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Determination of the empirical eigenfunctions for turbulent flows, which result from the
Karhunen-Loéve procedure, is considered in some generality for fully inhomogeneous flows.
Group theoretical considerations are shown to lead to considerable increases in an available
database. In addition, group representation procedures are shown to lead to substantial
simplification. In fact, for the application considered here, a nonmanageable problem is
reduced to one that is solvable. The general methods and techniques presented here are applied
to the case of Rayleigh-Bénard convection in a finite box. In addition, indication is made of
how to apply the procedures to several other cases. Some results of applying the method of
empirical eigenfunctions to a numerical simulation of this particular flow [H. Park and L.
Sirovich, Phys. Fluids A 2, 1659 (1990) ] are presented here.

I. INTRODUCTION

A central problem confronting turbulence research is
the method by which to analyze and assess the vast databases
being generated through experiment and computation. Tra-
ditional statistical averages of a flow and its moments remain
of great value, but do not make full use of the data nor do
they serve as a convenient method for storing data.

A method, complementary to the standard statistical
theory, is based on the Karhunen-Loéve (K-L) proce-
dure,' a brief description of which is given in Sec. III. This is
the method first suggested by Lumley®™ as a rational proce-
dure for the extraction of coherent structures. Although it
now seems unlikely that the method indeed accomplishes
this goal,” the method is of unquestioned value in extracting
essential features of the flow. As originally presented by
Lumley and used by a number of investigators,>*® the meth-
od becomes impractical unless all but one of the directions
are homogeneous. In the present paper we deal with a partic-
ular flow for which this standard method is inapplicable and
consider instead a general procedure, the method of snap-
shots, for the analysis (see Sec. III). The particular case con-
sidered is that of the simulation of a confined, time station-
ary, fully inhomogeneous three-dimensional chaotic
Rayleigh-Bénard flow (R-B)? hereafter referred to as (II).

The K-L procedure uses the two-point correlation func-
tion as an integral kernel for the generation of a complete set
of eigenfunctions—which we refer to as the empirical eigen-
Sfunctions. For rectilinear geometries an unbounded direc-
tion is homogeneous and leads to sinusoidal dependence, in
that direction, in the eigenfunctions. This, for example, is the
case for the channel flow simulations®'®!! and in R-B simu-
lations.'>'* Each of the cited cases contain two homoge-
neous directions and as a result the empirical eigenfunctions
are entirely factorable with the homogeneous directions be-
ing represented by sinusoids. Lumley,” recognizing that sin-
usoidal dependence is incompatible with the known com-
pactness of a coherent structure, suggested a shot noise
approximation for assembling these factorable eigenfunc-
tions. Lumley’s approach was given a thorough investiga-
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tion by Moin and Moser,® in the framework of the channel
problem. They show, by actual construction, that this results
in interesting flows, which they refer to as characteristic ed-
dies (but not coherent structures). (In Ref. 5 it is demon-
strated, in generality, that the shot noise construction pro-
duces flows that carry smaller energies than the individual
empirical eigenfunctions.)

For the case of a confined geometry the empirical eigen-
functions do not factor, and the shot noise hypothesis is not
applicable. This case, therefore, furnishes a testbed for the
notion that the empirical eigenfunctions yield (or are related
to) the coherent structures of the flow. The evidence from
our study is that this is not the case. The eigenfunctions that
do emerge are complicated and interesting, but bear no ob-
vious relationship to thermal plumes, which are the general-
ly accepted coherent structures of R—-B convection.

The confined R-B problem that is formulated and brief-
ly discussed in Sec. II can be identified with the original
treatment of the problem by Rayleigh.'® Unlike other finite
domain studies,'”'® the case treated by us can be formulated
as a pure initial value problem. The main physical discussion
of the problem is reserved for (II), where the simulation is
discussed and analyzed in some detail. The physical results
that are discussed here, are included for the purpose of illus-
trating a methodology that is being applied to a fluid prob-
lem for the first time. Relatively extensive use of group theo-
retical methods appear in this paper. It is our belief that the
approach taken has application to a general variety of fluid
problems and the Appendix summarizes the method as ap-
plied to several other geometries.

While group theoretical ideas were implicitly in use,
throughout the development of fluid mechanics, perhaps the
first systematic use of group theory appeared in the book by
Birkhoff.! This, and later books?®?! stressed the conse-
quences of similitude. More recently, Golubitsky efal.?? and
McKenzie*® have shown the importance of group methods
in studying bifurcation phenomena. The present investiga-
tion makes yet another use of group theory. We show that
through the use of group representation theory we are able to
treat an otherwise daunting calculation. Of equal impor-
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tance is the fact that this approach systematically reduces
the admissible flow structures to well-defined classes. For
example, for the R—B problem studied here, just ten classes
of flows appear. Each has its own symmetry and each has a
physical interpretation.

To illustrate this point with a simple example, the sym-
metries of a problem often allow us to state that functional
dependences are odd or even in a dependent variable. This of
course simplifies a problem. The methods presented here
permit us to exhaust all such simplifications. In the Appen-
dix we sketch how methods can be applied to several other
problems.

Il. FORMULATION AND STABILITY CONSIDERATIONS

We consider a fluid confined to a rectangular parallel-
epiped as sketched in Fig. 1. The temperatures of the hori-
zontal boundaries are held at 9 =T, + AT/2 and
G =T, — AT /2 as indicated in the figure, while the side
walls are taken to be insulating, 4.7 /dn = 0 (n a normal
direction). In the absence of convection the temperature .7~
and pressure P are given by their equilibrium values

=T, + (T, -T,)z/H=T, -z (1)
and
P/p= —gz—af(2/2)g, (2)

respectively. The notation is standard.>**
The departure from equilibrium is governed by the
Boussinesq equations

Vou=0,
g—u+(u-V)u+Vp=RaPrezT+ Pr VZu, (3)
c7T

E —+ (V) T=w+ VT,

where Pr and Ra represent the Prandtl and Rayleigh
numbers:

Pr=+v/k, Ra=gaBH"*/(xkv). (4)
In (3) Tand p are departures from 7~ and Pas given by (1)
and (2).

On taking the divergence of the momentum equation we
can formally solve for the pressure, and eliminate it from
(3). The system can then be written in the form

| //
'T,-aT/2 /
i e ,
| s/
,' ————— —l————-/—/- —_—
p: | ’
i / /
I
T v -
H X
L To+AT/2 D
e w

FIG. 1. Flow geometry. In the calculation itself the planform is a square,
W=D.
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] [PraA RaPrA- 3,-][1;{]

[(51'/(81 +A 7135 U u,]
d (4, T) ’
where A refers to the Laplace operator and A ' its formal
inverse. It should be noted that the incompressibility condi-
tion V-u = 0, now becomes an initial condition for the sys-
tem (5).
If we denote the state of the fluid by V = (u,7), and the
linear part of the right-hand side of (5) by L, then

3,V =LV + N(V) (6)

with the N(V) the nonlinear remainder term. The boundary
conditions on the temperature are given by

(3

0=1(0) = 721y = 2L (0)
dx

ar ar aT
=9 =2 o=, (7
ax(W) c?y() 8y()()

Thus the temperature is fixed on the upper and lower walls
while the side walls are insulating. Although lengths have
been scaled by H, so that W and D really refer to W /H and
D /H,itisconvenient in (7) and elsewhere to retain the origi-
nal symbols and think of them as being dimensionless. To
further fix the problem we consider the case of slippery
boundary conditions,

u-n=0=—a-(n/\u) (8)
on

at each bounding plane, where n denotes the normal.
The stability of the equilibrium solution is determined
by the eigentheory of the linear operator, L, viz.,

L¢ = 49, 9
where ¢ is a four-component vector function of position x.

Under the boundary conditions (7) and ( 10), the eigenfunc-
tions have the form

u, sin(k,x)cos(k,y)cos(k,z)

Yy cos(k, x)sin(k,y)cos(k,z)
¢= w, cos(k,x)cos(k,y)sin(k,z) |’ (10)

T cos(k x)cos(k,y)sin(k,z)

(11)

n,, n,, n, areintegers, and u,, vy, Wy, 7, constants. The only
eigenvalue of (9) which can change signature is given by

—k*(1+4Pr) (1—Pr)*%*  kiRa
A= ,
2 + 4 T

(12)
where
K =k? 4+ k2. (13)
The corresponding eigenvector is
vo = [k ks kyky, — ki, — (A +Prk*)k?/RaPr],
(14)
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which is seen to be incompressible.
When A =0 we obtain the critical Rayleigh number
Ra,, given by

kS THMW/ W+ H3/D? +nl)’

R%_E—‘ (n}/W?*+n3/D?)
(15)

The minimum value, Ra_, of (15), is

Ra, =277%/4 (16)
and is achieved when

n =1 (17)
and

nH*/W?+niH*/D*=. (18)

The minimum critical Rayleigh number, Ra_, is the classical
value found for two-dimensional rolls in a horizontally infi-
nite domain.>* To make contact with the unbounded case
note that if D 1« then the smallest most unstable width is
W /H = v2in contrast with the classical value of 2v2. But for
the case being discussed here only one roll occurs while in
the standard situation two counter-rotating rolls occur (a
full wave). Thus the two situations agree.

At first sight it might seem contradictory for us to ob-
tain the same minimum critical Rayleigh number as in the
horizontally unbounded case, since the case under investiga-
tion would appear to be more restrictive (geometrically)
and thus should become unstable at a higher Ra number. To
reconcile the apparent contradiction it should be noted that
the problem under investigation is solvable as an initial value
problem that can be posed in the infinite domain. As a result
it also leads to the minimal Rayleigh number, (16),asdoa
number of other finite geometries. The present geometry was
in fact considered by Rayleigh in his original stability analy-
sis.'® Extensions have been given by Pellew and Southwell!’
and Davis.'®

For reasons to be discussed in the next section the case of
a square cross section will be considered, i.e., W = D. Thus
the smallest cell supporting the most unstable mode is one
for which

W=D=2H. (19)

Figure 2 shows some representative streamlines of the most
unstable mode using (14) in (10). The vertical midplaneis a

\
V

4 ))
R

FIG. 2. The most unstable mode from linear stability. This mode remains
unchanged under rotations of 7/2, with the vertical centerline a stagnation
point locus.
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symmetry plane of the motion. Also the motion is invariant
under rotations of a quarter turn around the vertical center-
line. This vertical axis is also a locus of stagnation points for
the flow.

1. KARHUNEN-LOEVE EIGENFUNCTIONS

In (II) we report on the results obtained by numerically
integrating the Boussinesq equations for the nonlinear prob-
lem formulated in Sec. II, at a Rayleigh number for which
the flow is weakly turbulent or chaotic (Ra = 70Ra_). The
flow, which is statistically stationary, is then analyzed by
means of the (K-L) expansion. This technique has been
adopted by a number of investigators and is an important
tool for the analysis of turbulent flows. For completeness we
briefly outline the method and follow a somewhat different
approach, one that is especially suited to the turbulent flow
being considered here.?®

A turbulent flow can be characterized as a point, mov-
ing in a representational space, which in the present instance
is infinite dimensional. The location of this point, or state,
fully describes the flow at each instant of time. After an ini-
tial transient the point is drawn into the attracting set for the
system and moves in a chaotic fashion on this set, termed the
chaotic attractor. The current evidence is that for closed dis-
sipative systems, such as (3), the dimension of this attractor
is low.2’*® The flow is time stationary, and under the ergo-
dic assumption, ensemble averages of flow quantities (de-
noted below by brackets) can be regarded as time averages
on the attractor. It is shown in the next section, that group
theoretical consideration considerably extend our time re-
cords.

For the case of a horizontally unbounded flow the mean
velocity, (u), vanishes. This is a direct consequence of hori-
zontal homogeneity. Homogeneity is lost for the bounded
case and (u) 0. Figure 3, with some fine print discussed in
Sec. V, depicts the mean velocity. We see that it is composed
of two cells, which are mirror images of one another, in the
horizontal centerplane. The maximum value of the velocity
is small and in the present normalization this is

max|(u)| =0.115. (20)

The mean temperature (T') is in general a function of
(x,y,z) although the dependence on the first two variables
proves to be weak. This is illustrated in Fig. 4, which shows
the actual temperature profiles from (II) at a number of
locations in the cell. As can be seen there is a buildup of heat
flow, due to convection, in the four corners of the cell. Thus
the corners accommodate the transport of heat across the
chamber.

For later purposes it is useful to define the horizontally
averaged temperature,

— 1 w b —
T=%J; J; (T)Ydxdy=T(z) (21)
and then write
T=T+8. (22)
Then instead of V, we consider as a state variable
L. Sirovich and H. Park 1651
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FIG. 3. Ensemble-averaged mean
flow.
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v=(u,d) (23) A=((v\",$)?) (25)
the flow fluctuation. (In view of the smallness of | {(u}| wedo  is a maximum, subject to the normalization condition
not remove the mean velocity.)

It is clear that there is some arbitrariness and trade-offs (¢,6) = J 21:’ ¢ (X)d, (x)dx = 1. (26)

in the choice of the fluctuation v. As a general rule one wants
to subtract off the mean and only deal with departures from
the mean. In this way we do not have to repeatedly consider
what is implicitly contained in each member of the set, viz.,
the mean. For computational purposes it is useful to deal
with a horizontal average 7, instead of (7'). Carrying such
small differences is tolerable and we also do this for (u).
Imagine an ensemble of states or snapshots of the flow on
the attractor,
(n)

(24)

sampled at uniformly spaced, uncorrelated times z,,. To ar-
rive at the K-L procedure one can seek the most likely state,
say given by ¢(x), in the sense that

v =v(x,t,),

1652 Phys. Fluids A, Vol. 2, No. 9, September 1990

The solution to this problem is given by the principal eigen-
function of

K¢=fK(x,x’)¢(x')a’x’ = Ad(x), (27)

where
1 M
K;(x,x') = (v;(x)v;(x")) = 7 > v (x)vf”(x)
n=1
(28)

is the two-point correlation function and M is the number of
snapshots that have been collected. (When not confusing the
superscript n will be dropped as in the brackets above.)

L. Sirovich and H. Park 1652
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FIG. 4. Temperature variation at several
(x,p) locations.

X Y

0.00 0.00
................................ 0.31 0.31
............ 0.75 0.75
..................... 1.00 1.00

Here, K is a non-negative Hermitian operator and relation
(27) generates a complete orthornormal set {¢,} with
A,20.

Finally except for a set of zero measure the flows can be
expanded in the eigenfunctions {4, }

v(x,)) = Y a,(0)¢,(x),

n=1

(29)

where convergence is in the L, sense. The coefficients a,, are
uncorrelated in time, i.e., they are statistically orthogonal

(a,a,) =A,6,.. (30)

This is the essential content of the K-L procedure.' These
and related properties of the procedure strongly recommend
the use of the resulting empirical eigenfunctions in problems
of turbulent flows.

To assess the computation necessary to carry out the K-
L procedure consider the R-B convection problem formu-
lated in Sec. II. For a pseudospectral method with N points
on a side, N ? grid points are involved. There are also three
dependent variables [the three velocities are related through
continuity (3) ]. Thus a matrix approximation to K will have
(3 X N?*)? entries. Even for the most modest grid, such an
undertaking would exceed present computer resources. For
a one-dimensional calculation (Sirovich and Rodriguez,
1987) the method proves feasible.>' Also, in problems with
two homogeneous directions such as the R-B problem with-
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out side walls'*'* and plane Poiseuille flow without side

walls,® the eigenfunction dependence on the homogeneous
directions are accounted for by sinusoids and the eigenfunc-
tion problem, (27), is reduced to an equivalent one-dimen-
sional problem.

For the case being treated here, no homogeneous direc-
tions exist. One can however resort to the method of snap-
shots. This is based on the fact that (30) is a degenerate
kernel®? and therefore that an eigenfunction of K has the
representation

M
p(x) =Y a,v"(x),
n=1
i.e., an eigenfunction is an admixture of snapshots. The prob-
lem of determining the coefficients «, is thus reduced to
dealing with an M X M matrix. To see this, we substitute
(31) into (27), where K is given by (28). Therefore if we
define

(31)

C,.,=Wwm"y"my/M (32)
and the set a = (a,,a;,...,.a,, ), then

is the matrix problem that determines the eigenvalues and
eigenfunctions. It is clear that this determines just M of the
empirical eigenfunctions. The remaining infinitude of eigen-
functions are not uniquely determined. The only require-
ment on them is that they be orthogonal to the already deter-
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mined set and hence orthogonal to {v(™}. They belong to the
null space of K. An immediate consequence of (31) is that
each eigenfunction is an incompressible flow. (This proce-
dure has been successfully used in an entirely different appli-
cation.?¥3*)

IV. SYMMETRY CONSIDERATIONS

The numerical simulation of R-B convection reported
onin (II) is for the case of a square cross section, W = D, see
Fig. 1. This case generates a maximal amount of symmetry
and as we will see this furnishes us with a number of advan-
tages both in the extension of the database and the treatment
of the solutions.*

There are 16 elements in the invariance group for the
convective cell specified by

- W W —H
<x, J< 5 5
(For purposes of exposition we temporarily transform to a
coordinate system having its origin at the center of the cell.)
In the (x,y) plane there are eight symmetries of the square,
known as the dihedral group D, (Ref. 36). In addition to the
identity 7, there is for example the 90° rotation, R,

H
<Z<7-

(34)

The new flow generated by (34), satisfies the Boussinesq
equations, (3), as well as the boundary conditions, (7) and
(8). It therefore generates an admissible solution to the
posed problem. Other new flows are generated by each of the
group elements that we now define.

It is clear that (34) implies that admissible flows are
also generated by the 180° rotation R ? and by the 270° rota-
tion R *. Other admissible solutions to the flow problem are
generated as follows: Reflection along the x axis, denoted by
X,

X(x,v) > ( —x,3,2, —uvw,0),

R(X,y,Z,u,U,w,e) = R(X,v) _*( — X2, — U,u,w,e)-

(35)

and similarly reflection along the y axis, denoted by Y. Next
there is reflection in the line y = x, denoted by L,

L(x,v) = (y,x,2,0,u,w,0) (36)
and reflection in y = — x denoted by D. In all the eight ele-
ments of D, are

D,:ILRR*R*X,Y,L,D. (37)

In addition, and perhaps less intuitive, a new admissible so-
lution is produced by reflection along the z axis,

(38)

If the full group is denoted by G then the 16 elements of Gare
given by

G =D,,ZD,. (39)

Also we will write G = {g,} with g,, I = 1,2,...,16, denoting
the group elements. The group table for D, is standard and
for convenience and later reference is shown in Table I. Since
Z commutes with D, and Z? = I the group table for Gis a
simple extension of Table 1.

We underline the fact that under each of the group oper-
ations, a new admissible flow is generated. If v satisfies the

Z(x,v) - (x,p, — z,u,v, — w, — ).
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TABLE I. The group table for D,.

I R R’ R? X L Y D
I I R R? R’ X L Y D
R R R? R’ I D X L Y
R? R’ R’ I R Y D X L
R R? 1 R R’ L Y D X
X X L Y D I R R? R?
L L Y D X R* 1 R R?
Y Y D X L R? R’ I R
D D X L Y R R? R* I

Boussinesq equations, (3), as well as the boundary condi-
tions, (7) and (8), of the problem, then so does gv for each
member, g, of G. Thus if {v!™} represents an ensemble of
states generated by the numerical calculation in (II) then

{gv™}, 1=1,..16, (40)

represents a 16-fold increase in the ensemble size and there-
fore in the database! The correlation kernel defined by (30)
can now be reaveraged to give

7 J
K =% Z (gv(x)vi(x)g}) =% 2 gk(xx)g "
=1

I=1
(41)
Here,
k= (v(x)v(x)) = (v (x)v'"T(x)) (42)

denotes the correlation tensor, not extended by the symme-
tries, and J is the number of group elements, which in the
present instance is 16. Since each group element is easily seen
to be a unitary transformation, the adjoint can be replaced by
the inverses as we have in (41). It should be noted that as a
result of the group average in (41), all time records (and
hence all time averages) can be regarded as having been ex-
tended by a factor of 16.

In (II) we consider a numerical simulation for which
{v""} contains 200 snapshots. Thus under the group G we
have the equivalent of 3200 ensemble members! While such
an extension of the database is desirable it appears to be too
much of a good thing since the direct use of 3200 snapshots to
solve the eigenvalue problem, (29), would entail diagonaliz-
ing a 3200< 3200 matrix which is somewhat excessive for
present-day machines. However, a second application of
group theory removes this difficulty, and as will be seen in
the next section it is never necessary to deal with a matrix of
order greater than 400 < 400, at one time.

V. REDUCTION BY GROUP REPRESENTATIONS

To motivate and illustrate this reduction, we point out
that as a result of the reflectional symmetry in the vertical
direction, it follows that the entries of an eigenvector, ¢(x),
are separately odd or even functions of z [ the first two com-
ponents of ¢(x) are of one parity and the last two of opposite
parity in z]. Clearly parity considerations should split the
calculation into two separate parts. Other such splittings of
the calculation are apparent and in the following we show
how to systematically pursue such operations and thus en-
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sure that all possibilities are being fully exploited. The result
of this will not only simplify the calculations, but also will
dissect a flow into its natural classes of motions.

For purposes of exposition we start by considering the
action of Z, the vertical reflection, (38), on the original en-
semble. Thus in the notation of (41) and (42) the extension
of k by Z yields

k= 3(wW') +1(Zv)(Zv)) = (k + ZkZ) (43)

(since Z —! = Z ). The number of snapshots has been dou-
bled by this action. Next consider the decomposition of uni-

ty,

I=-2Y2+U+2Y2=Z +Z*. (44)
From this it follows that

(Z:)y=Z*, (45)
and

Z*Z~ =0, (46)

so that Z * and Z — are orthogonal projectors. Next ob-
serve that

Zk ={(ZKZ* + ZkZ) = HZKZ + K)Z = KkZ. (47)

(More generally the same argument shows that g, K = Kg;.)
It also follows that Z * both commute with « and that

Z¥Z=ZZF=FZT. (48)
Finally if we multiply « by

I=I’=(Z"*Y+(Z")* (49)
we obtain

K=k +x, (50)
where

Ki=((z iv(n))(z iv(n))f>' (51)
Now suppose ¢ is an eigenfunction of «,

Kk$ =4, (52)
then it follows easily that

ktp=Ad. (53)

The kernels « + and « ~ are clearly orthogonal and an eigen-
function (of nonzero eigenvalue) of one belongs to the null
space of the other.

From this it follows that we can separately consider the
eigenfunctions of k * and k ~. As a result of the above discus-
sion these are the eigenfunctions of « itself. But from (51)
each resulting calculation only involves an ensemble size
equal to the original ensemble. (The new ensemble
members, however, must be conditioned tobe {Z *v{"}—
which turns the vector entries into odd or even functions of
Z.)

Consideration of the reflections X and Y would also lead
to the same line of discussion. To obtain a systematic ap-
proach, leading to the full reduction, one can appeal to the
theory of group representations (Burrow®’ ). Asit turns out,
the two essential ingredients in the above procedure were
finding the projectors Z * and the fact that these commute
with the group elements. We now indicate how to do this in
the plane (D, ). The basic features associated with the de-
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composition in the z direction have aiready been derived.
The class operators of a group by definition commute
with the elements of the group. For D, the class operators
are given by
I, Q=R? A=R+R’ B=X+Y C=L+D,
(54)
as may be verified by checking the group table (TableI). Itis
therefore reasonable to proceed by assuming that a desired
projector E(E 2= E) is a linear combination of the class
operators
E=al+ BQ+ ad + bB + cC, (55)

where the constants are determined by the condition that E
is a projector. The result of this calculation is the following
list of projectors:

E =U-0)/2,
E,=(U+Q+B-4-C)/8,
E;={U+Q0+4—-B-0C)/8,
E,=({I+Q+C—-A4—B)/S,
E.=(J+Q0+A4+B+C)/8.
That these are orthogonal projectors may be verified direct-
ly, and from inspection it follows that
I= i E,= 25" E:.
p=1 p=1
From this and the commutation property we may write

(56)

(37)

5 5
K=Y EKE, = Y K,.
p=1 p=1
By virtue of the orthogonality of the projectors E,, it follows
that the eigenfunctions, of the K,’s, corresponding to non-
zero eigenvalues, are orthogonal for different subscripts p.
Thus if

(58)

K, 6 =14, A#0, (59)
then

K¢ = A¢. (60)
A straightforward use of the group table shows that

K, =8((E,v")(E,v™)"), p#l (61)

On going over to the full group G with K given by (41) we
can write

K=Y (K, +K;),

p=1

(62)
with
Kt =8((E,Z*V')(E,Z tyyhy, p#l. (63)

(The case of p = 1 requires special attention.) Thus each of
the kernels K -, p = 2,3,4,5 only involves an ensemble size
equal to the original ensemble.

To treat the remaining case of p = 1 corresponding to
E,, (56), observe that after some manipulation

K, (w) =2{(ww") + ((Rw)(Rw)") + ((Xw) (Xw)")
+ {(XRw)(XRw)") }, (64)

where
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w=Ev=[(I—R?*/2}]v. (65)

It is useful to observe that the elements are odd in the origin
of the (x,y) plane and hence
(66)
In the context of the 200 base snapshots that we have
been speaking about, the kernel K, involves 800 renditions.
This however can be further reduced. First we observe that
K, is invariant under the subgroup of quarter turns, R ",
n =0,1,2,3. Thusif V represents an eigenfunction of K, then
R "V, n=0,1,2,3 are also eigenfunctions:

K,R"V=AR"V, n=0,12,3. (67)
However in view of (67) R *V and R >V are just negatives of

VandRV.
This motivates the introduction of the complex snapshot

(68)

Rw= —w.

o =W+ IRw
and the Hermitian kernel
K, (0) =K, (W) + [iRK, (W) —iK, (w)R “]/2
= (wo') + ((Xw) (Xa)"). (69)

In terms of the eigenfunctions Vand R V of X, the eigenfunc-
tions of K, are

\

hid
a
______
/4
!
’ o
{; ’ ]
2 ] :
1Q '
. "
Mo N W
| R 4
N \ H
[} "\
A oo AY
‘~____—"’ \

-0.3

Q=V+iRV, (70)
K, Q=A% (71)

But the snapshots contained in K, are {w”} and {Xo "},
and hence for the nominal case being discussed, just 400 in
number. As outlined earlier in (62) we actually consider

K =K(Z*w). (72)

This then completes the discussion of symmetries. As
signaled earlier this has resulted in a 16-fold increase in the
data with little additional computation.

We close this section by pointing out that the steps in
arriving at both the extension of data sets and the subsequent
reduction of the integral equations follow from straightfor-
ward procedures. These two procedures rest on determining
the underlying invariance group of flow. Thus flows involv-
ing boundaries that are rectangular, circular, ellipses, regu-
lar polygons, and so forth are immediate candidates for the
methodology of this paper. We give several illustrations of
this in the Appendix.

VI. ADDITIONAL COMMENTS

Before commenting on the nature of the eigenfunctions,
we point out that the problem of convection in an imperme-

-
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FIG. 5. Principal K~L eigenfunction. The motion is that of a roll along the y axis. The second member of the invariant subspace is obtained by rotation by 7/2

about the vertical axis.
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able cell with slippery boundary conditions that we have dis-
cussed is also related to the Taylor-Green problem.***° In
fact without the thermal forcing term the motion is of the
same type as appears in the Taylor-Green problem. This
motion as is well known ultimately decays to zero. The tem-
perature difference between the upper and lower plates
creates a buoyancy effect that drives the fluid, and by con-
trast with the Taylor-Green problem, the resulting flow
reaches a statistically steady state.

It is of interest to contrast the K-L eigenfunctions with
those that are obtained from the linear stability analysis pre-
sented in Sec. II. As is clear from (10) the eigenfunctions
that result from stability analysis are in factorable form. The
K-L eigenfunctions, as we have underlined several times,
have their (x,y,z) dependence intertwined. Figure 5 indi-
cates the streamline pattern for the principal eigenfunction,
as calculated from the database in (II). This is seen to be
mainly a rolling motion aligned along the y axis. It is impor-
tant to realize however that the motion is not two dimension-
al. The closed loops shown in Fig. 5 do not lie in a plane.

Each of the eigenfunctions can be associated with one of
the operators Kpi , p=1,2,...,5. Thus the eigenfunctions of
the full covariance operator K are naturally split into ten
classes. It further follows from our discussion of K * in the
previous section that the eigenfunctions associated with each
of these operators is doubly degenerate. In fact the eigen-
functions depicted in Fig. 5 correspond to X ;. Alternately
it is associated with the projector

I—-ZI—-Q 1
e T e (-7 —
5 3 4( o+ ZQ)

(73)

in the sense that it is invariant under this transformation. It
also follows from the discussion in Sec. V that rotation of the
flow around the vertical in Fig. 5 by 7/2 is the second eigen-
function of the invariant subspace.

In the actual calculation the flow is primarily made up
of the two eigenfunctions (i.e., the invariant subspace of the
principal eigenvalue) that correspond to the picture in Fig. 5
(more than 50% of the energy on the average lies in this
invariant subspace). At random times this cell-like flow ro-
tates by 7/2. On average the flow spends equal time in these
two most probable states. This motion is explored in more
detail in (II).

A second eigenfunction is actually depicted in Fig. 3.
Although it was referred to as the mean flow earlier, it was
also mentioned that there is some fine print. To explain this
further point we denote the mean flow in one particular sim-
ulation by i, then group-averaged mean flow is given by

=Z tEsu=E;u
It therefore follows that (1) can be represented in terms of
the eigenfunction of K,'. Figure 3 actually represents the

principal eigenfunction of K . The error in this approxima-
tion to the mean flow is only 2.4% in the energy norm.
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APPENDIX: SYMMETRY CONSIDERATIONS FOR
OTHER FLOWS

There are just a few essential features needed in the
group operations, as presented in Secs. IV and V. In particu-
lar, we need the group under which the flow under consider-
ations remain invariant. It is then essential to determine the
list of projectors of the group. In the following we present
three examples, out of the many that one can imagine, to
further illustrate the basic steps.

1. Bénard convection in a rectangular box with fixed
walls

The flow geometry is invariant under the dihedral group
D,, (D # W) with the group elements.

Dy, :ER{,R, ,RiR, R, R.R},R.R,,R.R}R,. (Al)
The corresponding projectors are as follows:
E,=§(E4+R}+R,+RIR, +RR, +R,
+R,R3R, +R,R)), (A2)
E,={E+R{—R,—R{R,+R}R, +R,
—R,RiR, —R.,R), (A3)
E,={(E—R}+R,—R3R, + R3R, —R,
+R,R{R, —R.R,), (A4)
E,=J(E—R}—R,+R}R, +R}R, —R,
—R.R3R, + R.R)), (A5)
Es=}E+R}+R,+R}R,—R}R, —R,
—R,RiR, —R,R)), (A6)
E,=4E+R;—R,—R}R,—R}R, —R,
+R.R}R, +R,R)), (AT)
E,=JE—-R{+R,—RJR,—R}R, +R,
—R,R}R, +R,R), (AB)
Eg={E—R}—R,+RIR,—R}R, +R,
+R,RiR, —R,R,). (A9)

2. Poiseuille flow in a rectangular channel with fixed
side walls

The direction of mean flow is denoted by x, the spanwise
direction by y and the vertical by z. If V¢ (x) is a flow real-
ization or snapshot at some instant, then the fluctuating
component of V" (x) satisfies the following transforma-
tion:
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T,V V(x4 ] ,p2). (A10)
It therefore follows that averaging over the groups (A10)
implies

K(x,x') =K(x — x',,2), (A1l)

i.e., the two-point correlation is translationally invariant or
homogeneous in the mean flow direction and the correlation
tensor in that direction is represented by sinusoids.

This flow geometry is also invariant under the dihedral
group of transformations, D, with group elements,

D,:E,R3,R,.R,. (A12)
The corresponding projectors are

E, ={E+R}+R,+R,), (A13)

E,={E+R}—R,—R,), (A14)

E,=4(E—R}+R,—R,), (A15)

E,=3(E—R}—R,+R,). (A16)

IfL, = L, = L, the problem is invariant under the dihe-
dral group D, .
D;:ERy,R3,R3,R,,R,R,,RR,,RIR, (A17)

and the corresponding projectors are presented in Sec. IV.

3. Taylor-Couette flow

The axis of rotation is taken in the x direction and cylin-
drical coordinates (x,r,6). The invariance group is now
composed of translation in the x direction, T, ; reflection in
the plan normal to x, R, and rotation around the x axis, T',.

The relevant discrete group is

C,,:ER, (A18)
and the corresponding projectors are given by

E =4{E+R),), (A19)

E, =1(E—R),). (A20)

It should be observed that for these deliberations as well
as for those in Secs. IV and V, the question of slip or nonslip
boundaries is not a factor.
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