where the area now refers to the hatched portion of Fig. 2. It
is an interesting fact that formula 32 may be shown to yield
Eq. 33 in the limit e I 0, m fixed, and is a uniformly valid
condition for X to be an eigenvalue.

Extension to Systems

Both the general analysis and the particular cases treated
above can be directly extended to the case of systems. To

det k(q, a\ x = 0,
aq

[36]

which in turn determines the phase. The proportionality fac-
tor in Eq. 35 is also a function of position that can be deter-
mined by proceeding to the next order in the analysis. If this
is denoted by a, we then find

a = [(1, kplo"]. [37]
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