Plane waves and structures in turbulent channel flow
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A direct simulation of turbulent flow in a channel is analyzed by the method of empirical
eigenfunctions (Karhunen-Loéve procedure, proper orthogonal decomposition). This analysis
reveals the presence of propagating plane waves in the turbulent flow. The velocity of
propagation is determined by the flow velocity at the location of maximal Reynolds stress. The
analysis further suggests that the interaction of these waves appears to be essential to the local
production of turbulence via bursting or sweeping events in the turbulent boundary layer, with

the additional suggestion that the fast acting plane waves act as triggers.

. INTRODUCTION

In an early paper Betchov' suggested that the transition
process in wall bounded flows is due to secondary instability.
The essential three-dimensionality of this transition process
was experimentally demonstrated by Klebanoff ez al2 An
important qualitative analysis of this behavior, based on kin-
ematical wave theory, is to be found in the work of Landahl,?
and a detailed picture of the instability mechanisms at work
in boundary layer and parallel flows has been presented by
Orszag and Patera*® and Herbert.”® Recent reviews of this
work have been given by Herbert’ and Bayley et al.'° In
brief, the present picture of the phenomena holds that insta-
bilities secondary to the two-dimensional Tollmien—
Schlichting (T-S) waves traveling obliquely to the stream-
wise direction cause the unsettling of the flow. (These analy-
ses furnish a critical Reynolds number, Re, which more
nearly corresponds to experiment.) Thus plane waves trav-
eling at an angle to the propagation vector of the T-S waves,
and which ride piggyback on these, experience the greatest
growth.

In the present study we show that plane wave modes are
present in turbulent flows and continue to play an important
if not essential role in turbulent wall bounded flows. The case
which we treat is that of plane channel flow (Poiseuille flow)
at Re = 1500 (based on the channel half-width 8) or equiv-
alently Re, = 80, based on the wall shear velocity «_. This is
the flow generated numerically by Keefe e al.'' for the
study of Lyapunov dimension and analyzed by the proper
orthogonal decomposition'>'* by Ball et al.'* The dimen-
sions of the computational cell, based on channel half-width,
are 1.6m X2 X 1.67 (in x,p,z—the streamwise, normal, and
spanwise directions), with a corresponding grid resolution
of 24 X 33 < 12. This is somewhat on the coarse side but ade-
quate for present purposes. Henningson et al.,'® in their
study of the growth of a turbulent spot, consider the same Re
and a cell size 357X2X257 with a resolution of
256X 33X 256. Thus they have a similar coarse graining but
pay more attention to large scales. As a result of the disre-
gard of large scales and thus fewer memory demands we are
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able to observe the overall flow at relatively fine time incre-
ments. This is of some importance in the analysis that fol-
lows. (See Ref. 14 for more details of our simulation.)

The Reynolds number for the flow under consideration,
Re = 1500, is perhaps only 15% above the critical Re based
on numerical experiments.*® In the terminology of Patel
and Head'® the turbulence is continuous but not fully devel-
oped. Uniike the case for closed flows, Keefe et al.'' have
shown that the attractor size of channel flow grows explo-
sively and that the Hausdorf dimension is roughly 780 at this
value of Re. Therefore, relatively many modes participate in
the detailed motion of the flow. The structures represented
by these modes and their importance in the dynamical be-
havior of turbulent channel flow is presented in the next
section.

li. PRELIMINARY DISCUSSION

The numerically generated flow under consideration is
driven by a fixed pressure gradient. As a result, in the chaotic
regime the flow rate Q changes with time. This flow rate can
be thought of as undergoing a chugging motion. At the initial
instant the flow is essentially laminar (Poiseuillian). The
corresponding flow rate exceeds the mean turbulent value
preferred by the flow and is therefore an unstable rate for Q.
Instability first and then chaos act to diminish this flow rate,
When the flow rate falls below the critical flow rate the flow
then tends to relaminarize. In the process the flow rate ex-
ceeds its critical value again (before becoming Poiseuillian)
and the process repeats. In this respect the phenomenon re-
sembles what is found in pipe flow as first noted by Reyn-
olds.!” (A difference, however, is that the turbulence here
can establish itself laterally and spread.) Thus the flow un-
dergoes uneven cycles of contraction and expansion. In most
flow experiments the mass flow rate is controlled,'®**! and
the intermittency then appears in the pressure drop. Figure 1
shows a segment of the time history of the flow rate obtained
in this simulation (as indicated by the bulk mean velocity
through the channel, «,, ). Furthermore, this process can be
regarded as taking place locally but in extended regions of
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FIG. 1. Variations in bulk mean velocity, u,, (¢ * ).

space. Only some regions of the flow are in the process of
becoming turbulent while other regions are in the process of
relaminarizing. The process just described bears a relation-
ship to the growth of turbulent spots®>** and the results that
are presented here bear on the recent numerical study of spot
spread by Henningson?* based on kinematical wave theory.
As will be seen our results show some resemblance to critical
layer phenomena in linear stability theory. By contrast the
recent experiments and analysis of Kistler and Markus®’
appear to minimize the role of the critical layer in the accel-
eration of retarded spots. However, since they did not pro-
duce bursts this point requires further study.

A characteristic feature of the destabilizing effect on the
flow being described is the phenomenon of turbulence-pro-
ducing events, viz., bursts and sweeps as described by Will-
marth.?®*’ These events are main contributors to the Reyn-
olds shear stress, as has been well established in both
experiment®® and computation.”® As preparation for de-
scribing these we show in Fig. 2 the distribution of the rms
velocity fluctuations and the mean Reynolds shear stress
across the channel. The center of the channelisaty * = 80.0
(in wall units), and the ensemble-averaged flow is symmet-
ric about the midplane.

It is observed that for this low Reynolds number flow,
the maximum Reynolds shear stress occurs near the plane
y* =30.Kim et al.?® also find a peak Reynolds stress in the
same vicinity at the higher value Re = 3300. (Here, as in
Ref. 29, the peak rms value of u lies near y+* = 15.) This
agrees with the experiments of Eckelmann.*® At higher
Reynolds numbers the location of peak Reynolds stress
moves farther away from the wall.>! (We mention in passing
that a linear stability analysis of laminar flow at the same
value of Re leads to a peak velocity perturbation at y * ~ 14
and a peak Reynolds stress at y © =26 for the most unstable
mode. However, if the turbulent mean velocity profile is used
in the stability analysis both peaks occur at different loca-
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FIG. 2. Root-mean-square velocity fluctuations and Reynolds shear stress
across the channel: ——, u,,.; === Urnss "5 Womss —— | (L) ].

tions, relatively near the centerline.*? ) There is both theo-
retical®® and experimental®* evidence that y* is of order
(\/—RZ ), where Re, is the Reynolds number based on fric-
tion velocity. Sreenivasan® also finds that peak u,,,, occurs
aty* = 15 over a wide range of Re,. The latter is in keeping
with universal wall behavior which leads to the log layer but
the location of peak Reynolds stress obviously does not fol-
low this scaling. Townsend* has pointed out that not all of
the wall dynamics follow the universal scaling and invokes
the notion of “active and inactive motions” (see also Brad-
shaw*®) to account for the differences. Our understanding
of this region is incomplete.
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FIG. 3. Velocity profile, u, at y* = 13.48 at fixed values of x and «.
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The existence of wall-layer streaks®’ in the present sim-
ulation is indicated by Fig. 3, which displays an instanta-
neous streamwise velocity profile in the spanwise direction
at a fixed value of x *. The streak spacing approaches the
accepted value A ;¥ =100 when averaging is done over the
entire ensemble. As noted by Kim ef al.,”® wall-layer streaks
are consistent with the existence of streamwise vortical
structures.

The passage of local turbulence-producing events
(Reynolds shear stress) is depicted in Fig. 4, which shows
the plane y* = 29.25 at the sequence of times indicated.
Solid contours indicate — uv>0 for v>0 (bursts) and
dashed contours indicate — uv>0 for v<O (sweeps).
[Since the numerical simulation assumes periodicity in the
streamwise (and spanwise) direction the structures reenter
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at the left after leaving at the right.] As has been previously
observed,®® in fully developed turbulent flows these local
structures travel downstream throughout the near-wall re-
gion. In the buffer layer at y* = 15, Johansson ef al.** re-
port this velocity to be about 10.6u,, which corresponds to
the local mean velocity at that elevation. For the flow under
consideration here, the waves produce structures that are
advected with the mean velocity at the plane of peak Reyn-
olds shear stress, namely u(y* = 30) = 15.8u,. As will be
seen in Sec. IV the maximal disturbance region lies in the
vicinity of maximal Reynolds stress.

To analyze the flow we have found it useful to use the
Karhunen-Loéve procedure for generating empirical eigen-
functions (also referred to as proper orthogonal decomposi-
tion by Lumley'*'? ). This method has received a number of
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FIG. 4. Contours of the instantaneous Reynolds shear stress in the (x,z)
planeat y* =29.25. (a) + + =252.0; (b) 1 * =260.4; (c) t * = 268.8.
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extensions for use in fluid flows and is well described in the
literature.**** In brief, the procedure entails forming the
correlation matrix

K, (x,x") = (u;(x)u;(x')), (1

where angle brackets indicate an ensemble average. The em-
pirical eigenfunctions (which in a well-defined sense are the
optimal functions for describing the flow) are obtained by
solving the integral equation

[ &uxxr, 0000 =av, 0 @)

(summation convention assumed ) where integration is over
the domain of the flow. ( This is finite in the present instance
as a result of the spatial periodicity of the simulation.) On
mathematical grounds the eigenfunctions can be taken to be
a complete orthonormal basis set. If the complex inner prod-
uct

(fg) =ff;*(x)g,(x)dx (3)

is defined (the asterisk denotes the complex conjugate), then
A= {(Va)?) (4)

is seen to give the average energy of the flow in the V direc-
tion, and if W and V represent two different empirical eigen-
functions then

(W) (Vo)) =0, (3)

which shows that the various modes are statistically orthog-
onal or uncorrelated. Since ensemble averages can be regard-
ed as being time averages, this also states that the modes are
uncorrelated in time. It is important for later discussion to
understand that this does not imply that the modes do not
participate in important short time interaction.

lIl. PLANE WAVE MODES

As aresult of the fact that the flow is unbounded in the x
and z directions, K;; is homogeneous in those directions
and the eigenfunctions take on the form

U@ (xpz) = V(q)(y;k)e-i(k,x+ fs2)

=V{?() exp( — ikx), (6)

where k = (%,,0,k; ). The superscript or quantum number ¢
reflects the fact that for each k there is a hierarchy of modes.
Thus the empirical eigenfunctions can naturally be regarded
as plane waves. In the simulation both streamwise and span-
wise directions are taken to be periodic. Thus we write

k, =2mm/L,, k;=2mn/L, (7)

where L, and L, represent the length scales in the stream-
wise and spanwise directions. For later reference it is useful
to measure L, and L, in wall units. Since the half-channel
height is 80 wall units it follows that

L} =L}~=400, (8)

where the + superscripts denote wall units. In any case the
integers m and n of (7) denote the number of full waves in
each of the two directions.

As a word of caution we point out that the presence of
Fourier modes in the x and z directions in no way implies
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FIG. 5. The time history of the phase for the eigenfunction with
k= (131).

linear behavior. For example, the interaction of modes V(¥
and V{#’ will produce a wave of wave number k + k’. How-
ever from (5) it follows that these modes will be statistically
orthogonal if k + k’£0. In rough terms one might say that
independent modes interact on a short time scale but not on a
long time scale.

The projection of the flow along an eigenfunction

a? (1) = (V,"u) (9)
furnishes a time history of the mode, which itself is the eigen-
function of the temporal snapshot kernel.*® For example, in

Fig. 5 we plot the history of the phase of a{}’ (¢). The phase is
defined by

() =tan " '[Im(a{}’)/Re(af;")]. (10)

It is clear that this mode has a secular time course described
by a single frequency,

o) = lim ¢ /1. (11)

f1eo

Thus if we represent the actual flow in terms of the empirical
eigenfunctions

u="S g OV =T v?, (12)
.k .k

then, in particular, v{}’ has the form

W=V (13)
of a propagating plane wave with direction determined by
m = 1and n = 3 [see (7)]. The time-dependent coefficient
or magnitude, b {3’ (¢), is typical of variables found in turbu-
lent flows and its magnitude is shown in Fig. 6.

Before elaborating on this result we pause to define the
energy of the flow,

E=((uw) =3 1. (14)

.k
A list of eigenvalues is shown in Table 1. If we choose as a
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FIG. 6. The time history of the magnitude for the eigenfunction with
k = (1,3,1). The horizontal line is the eigenvalue for this mode.

TABLE I. A summary of the eigenvalue calculation: First 38 values.

Energy,
Index m n g Eigenvalue Degeneracy fraction of
total
1 0 1 1 0.226 71 2 0.1300
2 0 2 1 0.152 34 2 0.0874
3 0o 3 1 0.127 74 2 0.0732
4 0o 2 2 0.12077 2 0.0693
5 0 1 2 0.073 83 2 0.0423
6 0o 3 2 0.071 25 2 0.0408
7 1 3 1 0.028 57 4 0.0327
8 0 0 1 0.106 63 1 0.0305
9 1 3 2 0.023 24 4 0.0266
10 o 1 3 0.03279 2 0.0188
11 1 2 1 0.013 67 4 0.0156
12 0o 0 2 0.051 41 1 0.0147
13 1 2 2 0.011 95 4 0.0137
14 0 1 4 0.02111 2 0.0121
15 0o 2 3 0.020 95 2 0.0120
16 1 1 1 0.009 32 4 0.0107
17 1 1 2 0.009 07 4 0.0104
18 1 2 3 0.007 10 4 0.0081
19 0 0 3 0.027 83 1 0.0079
20 1 3 3 0.006 70 4 0.0076
21 1 3 4 0.006 30 4 0.0072
22 2 3 1 0.006 20 4 0.0071
23 1 1 3 0.006 09 4 0.0069
24 0o 3 3 0.012 04 2 0.0069
25 0 3 4 0.01173 2 0.0067
26 2 3 2 0.005 51 4 0.0063
27 1 2 4 0.005 34 4 0.0061
28 2 2 1 0.005 08 4 0.0058
29 0 2 4 0.009 61 2 0.0055
30 0 0 4 0.018 76 1 0.0054 .
31 2 2 2 0.004 10 4 0.0047
32 2 1 1 0.004 06 4 0.0047
33 0 0 5 0.016 20 1 0.0046
34 0o 1 5§ 0.007 56 2 0.0043
35 0 1 6 0.007 28 2 0.0042
36 1 1 4 0.003 53 4 0.0040
37 1 0 1 0.006 83 2 0.0039
38 2 1 2 0.003 29 4 0.0038
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criterion of mode significance that A {(/E> 10~ 2, then we
have determined from the simulation that for all significant
modes

w;c‘,ll)(, #0, k, #0

and

(15a)

(9) _
Wk, =

(15b)

Thus all modes corresponding to zero wave number in the
streamwise direction are nonpropagating modes and we
term these kinematically degenerate. We do this since it is
our contention that the kX, = O modes are, to a large degree, a
result of the finite grid. Clearly such modes show no vari-
ation in the streamwise direction and therefore imply a
strong (infinite) correlation in this direction (periodicity
confers a false correlation in the streamwise direction, but
the issue at hand is different from this). These modes appear
because the mesh is not able to resolve slightly off streamwise
directions and therefore places energy in the k; = 0 modes.
From the well-known streakiness of the flow*” we know that
there is considerable energy in the slightly off streamwise
directions and we can presume that as a result of the finite
mesh these appear as k, =0 modes. A study of Table I
shows that the kinematically degenerate modes carry the
overwhelming majority of the fluctuation energy of the flow.

The possible relationship of the propagating waves to
the structures described earlier is clearly of interest. To de-
velop this idea further we first consider the normal speeds of
the waves

¢ = /K| (16)
In Fig. 7 we plot the normal speed locus
¢, = (0/{k]k, (17

i.e., speed (16) versus the direction k/|k|. Actually, since
the results follow from a simulation only a discrete set of
points (heavy dots) are shown in this polar plot. In addition
only those corresponding to the most energetic modes are
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indicated, viz., (m,n) = (1,0), (1,1), (1,2), (1,3) and
(2,1), (2,2), (2,3), with (7) defining the relation between k
and (m,n).

At each point of the locus we construct the plane wave
that is perpendicular to the propagation vector (17), as indi-
cated by the dotted line in Fig. 7 for a representative point.
This represents the location of the plane wave, initially locat-
ed at the origin, after a unit time has elapsed. The collection
of these plane waves generates an envelope which can be
thought of as locating the most intense signal. Only the most
energetic waves mentioned above have been considered in
the construction. Since the normal speed locus is well ap-
proximated by a circle the envelope is simply a point. This in
turn implies that these plane waves move, as indicated in Fig.
8, by displacement in the streamwise direction. This stream-
wise displacement is indicated by the arrows, and shows how
actual wave segments of the plane wave travel. (For hyper-
bolic systems of partial differential equations the above con-
struction is used to generate the characteristic surface, also
called the pedal curve,** which in turn reveals how infinitesi-
mal disturbances propagate.)

Consider the two wave segments shown in Fig. 8, de-
noted as (a) and (b). Their phase speeds are given as ¢, and
¢,, respectively, where ¢ is defined by (16). After a fixed
time increment, these waves travel to new positions labeled
as (@')and (b"). Ifthe two phase speeds ¢, and ¢, are related
as shown, namely ¢, = ¢, cos 8, then the waves can continu-
ously interact at a fixed spanwise location z as they travel
downstream, i.e., they form an envelope that propagates in
the streamwise direction. As the angle 8 increases, the nor-
mal speed ¢, becomes smaller for a given wave segment
speed ¢,. Thus the wave segment speed can be much larger
than the normal speed. The geometric representation of Fig.
8 leads directly to the circular locus of Fig. 7, and the pedal
curve corresponds to the wave segment speed c,,.

What has been referred to as the segment speed in the
previous paragraph is to a close approximation equal to the
mean flow velocity in the plane of peak Reynolds shear
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FIG. 8. Motion of plane waves.
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stress, y* = 30. Some basis for the underlying mechanics
leading to this result is obtained by viewing the y dependence
of the eigenfunction. The three components of V{}’ and V{2,
the two most energetic propagating modes, are shown in Fig.
9. [Since K(x,x'),(1) is Hermitian, the eigenfunctions are
real, although for convenience we have used the complex
representation (6).] For purposes of comparison we have
also plotted the average value of the Reynolds shear stress,
(uv). Itis seen from these curves that the streamwise compo-
nent of the eigenfunctions, which is the largest member, has
its principal support in the region where |{uv)| is a maxi-
mum. There is a superficial analogy with linear stability the-
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ory in which the maximal disturbance and its corresponding
Reynolds stress bear a similar relationship (see Sec. II).
However, the actual critical layer which results from a
straightforward linear theory based on the mean velocity
profile is well removed from the buffer region, and is roughly
at y* = 56. Nevertheless, the plane waves from Fig. 9 are
best able to extract energy from the mean flow via the Reyn-
olds stress at this location, which gives some basis as to why
the plane waves propagate with the mean fluid velocity at
this elevation. It may be shown that the individual Cheby-
shev components that make up the vertical portion of the
eigenfunctions also exhibit the propagation property. But
such a decomposition would be a step backward, since it is
the superposition of the Chebyshev modes that gives the ei-
genfunction property. Only as a result of this do we find that
the support lies in a relatively narrow domain.

The other plane waves which have not been indicated in
Fig. 7 carry little energy, as study of Table I shows. One
explanation is that their speed is not that of the buffer region
and a study of their vertical form'* shows that their princi-
pal support lies elsewhere. One feature of this picture which
can be regarded as puzzling is why A {3’ is as small as it is.
This corresponds to a plane wave in the streamwise direc-
tion, i.e., with crests perpendicular to the streamwise direc-
tion. This wave would appear to be suited for the extraction
of energy from the buffer region. To gain some understand-
ing on why it does not, we start by pointing out that the
assembly of the most energetic modes corresponds to rolls of
fluid aligned with the stream. (See the characteristic eddy of
construction given by Moin and Moser.** ) A sketch of the
motion is shown in Fig. 10. From Table I we see that a signif-
icant portion of the fluctuation energy lies in such roll-like
motions. (Note from Table I that modes with two and three
pairs of rolls have a comparable amount of energy. This is
discussed further in Sec. V.) From a comparison of the ve-
locity components for the latter with the 4,, mode, it would
appear that a wave propagating in the streamwise direction
finds it difficult to extract energy from the rolling fluctu-
ations. Note that the A,, mode has a substantial component
in the streamwise direction while the rolling modes have no
streamwise component. Thus the modes are mismatched.
This is not true for a plane wave propagating obliquely. To
see this we can transform to a coordinate system for which
one axis is the direction of the wave. Then a simple resolution
of velocities shows that the obliquely traveling wave can cap-
ture energy from the roll-like fluctuations since the mis-
match is partially removed and they share momenta in the
same direction.
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FIG. 10. Representative mode, k = (0,1,1), showing roll-like motion in
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IV. BURSTING STRUCTURES

We next want to assess the effect of the propagating
waves on the flow and, in particular, to relate this to the
traveling structures discussed at the outset in regard to Fig.
4. There are three aspects of this that are worth mentioning.
First as we shall see the structures are relatively energetic
events. More precisely the instantaneous Reynolds stress uv
(by which we monitor structure activity) is relatively large.
Second, the energy in the propagating modes, as seen in Ta-
ble I, is relatively small. Thus the propagating modes alone
cannot account for the structures—but we speculate on evi-
dence to be presented that they are part of a triggering mech-
anism. This brings up the third point which is that the propa-
gating modes (in fact, a]l modes) are uncorrelated in time,
see (5). Hence if the plane waves are a triggering device we
must look for short term interactions.

We start by recalling the representation of the flow giv-
en by (12). The original flow field is reconstructed without
approximation when the sum is over the set of all modes v;%.
However, due to the optimal convergence of the empirical
eigenfunctions, summing over a much smaller subset of v(?’
provides us with a relatively accurate representation of the
flow. We denote by

uy = Z a'((q)vl(‘q)
akCN
the representation of the flow in terms of the first N-most
energetic modes, where N denotes the corresponding set of
indices. For our purposes here, choosing N = 38 (the modes
listed in Table I) will suffice. These modes contain 76% of
the fluctuation energy of the flow.

We next divide these modes into two subsets, one con-
taining the propagating modes k, = (k, #0,0,k; ) and the
other containing the kinematically degenerate modes
k, = (k, =0,0,k;), and denote by

(18)

uy

W (19)

gk ,,eN

and

uy= > v (20)

9k N

the model flows taken over the set of propagating and non-
propagating modes, respectively.

To illustrate the character of each representation given
above, second quadrant occurrences of uv (burst, uv <0
with v>0) are selected over time at a typical fixed point in
the flow. In Fig. 11(a), results for the full numerical simula-
tion are presented. The passage of several bursts is observed,
and the individual ejections of fluid comprising each burst
are also evident. We again mention that the periodicity of the
computational domain allows a given structure to pass the
same point in the flow more than once, so that a one-to-one
correspondence between each individual peak in Fig. 11 with
an ejection is not to be assumed. However, the existence of
individual ejections within each burst as indicated by the
nested set of continuous curves is apparent.

The truncated representation of the full flow given by
u, is used in Fig. 11(b). Even with just 38 modes, a high
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FIG. 11. Second-quadrant occurrences of the instantaneous Reynolds shear
stress, uv, at a fixed point in the (x,z) planeaty * = 29.25. (a) Full numeri-
cal simulation; (b) representation of flow using first 38 modes; (c) repre-
sentation of flow using propagating (fast) modes; (d) representation of
flow using kinematically degenerate (slow) modes (inset shows actual
curve with sampling artifact not removed); (e) representation of flow in
terms of the interaction between the slow and fast modes.
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degree of accuracy is obtained, with the uv signal from u
correlating very well with that from the full flow.

To assess the relative effects of the propagating and kin-
ematically degenerate modes we express the approximate
instantaneous Reynolds stress by

uyvy = (uh 4+ ul) vy + )

= (uhvh) + (uhvR) + (uhvh +ugvl). (21)
Figures (11c)—(11e) show the time evolution of the three
terms in (21), respectively. We follow standard practice and
view (21) for second quadrant events. As a result we condi-
tionally sample (21) viewing it for times at which uyv, <0
and vy >0. This fact is important in viewing Fig. 11(d),
since there are downward spikes present as shown in the
inset. These are artifacts introduced by the time sampling.
The actual time course of the degenerate modes with this
artifact removed is smooth, as shown in the main figure. By
comparison with the fast excitation seen in Fig. 11(c) these
are justifiably termed slow excitations.

Several features are worth remarking on. First we note
that the peaks in Figs. 11(c) and 11(d) are well below those
seen in Fig. 11(b). While the magnitudes of the peaks in Fig.
11(d) are somewhat higher than in Fig. 11(c¢), they still fall
considerably short of the peak magnitudes for the full flow.
Second, the curves in Figs. 11(c) and 11(d) are of a strik-
ingly different character. The nonpropagating modes used in
Fig. 11(d) produce a relatively smooth curve (when the arti-
factual downstrokes are removed) while the curve generated
by the propagating modes is quite spiky, as in Figs. 11(a)
and 11(b).

A better understanding of the bursting phenomenon fol-
lows the study of Fig. 11 (e) in conjunction with the previous
two figures. Clearly this figure shows the most dramatic
temporal excursions. From this figure we conclude that al-
though the energy exhibited in the fast activity of the propa-
gating modes is relatively small in magnitude, extreme ex-
cursions will not occur without these. This is further
underscored by the fact that the time course seen in Fig.
11(b) has a similar nature to that in Fig. 11(c). Itis alsoa
consequence of these figures that in order for bursts to occur
there must be a pedestal of energy, which is provided by the
slow modes. For example, in the neighborhood of ¢ *
= 4100 there is virtually no slow signal [Fig. 11(d)]. Fig.
11(c) shows a substantial fast signal at this time. The net
interaction shown in Fig. 11(e) is small and the combined
effect as depicted in Fig. 11(b) is relatively feeble. By con-
trast there is a large pedestal of slow activity centered about
t ¥ =150 [Fig. 11(d) ] but a relatively low level of fast ac-
tivity [Fig. 11(c)]. The interaction shown in Fig. 11(e) is
moderate as is the net effect shown in Fig. 11(b).

Our deliberations up to now lead us to the conclusion
that in order for the ejections in Figs. 11(a) and 11(b) to
appear both slow (degenerate) and fast (propagating) exci-
tation must be present. As the figures and above discussion
have demonstrated one set of modes without the other leads
to relatively weak activity. It is natural at this point of the
discussion to look into the question of cause and effect and in
particular whether the slow modes generate the fast modes
or vice versa. The evidence from Fig. 11 is that to lowest
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order the two modes are independent. This follows from dis-
parate time scales that occur in Figs. 11(c) and 11(d), and
the absence of any direct mechanism for generating a fast
time scale from a slow one and vice versa.

We also want to assert that the fast modes act as a trig-
gering mechanism for the burst, but these ensue only when
there is latent in the flow a pedestal of energy in the slow
modes. The issue of using the term rigger is partly semantic,
and is based on several observations.

First, the propagating modes themselves possess little
energy (in fact only 24% of the energy as represented by the
first 38 modes). Second, as mentioned above bursting can
only occur if fast (propagating) modes are present. Third,
the burst shows the same fast activity that is seen in the fast
modes. The assertion that the propagating modes are the
triggers of bursting activity remains a speculation until more
evidence, especially experimental, is presented.

As a final remark we note that the dynamical system
considered by Aubry et al.*® is based on what we have
termed the kinematically degenerate modes. In fact their
system is based on ¢ = 1 and k, = 0, using only the first five
spanwise modes, &, . These authors produce a form of burst-
ing and ejection, which are of a different nature than the
structures we have been discussing. Clearly this is an area
which needs further investigation.

V. DISCUSSION

An important point to discuss is how representative is
our simulation and results of actual turbulence. With this in
mind we have examined the channel flow simulations of
Moin and Moser*® and Handler et al.*’ In the former case
Re, = 180 and in the latter Re, = 125. In both these cases
the distribution of energy into what we have termed kinema-
tically degenerate and propagating modes is in rough agree-
ment. Differences in mode ordering can be attributed to var-
iations in computational cell sizes and Reynolds number. It
is somewhat difficult to pin down the roll size in a computa-
tion. The roll solution shown in Fig. 10 is 200 wall units
wide, corresponding to a single pair of rolls. However, as
observed in Sec. III, Table I indicates that modes with two
and three pairs of rolls also have comparable energies of mo-
tion. If the latter case is taken as a basis we see that
200/3 =~ 66 wall units is also a realistic estimate. This order of
magnitude estimate also agrees with the cited works. Also
we have confirmed that propagating modes appear in the
simulation with Re, = 125.®

We can try to make contact with the turbulent spot con-
struction of Henningson. As a first observation we point out
that he finds spot growth in an otherwise supercritical steady
flow is due to waves that propagate at 4 68°. We find that
the most energetic plane waves propagate at the angles

4 71.5°. In view of significant differences in resolution and
the nature of the flows the agreement is more than one might
hope for. Henningson’s construction is based on propagating
modes and his primary interest is in describing the growth of
a spot in a neighborhood of its boundary.

In a summary, a Karhunen-Loéve analysis of low
Reynolds number turbulent channel flow has produced em-
pirical eigenfunctions, a subset of which has the form of ob-
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liquely propagating plane waves. These waves form an enve-
lope that travels at the velocity corresponding to the location
where the Reynolds shear stress is a maximum. The empiri-
cal eigenfunction decomposition, unlike the Chebyshev-
Fourier decomposition of the direct numerical simulation, is
able to extract the regions of main support for these waves;
namely, the region near y * = 30 where the Reynolds stress
is a maximum.

The action of these propagating modes, which contain
relatively little energy compared to the nonpropagating, or
kinematically degenerate modes, may be something akintoa
trigger, which can focus on a pedestal of disturbance energy
and initiate a bursting or sweeping event. Qualitative Sup-
port for this idea has been presented. Further work is under-
way to correlate and quantify these effects, and to extend our
analysis in a parametric study with Reynolds number.
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