
Proc. Nati. Acad. Sci. USA
Vol. 83, pp. 527-530, February 1986
Applied Mathematical Sciences

The eigenfunction problem in higher dimensions: Exact results
(Wigner transform/Wentzel-Kramers-Briflouin method/integral operator spectrum/integral equations in higher dimensions)

BRUCE W. KNIGHTt AND LAWRENCE SIROVICHtt
tThe Rockefeller University, New York, NY 10021; and tBrown University, Providence, RI 02912

Communicated by Kenneth M. Case, August 6, 1985

ABSTRACT A hermitian integral kernel in N-space may
be mapped to a corresponding Hamiltonian in ZN-space by the
Wigner transformation. Linear simplectic transformation on
the phase space of the Hamiltonian yields a new kernel whose
spectrum is unchanged and whose eigenfunctions follow from
an explicit unitary transformation. If an integral kernel has a
Wigner transform whose surfaces of constant value are con-
centric ellipsoids, then the Wigner transform yields exact re-
sults to the eigenfunction problem. Such behavior is asymptot-
ically generic near extrema of the Wigner transform, from
which follow simple and robust asymptotic results for the ends
of the eigenvalue spectrum and for the corresponding eigen-
functions.

a partial differential equation for 4 that bears the same rela-
tionship to Eq. 1 that the eiconal equation of geometrical
optics (5) bears to the wave operator. The eiconal equation is
in fact just an example of our more general case.
Although Eq. 6 results from the lowest order of a formal

asymptotic theory no information about the original problem
(Eq. 1) is lost in the limit process indicated in Eq. 5. In fact
the exact kernel is recovered by inverse transform,

W-1[K] = K((x + y)/2, x - y)

=(2)N f K((x + y)/2, p)exp[ip(x - y)]dp. [7]

It has been shown in ref. 1 that WKB (Wentzel-Kramers-
Brillouin) theory [usually presented for differential operators
and culminating in the EBK (Einstein-Brillouin-Keller) (2-
4) formulas] extends in a useful way to the general eigenfunc-
tion problem

I K{x, y}lf(y)dy = A+(x). [1]

The formal treatment applies to formal hermitian kernels

K{x, y} = K(E(x + y)/2, x - y) = K*(E(x + y), y - x) [2]

for which the integral in Eq. 1 is defined in some sense. Inte-
gral, differential, and pseudo-differential operators are in-
cluded in this class. The results, which are presented as gen-
eral in following sections, likewise hold for this broad set of
operators.
The treatment in ref. 1 begins with the representation of

the solution in the form

f(x) = exp[io(Ex: e)/E]. [3]

Under the limit e I 0 it was seen that the solution of Eq. 1
follows from the properties of the Wigner transform of K,

K(q, p) = W[K] = f K(q, u)exp(-ip * u)du. [4]

It follows directly from hermiticity Eq. 2 that K is real.
Next if we let

p = lim VO [5]

in Eq. 4, then in the limit equation [1] with Eq. 4 substituted
becomes

K(q, V) = x, [6]

(In Eq. 7 and in what follows e is set to unity.) This observa-
tion is underscored by a variety of exact results obtained
below, which follow directly from study of K. Certain of
these results have been reported for the one-dimensional
case (7).

Operator Composition

The results given in this section, which will be used later, are
all elementary to derive and do not depend on whether the
spectrum of a kernel is discrete, continuous, or mixed.

If we write operator composition or product as

(KlK2){x, Y} = f K{x, z}K2{z, ydz, [8]

then

Tr K1K2 = f K1{x, z}K2{z, x}dzdx

= (2rN fK1(a)K2(l)dN [9]

where

4= (q, p) [10]

is the phase space variable.
An immediate corollary is that

K{x, x}dx = (2ir)N f R()d, [11]

gotten by taking one of the operators of Eq. 9 to be the delta
function 8(x - y). Note that Eq. 11 may be divergent.

The Wigner transform of an operator product is the bilin-
earform given by

W[K1K2] e-f k 0K2

- f dgd 2kj)k22)eXP[2i&({1 g2, g] [12]

Abbreviation: EBK, Einstein-Brillouin-Keller.
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with

1 22\(1{ a)= E |lk 9k qlk Ik | [13]
k=1 Pk Pk Pk Pk

The proof of Eq. 12 is a direct extension of that given in ref.
7. Note each term of the sum [13] represents the projected
area of the parallelogram generated by the tips of (i', g2, g)
in the (qk, Pk) plane. An alternative representation of [13] is

Hamiltonians are connected by linear symplectic transfor-
mations, this asymptotic result is exact. This we show next.
For this purpose consider the matrices M defined as sym-

plectic by the condition (10)

MJM = J. [21]

These define linear canonical transformations in the sense of
Hamiltonian mechanics:

A&(41, 2, g) = (g1 - O . J .(2 - O 1= M{.
where J is the 2N X 2N antisymmetric matrix

0
J-1 0.

Each of these transformations in turn induces a transforma-
tion of K to KM defined through

[15]

It proves convenient to restate the eigenvalue problem
(Eq. 1) in terms of the projection operator based on the ei-
genfunctions of Eq. 1,

E{x, y} = I(x)I*(y) [16]

The Wigner transform corresponding to Eq. 16 is

W[E] = E() = E(q, p)

= du4'(q + u/2)i*(q - u/2)exp(-ip * u).

Since

KE = XE,

[17]

A

Km = K(Me) = Km(f) [23]

Because Eq. 22 is canonical it leaves the actions, Jk, given
by Eq. 20 invariant and therefore from the EBK conditions
Km and K asymptotically as E I 0 have the same eigenval-
ues. However, more can be said:

Under all linear symplectic mappings KM of the operator
K, as in Eq. 23, every eigenvalue X is exactly invariant,

KMEM = XEM. [24]

To prove this assertion we introduce Eq. 22 into Eq. 19 to
obtain

(K E)(M) = XE(Mf) = xEt(s). [25]

Then if Eq, 12 is applied to the left-hand side of Eq. 25, with
[18] the variable changes '

= M t1,{2 = Mg we obtain [using
Eqs. 14 and 21 and det(M) = 1]

it follows from Wigner transformation that

koE= XE.
KM 0 EM = XEM.

[19]

An Isospectral Class of Operators

Consider for the moment two one-dimensional hermitian op-
erators K1 and K2. Their Wigner transforms k1 and K2 are
therefore real, and we consider level curves

Kj(q, p) = A = K2(q, p')

on the (q, p) and (q', p') planes indexed by the level variable,
X. If for all real X that lead to such curves, these curves en-
close equal areas respectively on the (q, p) and (q', p')
planes, then asymptotically (E I 0 in Eq. 2) the eigenvalue
spectra of K1 and K2 are equal (6, 8). (Beyond a value of X at
which the enclosed area goes to infinity the spectrum be-
comes continuous.) As a consequence of the discussion in
ref. 1 we can make a similar remark for the higher dimen-
sional case. If two (real) Wigner transforms K1 and K2,
viewed as Hamiltonians, are completely integrable (9) and
for equal "energies," X, have equal sets of action integrals

Jk = fYi p * dq, [201

[26]

Finally, if we apply the inverse Wigner transform to Eq. 26
we get Eq. 24.

It is worth noting that, although the motivation for this
observation rests on the invariance of the EBK conditions,
which in turn depeqd on the complete integrability of K(4)
(as a Hamiltonian) this property plays no role in the proof.
The symplectic matrices M induce on the operators K iso.
spectral equivalence classes {KM}, independently of the
Hamiltonian structure of KM(W. Also note the proof is ele-
mentary and independent of whether the spectrum is dis-
crete, mixed, or continuous.

Eigenfunction Transformation Under Symplectic Mapping

The eigenfunction transformation under Eq. 23 may be given
an explicit form. To show this we express a symplectic ma-
trix in block form

[
a [27]

where each submatrix is N x N. It then follows that:
IfOm denotes an eigenfunction of the transformed kernel,

Eq. 23,

KMom = AoM
over their respective irreducible circuits, Yk, then asymptoti-
cally the corresponding operators K1 and K2 will have equal
eigenvalue spectra. This is a direct consequence of the EBK
formula (6, 8, 9) discussed in ref. 1. (A part of the fine print is
the assumption that both Hamiltonians give rise to like caus-

tic structures.) For sets of operators whose corresponding

[28]

and qi represents the corresponding eigenfunction ofK, then

OMW= 1 dyqi(y)x(2 p)NI (Ydet(y))[/2
x exp[-i(xY-'Sx - 2xY-lfSy + yaYf-'y)/2], [291

[22]
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co represents a constant ofunit magnitude up to which Eq. 29
is undetermined.
The somewhat lengthy proof of Eq. 29 is elementary and

independent of the details of K and of its spectrum and
roughly follows the one-dimensional case.
Eq. 29 may be shown to be a unitary transformation on {i,

say EM = UM+i. In this format KM = UMKU-1 from which
the isospectral character of the transformation is direct.
A particularly interesting illustration of these results fol-

lows from the one-parameter subgroup of symplectic matri-
ces,

M = exp(At). [30]

Then it may be seen that as a result of the symplectic condi-
tion [21] the infinitesimal generator A must have the form

~a b
A= -at [31]

with symmetric N x N submatrices,

b = bt, c = ct. [32]

The symplectic matrix [30] can be thought of as inducing a
flow in i-space. In fact the flow vector field is given by the
Hamiltonian equations of the quadratic Hamiltonian,

H 4C a1 [33]
2 [ a b [3

Under this flow the eigenfunction (Eq. 29) becomes a func-
tion of t and we write

P(x, t) = f/M(X). [34]

For example by direct calculation it may be shown that T
satisfies

i at CMn dir bmn |~t 2= +X 2 mXnAPat 2 aXmaXn 2

i /a a a \
= GA*2 mn m y- + Xm)=GA [35]

(repeated indices summed, here and below), where the de-
pendence of the second-order differential operator GA on A
is through the submatrices (Eq. 31). It follows from Eq. 35
that the set of second-order differential operators GA are in-
finitesimal generators algebraically isomorphic to the set of
matrices A. The Green's operator for Eq. 35 is the unitary
operator given in integral form by Eq. 29.

Exactly Solvable Operators

If the Wigner transform of an operator has the form

K = k(q 2 + p2 , q2 + pi,*** q2 + PN) [361

(or if it can be put into thisform by a linear symplectic trans-
formation), then the operator is explicitly solvable. The cor-
responding kernel,

K(q, x - y) = (2 )exi k( - y)d [37]

exp(ip-(x - y))dp [37]

has eigenfunctions

(i = Hnl(Xl)Hn2(X2) . . . HfN(xN)exp(-x2/2), [38]

where Hn(x) represents the Hermite polynomial of index n
(11). The corresponding eigenvalue is given by

A = (.)nl+...+nN K(rl, . . ., rN)Lnl(2rl) ...

LnN(2rN)eXP(-rl - . . . -rN)dr1 . . . drN, [39]

where Ln refers the Laguerre polynomial of index n (11).
The proof of these assertions follows the lines of the one-

dimensional treatment (7). The steps are elementary and not
constrained by the way K in Eq. 36 depends on its arguments
except for the permissive condition that the integral Eq. 39
should converge.
Viewed as a Hanliltonian, Eq. 36 is completely integrable

and represents a system of separable (generally nonlinear)
mechanical oscillators. The actions are given by Jk = (qk +
pk)/2 and the corresponding frequencies by k = aK/aJk. As
an illustration of a case in which such an operator arises,
consider the Schrodinger operator GA that appears in Eq. 35.
Its Wigner transform is the Hamiltonian (Eq. 33). If the ma-
trix A (Eq. 31) has the generic feature of eigenvalues that
occur in imaginary pairs (±iw), the Hamiltonian (Eq. 33) can
be reduced to the form Eq. 36, and it follows that the eigen-
functions of GA are products of Hermite functions as in Eq.
38. [The precise form is complicated by the unraveling of the
symplectic form needed to place H (Eq. 33) in the form of
Eq. 36.]
Although Eq. 36 signifies a separable mechanical problem

it does not imply that the corresponding kernel is factorable.
As an illustration of this remark consider the 3-space kernel

[40]Kjx, yj - exp[-Ix - yl(l + k2(x + y)2/4) 12I
47TIx - yj

The Wigner transform of Eq. 40 is

K 1

K=1 + k[(p/(k)"'2)2 + ((k)112q)2] [41]

and the operator is thus solvable by the above procedures. In
particular, the eigenfunctions are given by Eq. 38 and the
eigenvalue calculation, which is given by Eq. 39, may be re-
duced to

1 (- - \ n"+n"+I" exp(-t/k) dt.ln2n3k Io +t (1 + t)3

Under the limit k I 0 it may be shown that

1
Xnlj2n3 (1 + k(2n, + 2n2 + 2n3 + 3))'

[42]

[43]

a result that is uniform in the subscripts nj, n2, n3. (It should
be noted that Eq. 43 is exactly the result given by Eq. 41 if
the area rule of the previous paper is applied.) For k = 0 the
spectrum of Eq. 40 is the continuous interval (0, 1) and Eq.
43 indicates the way in which this is filled in under the limit
k I 0.

Principal Eigenfunctions

A significant application of the section above relates the ei-
genvalue spectrum of a general K to the behavior of K in the
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neighborhood of one of its extreme points. By ref. 1, this
neighborhood corresponds to the extreme eigenvalues in the
spectrum of the operator and plays a basic role because it
describes modes that are most persistent or most highly am-
plified. In the neighborhood of an extremal point (after a
trivial change of origin) we have

K~+ 2 ui660U. [44]
2

This takes us back to the case of a quadratic Hamiltonian,
which can be put into the form of Eq. 36 by linear canonical
transformation. The approximate eigenfunctions are there-
fore products of Hermite functions and the eigenvalues fol-
low easily from the methods of the previous section (a simple
explicit expression results in this case). In this same vein,
higher-order approximations may be achieved by taking Eq.
44 beyond second order and then developing the Hamilto-
nian in Birkhoff normal form (12, 13).
We comment further that if is not self-adjoint, the "ori-

gini" (a singular point of Hamilton's equations) to which we
shift to obtain Eq. 44 may lie at a complex point in the (q, p)
phase space, at which the analytic continuation of K has a
saddle. In particular cases of this sort the procedures sum-

marized above are still effective in calculating the generally
complex spectrum.
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