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A pseudospectral method is used to solve the Boussinesq equations for a fully inhomogeneous
turbulent flow. The numerical data are analyzed using the empirical eigenfunction technique.
As a result of the underlying inhomogeneity of the flow, the eigenfunctions (structures) are
inhomogeneous in all three directions. This is the first instance in which fully three-
dimensional empirical eigenfunctions have been calculated. The generated basis set is
extremely efficient at depicting the flow. The first eigenfunction captures almost 60% of the
average energy. The eigenfunctions are an optimal basis for capturing the energy of the flow
and more than 95% of the energy is captured by the first 100 eigenfunctions. Ten classes of
eigenfunctions are present and examples of each are shown. The average Nusselt number for
the bounded geometry is found to be lower than that for a correspondong homogeneous case

and the physics causing this decrease is analyzed and discussed.

I. INTRODUCTION

The Rayleigh-Bénard convection problem has been
subject to a long history of numerial simulations.'” In re-
cent times large scale calculations have been performed for
flows well into the chaotic regime.>®!' The most tractable
of these problems is the so-called slippery boundary value
problem in which the heated surfaces are impermeable,
stress-free, and the flow is horizontally unbounded.'*"
This is the case treated in Ref. 5 and 8. The no-slip case that
is more realistic from the perspective of experiment has been
treated by Eidson et al.,* however, their fluid is also uncon-
fined in the spanwise directions. A calculation in which the
fluid is fully confined with no-slip boundary conditions has
been discussed by Kessler.'> But this has a number of limita-
tions in terms of Rayleigh number and imposed symmetries
on the solution.

Several investigations, in confined geometries, do exist
for relatively low values of Ra. For example Toomre ef
al.'®"" and Massaguer and Mercader'® consider a hexagonal
platform and Jones et al.'® consider a cylindrical geometry.
Unlike the present study, the aforementioned studies are
aimed at stability and the transition to unsteady convection.
As a result, low-order highly truncated modal systems are
employed in these investigations. In these studies swir! (ver-
tical vorticity) is found to play a role and, in particular, in
Ref. 18, it is claimed that swirl enhances the rate of heat
transfer. Likewise, in our investigation, the presence of hori-
zontal confinement, produces classes of modes that produce
swirl. However, we feel that the explanation given by Massa-
guer and Mercader for the enhanced heat transfer, in the
confined geometry, is not relevant to our case. And in fact
the heat transfer is less than it would be in the unbounded
case.

The computation discussed in this paper applies to fully
confined R-B convection problem. In addition to adding our
general body of knowledge on R-B convection, this problem
has a number of features that deserve consideration. As men-
tioned, we are interested in chaotic convection. For such
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flows the unbounded cases mentioned above are statistically
homogeneous in the spanwise directions. The present calcu-
lation, by contrast, is inhomogeneous in all three directions.
As aresult ensemble-averaged quantities now show inhomo-
geneities in all directions. In particular, quantities such as
heat flow and rms fluctuations show interesting variations
across a planform.

Our principal method of analyzing the resulting flow is
by means of the Karhunen-Loéve (K-L) procedure® in-
troduced by Lumley®' -2 for the extraction of coherent struc-
tures. Asis well known the resulting structures are pure sinu-
soids in any homogeneous direction’>** and this has led to
techniques for reassembling the structures so as to make
them compact.”® Thus an important property of the struc-
tures that emerge here is that they are immediately compact
as a result of the underlying inhomogeneity of the flow and
no additional assumptions are required.

An interesting, and perhaps counterintuitive, conse-
quence of our simulation is the fact, mentioned above, that
the heat transfer rate is less than it would be in the spanwise
unbounded case under the same conditions. For, in the latter
case, pure horizontal motions take place that in no way con-
tribute to the transport of heat. Owing to impermeable side
walls such motions are not possible in the case treated here.
The motion is forced into the vertical direction which would
appear to facilitate heat transfer. To resolve this seeming
paradoxical result we can turn to the Malkus theory®® and
its extension by Spiegel.?® In those theories the heat transfer
is shown to increase with Ra due to the excitation of an
increasing number of modes. In the Malkus theory it is the
linear stability eigenfunctions, while in the Spiegel theory it
is the mean field eigenfunctions that are considered. The
empirical eigenfunctions developed here are the natural ex-
tension of the linear and mean field eigenfunctions in such
highly nonlinear situations as considered here. It will be seen
in Sec. V, at comparable Ra, that fewer empirical eigenfunc-
tions are excited in the restricted geometry compared with
the unrestricted geometry, thus accounting for the decreased
heat flow.
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Il. NUMERICAL PROCEDURES

The Boussinesq equations and boundary conditions for
the present investigation are to be found in Ref. 27 [hence-
forth referred to as (I)], and for convenience are repeated
here in a slightly different form

Veu =0, (nH
%“t——u/\m= —V(p+4/2) + RaPre, T+ Prv’u.
2)
£+uan=w+V2]-‘, (3)
at
where o is vorticity, and
w:T:ﬁ=@=O atz=0,1,
dz oz
ar ov Jdw
=—=—=—=0 at x=0,2, 4
“ Jx dx Ox ax ®
U:él:i’i:.égzo aty=0,2
dy dy

Equations (4) specify (slip) stressless conditions at all
boundaries, adiabatic side walls, and specified temperatures
at the upper and lower boundaries. The aspect ratio of 2
includes the most dangerous mode from linearized stability
theory and the square planform leads to maximal data exten-
sion (I).

A pseudospectral method?® is employed. Thus, to meet
the boundary conditions (4) we approximate w, for exam-
ple, by

Thx cos 121’1—) sin mmz, (5)

w= Y w(k,l,m)cos
o<k m<M

where M is sufficiently large to resolve all relevant scales
(discussed later). It is clear from (3) that T takes on the
same series form as (5) while # and v are developed with
appropriate permutations of the trigonometric functions.
The gradient term in (2) can be eliminated by means of the
incompressibility condition (1) and the result of this and
substitution of (5) yields,

d . . 1 T Ra -~

-(;u«}-Prk2 =FkA(qu)~FPer/\(kAez)’
(6)

%?‘Jr kT= — ix(ul) + . (7

As in (5) the caret denotes Fourier transformation. As is
customary in the pseudospectral method, products are eval-
uated in physical space and derivatives in Fourier space,
since the fast Fourier algorithm allows rapid passage be-
tween the spaces.

To indicate the method of integration we express (6)
and (7) symbolically as

1% | Ax=B0), (8)

where X = (ﬁ,/T\). This can be formally integrated to give
X(t+ At) = e~ 22X (t — At)

¢+ At
+f e~ AU+A—DIR(Ydr. 9
— At
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We use a time marching scheme based on a leapfrog for the
nonlinear terms and an exact integration for the linear
part.?® After applying the leapfrog scheme to the integral in
(9), the expression for the time-stepping scheme is obtained,

X(t+ At) =e 22X (t — At) + 2Ate ~**'B(1). (10)

The leapfrog scheme is known to be slightly unstable. To
compensate for this, we use a second-order Runge-Kutta
scheme at every 2M time steps. As initial conditions, we
adopt a velocity field of an independent, Gaussian distribut-
ed random variable with isotropic energy density distribu-
tion.

The time step of integration was At = 0.001, in the di-
mensionless units of (1-3). The ratio of the Kolmogorov
time scale, (v/€)'/? to Atis 28.3 (€ is the average value of
turbulence dissipation). The dimensionless Kolmogorov
microscale was 0.0404 based on 77 = (v*/€)"*/H. Ques-
tions of spatial resolution have been addressed by Grotz-
bach?® who determined that the maximum resolvable wave
number should exceed 1/%. If A denotes the vertical grid
spacing, the condition is

mnH /h> 1. (11

In the present simulation this ratio had the value 2.03. Thus
both the spatial and temporal scales have been resolved.

Another test of the spatial resolution can be based on the
Nusselt number

Nu = H /26, (12)

where § is a measure of the (linear) thermal sublayer. In this
view & is the smallest scale of the problem. As we will see the
maximum value of Nu is 6, and since the calculation con-
tains 16 uniform grid spacings in all directions, the problem
is also resolved from this point of view.

Since the grid system, (17)?, might be regarded as mar-
ginal we also perform the calculation on a (33)* grid. This
resulted in no significant changes in the solution.

lil. RESULTS

The numerical calculation was carried out at Pr = 0.72
and at a Rayleigh number of

Ra~=70Ra_ =46 000, (13)
where the critical Rayleigh number is
Ra, = 277%/4~657. (14)

The grid system was taken to be (17)% i.e., M = 17 in (5).
Thus (17)3X4=2x10* field quantities are saved at each
time step.

Table I contains a summary of statistical results for the
present simulation. For purposes of comparison we also list
the results obtained in a simulation at the same Pr and Ra,
for a flow that is unbounded in the horizontal directions.’

All quantities have been averaged in the midplane.
Viewing the quantities presented we see that the flow is mild-
ly chaotic. It is more vigorous than the comparable horizon-
tally unbounded flow. But in spite of this the Nusselt number
is somewhat smaller, indicating that the side walls do not aid
heat transport. It is interesting to observe that Re; , the hori-
zontal skewness, and the horizontal flatness are all signifi-
cantly larger than the unbounded case. This is also in keep-

H. Park and L. Sirovich 1660

Downloaded 04 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



TABLE 1. Comparison of significant statistical averaged. All calculations
are for Ra = 70Ra, and are midplane averaged.

Unbounded Bounded
(uZ) )I/Z
A= (____ 0.29 0.324
Y \{(Bu/dx)?)
Re, = (u?)'?4,/v 12.60 14.93
—0.15 —0.2420

(GG
(GG 17 o

A, = [(#)((‘;—:’)2> - ']m 0.49 0.663
Re, = (w’)'?4,/v 38.1 40.27
(SNE)) -oss -
(SN s s
Nusselt number 5.9 5.75
Prandtl number 0.72 0.72

ing with the more vigorous nature of the present flow over
the unbounded case. On the other hand, the vertical counter-
parts in the two cases are more comparable.

Since the flow is inhomogeneous in all three directions,
ensemble-averaged quantities vary with x and y as well as z.
As an illustration of this point we show in Fig. 1 the ensem-
ble-averaged Nusselt number as a function of position on a
horizontal boundary, z = 0,1. It is clearly inhomogeneous,
with the symmetry of Fig. 1 being due to the group averaging
procedure, see (I). [In (I), Fig. 3, we show (T') at several
{x,p) locations that further underlines this inhomogeneity. ]

FIG. 1. The ensemble-averaged Nusselt number as a function of position on
a vertical boundary, z = 0,1.
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Figure 2 shows the average mean temperature, T, and the

averaged mean-square vertical velocity, w® (indicated by
continuous curves). This is compared with the results of the
calculation at the same ratio of Ra/Ra_, but with periodic
boundary conditions.” In Fig. 3 we show the variation of
mean-square vertical velocity with position. The continuous
curve, which shows the largest variation, depicts conditions
in a corner, where all the motion is vertical. Significant vari-
ation in the curves is seen to occur as we pass from the corner
to the center. Unlike the horizontally homogeneous case, the
present calculation leads to a nonzero mean flow, (u)#0.
This was illustrated in [ (I): Fig. 2) ], and is again discussed
in the next section.

The matrix, K;(x,x’), is fully inhomogeneous and
therefore a function of six independent variables. In order to
view some features of the K we averge over horizontal planes
as follows:

ﬁ(z,z’) = J dx dy K(x,p,z,x,y,2'). (15)
In Fig. 4 we show
(@(z)@(z’)) =K33, (16)
(w(2)0(2')) = K4,
(a)
[N
1
-600  -400  -200 0 200 400 600
T
L T T T T T
(b)
= _
1 1 L 1 | |
0 500 1000 1500 2000 2500 3000 3500
W2

FIG. 2. (a) and (b) The mean temperature and the mean-square vertical
velocity indicated by continuous curves. This is compared with the results
with periodic boundary conditions (dashed lines).

H. Park and L. Sirovich 1661

Downloaded 04 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



-
1 1 | S
0 2000 4000 6000 8000 10000
<W*x*2>
X k4
0.00 0.00

- 0.3 0.31
-- 0.75 0.75
- 1.00 1.00

FIG. 3. Vertical velocity variation at several (x,y) locations.

where a circumflex on the left-hand side indicates the vari-
ables being considered. The variation of these quantities is
directly related to already computed quantites. For example,

A
K (22) = w?, so that the variation of K. 33 across the diag-
onal is the same as the vertical variation of w?. The variation

of K ;, across the diagonal,

Ky (22) = w0, (17)

is the turbulent heat transport. (We discuss w@ in Sec. V.)
As is well known w8 vanishes at the boundary and is well
approximated by a constant in the core. All of this is borne
out in Fig. 4(b). Of additional interest is the fact that the
peak correlation occurs off the diagonal! The peak correla-

tion, which is almost 50% above the core value of w8, ap-
pears when z=} and 2’ is near the edge of the thermal bound-
ary. As is clear from Fig. 2(b) the vertical velocity peaks at
the centerplane. On the other hand, thermal fluctuations
peak at the edge of the thermal boundary layer. As we will
see in the next section, the dominant mode of motion is a
single roll. Thus, although not perfectly correlated, thereis a
substantial degree of correlation between the boundary layer
and the midsection that is forced by the rolling motion. This
is especially true near the side walls, where the vertical veloc-
ity w peaks (see Fig. 3). Therefore the peaks in Fig. 4(b) are
due to a combination of coherence in the motion and the
large values of 8., and w, .

IV. EIGENFUNCTION ANALYSIS

While it is useful and informative to consider the aver-
aged quantities discussed in the previous section, a deeper
understanding follows when the flow is resolved in terms of
the empirical eigenfunctions, (I). We recall from (I) that to
obtain these we first construct the two-point correlation

Koun (X:X') = (v, (x)0, (X)), (18)

where
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FIG. 4 Level lines of the averaged two point correlation. (a) {(@(z)W(z')),
(b) (W(2)8(2)).

v=(u,8) (19)
is the fluctuating flow and then consider the eigenfunction
equation

f K(x,x')¢(x")dx' = Ag(x), (20)
| 4

where integration is over the domain of the flow, V.

The eigenvalues are listed in Table II in descending or-
der. We recall that an eigenvalue represents the mean energy
of the system projected onto the corresponding eigenspace.
The eigenfunctions can be split into ten symmetry classes.
These can be put in correspondence with the ten projectors
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TABLEII Empirical eigenvalues. All members of E * are doubly degener-
ate and no other generic degeneracy.

Quantum
Number Projector number Eigenvalue % total energy

1 E 1 0.5996 59.96
2 E} 1 0.1306 13.06
3 E; 1 0.0266 2.66
4 E* 2 0.018 1.8
5 E; 1 0.017 67 1.767
6 E; 1 0.01371 1.371
7 E= 2 0.014 14
8 E; 1 0.0127 1.27
9 E; 1 0.008 0.8

10 E; 1 0.007 0.7

E }.,p=1,..,5. Thus the second column lists the symmetry
class. All members of E & are doubly degenerate, while the
remaining eigenfunctions show no generic degeneracy. The
third column lists the ranking or quantum number within a
class, the fourth the normalized value of eigenvalue, and fifth
the percent of the total energy.

Thus we see that almost 60% of the energy of the flow is
captured by the invariant subspace associated with the first
eigenfunction. Figure 5 plots the variation of energy capture
versus the number of eigenfunctions (degeneracy included).
Thus more than 90% of the energy is captured by the first 40
eigenfunctions and more than 95% by the first 100 eigen-
functions.

Figure 6 along with Figs. 2 and 5 in (I) depict represen-
tative eigenfunctions for each of the ten symmetry classes.
To generate a second member of the invariant subspace cor-
responding to any E * symmetry class the flow is rotated by
7r/2 about the vertical axis. This specifically applies to Fig. §
in (I) and to Fig. 6(f). Each of the eigenfunctions also carry
a temperature variation. Two of these are depicted in Fig. 7.
Figure 7(a) is the temperature variation associated with
E [ and therefore goes with Fig. 5 of (I), and Fig. 7(b) is
associated with E ;* and goes with Fig. 2 of (I).

( T I .
08 -
0.6+ —
>
(L]
@
W
&oal —
0.2 _
o 1 1 1
0 50 100 150 200

NUMBER OF MODES

FIG. 5. The variation of energy captured versus the number of eigenfunc-
tions (degeneracy included).
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As a check on the convergence of the numerical simula-
tion we can monitor the variation of the eigenvalues as the
number of snapshots is varied. This is shown for the first four
eigenfunctions in Fig. 8. We see from this that these appear
to have reached their asymptotic values. The corresponding
eigenfunctions themselves, converge much more rapidly.

V. DISCUSSION

Although the flow in the convection cell is statistically
steady there are sharp temporal variations. This is illustrated
by the temporal variation of averged values of Nu and Re,
shown in Fig. 9 due to the sampling. (The curves shown
represent sampling times taken at every 600 time steps. As
mentioned earlier, the temporal evolution is well resolved
although it might not appear so from Fig. 9.) It might be felt
that this does not represent a sufficient long record, how-
ever, one should bear in mind that as a result of the symme-
try variations represented in (I) the record is effectively 16
times as long.”” The sharp changes in the net heat flow at the
boundaries are due to changes in the convective patterns at
the walls. This as well as the other features are well brought
out by analyzing the simulation in terms of the empirical
eigenfunctions. Specifically if v denotes the flow fluctuation,
(19), then we may write

v=73 a, ()¢ (x), (21)

where {¢, } are the orthonormal eigenfunctions of (20), and

a,(t) = J(d)‘"’(X),V(x,t))dX- (22)
v

Thus the simulation may be reexpressed in the form (21) by
generating the time series for a,, (¢) with the use of (22). As
is immediate,

{a,a,)=1,8,m, (23)

supporting the usage of average energy (in the ¢ mode)
for4,.
As an indication of the convergence of the empirical
eigenfunctions we consider the variation of
N

Vw= Y a,(0)¢"(x)
n=1
with V. Figure 10 indicates graphically this convergence in
terms of the vertical velocity.

Since most of the energy resides in the first eigenfunc-
tion shown in Fig. 5 of (I) we consider this first. Note that
this depicts a roll, the streamlines of which do not liein (x,z)
planes, but are somewhat warped. A second eigenfunction in
the same invariant subspace is obtained by rotating by 7/2
about the vertical axis. Thus any admixture of these two
eigenfunctions is also an eigenfunction.

Figure 11 shows the time series in terms of amplitude
and orientation of the roll. The horizontal line in Fig. 11(a)
indicates the eigenvalue A,, which is also the average of the
corresponding rolling energy in this mode. As Fig. 11(b)
shows, the roll is initially oriented along the x axis and oscil-
lates around the zero angle. At roughly ¢ = 160 the roll ro-
tates by 7/2 and is oriented along the y axis. Near the end of
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Ef

()

FIG. 6. (a)—(h) Principal eigenfunctions
for projected eigensubspaces as indicated.
Inserts indicate planes in which flow lines
are shown.
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FIG. 6. (Continued.)
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200

the simulation this rotates once again by 7/2 so that it is
again aligned on the x axis but not counter-rotating relative
to the initial rotation.

In light of the correction by Siggia and Zippelius* to
the Newell and Whitehead equation®' due to vertical vorti-
city it is of interest to see what role this vorticity plays here.
An examination of the eigenfunctions in Figs. 6(b) and 6(f)
shows that these possess significant vertical vorticity or
swirl. (Other modes also carry some swirl.) It is worth
pointing out that these are parasitic modes in the sense that
the motion, which is horizontal, is perpendicular to the verti-
cal driving force. By contrast, for the unbounded convection
calculation,’ the counterparts to these modes are horizontal
shearing modes, and therefore have their vorticity in the hor-
izontal. The vertical boundaries inhibit spanwise motion and
therefore cause the swirl. There are significantly more ways
in which to generate swirl in the present case.
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FIG. 11. (a) and (b) The time series for the coefficients [Eq. (22)] of the
first two (degenerated) eigenfunctions from the subspace E | in terms of

amplitude [\laz(t) + ai() ], and phase (tan~' {a, (#)/a(1)1).

As mentioned earlier the Nusselt number is 5.75 for the
present calculation. For the unbounded case,’ at the same
value of Ra, Nu=5.9. Thus the confined geometry produces
a decrease in heat transport for a fixed Ra/Ra_. At lower Ra
an increase in heat transport, in a confined geometry (hexa-
gonal cells), was noted by Massaguer and Mercader'® and
they attributed this to the appearance of swirl. Their argu-
ment, in essence, is that the nonlinear interaction of a swirl-
ing mode with modes carrying vertical velocity leads to en-
hanced heat transport. While the argument may appear
plausible we now show that within the present framework
this is not true.

If the energy equation is both ensemble averaged and
averaged over the square planform we obtain

T d T,

wl ==
dz dz

(24)

[see (I), Eq. (23) ], where the constant term is the planform
averaged temperature at a wall. In the main body of the flow
the gradient term is negligible and we obtain
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dT, _
°~ — ul.
dz

To examine the form of the averaged turbulent convection,

(25)

w@ , we express a typical eigenfunction as

d’(") = (¢§")’ 3", 7.857). (26)
It then follows from the expansion (21) and the statistical
orthogonality (23) that

(wh) =3 14,45 (x)$5"™ (x). (27)

The main point is that (27) states that the turbulent heat
transport is equal to the sum of the individual contributions
from the eigenmodes—uwithout cross-talk. On averaging over

the x-p plane we remove the x-y dependence to obtain w8 .
The swirling modes that contain negligible vertical velocity
are insignificant. Interaction of the sort described by Massa-
guer and Mercader'® can lead to temporal fluctuations in
heat transport but cannot contribute to the averaged value of
this quantity.

As described in the Introduction, for the present calcu-
lation the diminished heat transport, due to the more restric-
tive boundary condition, is caused by fewer active modes at
comparable Ra. The theory of Malkus®® as well as his experi-
ments*? indicate that the heat flux increases in discrete tran-
sitions in a manner related to the appearance of unstable
modes. The counterpart to this idea, in the present frame-
work, is the degree of excitation of the modes, as seen in
Table II. Compared to the unbounded study at the same
Ra®? relatively few modes reach a criterion level of energy in
the present instance. This acts to lower the net heat flux. A
compensating factor is the fact that, unlike the unbounded
case, no mode is now without a vertical velocity component.
Perhaps this accounts for Nu not being even lower than it is.
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