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The Karhunen-Loéve procedure is applied to the analysis of digitally imaged two-dimensional
gas concentration fields obtained for a seeded axisymmetric jet. Large scale structures observed
in the transitional region of a low Reynolds number jet are characterized in terms of an optimal
basis. The essential features are captured by retaining roughly 30 parameters in the expansion.
By retaining more terms smaller scales of the flow can be resolved.

L INTRODUCTION

Coherent structures continue to play a central role in the
discussion of transitional and turbulent flows. An excellent
review of the field, as of 1981, was given by Cantwell.’ For
more recent accounts see the articles by Hussain®® and
Fiedler.* The idea that turbulent flows contain significant
organized inner structure, which may have universal fea-
tures, is of unquestioned appeal. It at once suggests the possi-
bility of a simpler mathematical description, and the work-
ings of some seemingly nonapparent physical mechanisms.

The statement that turbulent flows can contain orga-
nized structures is generally attributed to Townsend,” who
pointed out that large scale motions are present in fully de-
veloped turbulence. A clear experimental picture of an orga-
nized structure is shown in the famous shadowgraph of the
mixing {ayer by Brown and Roshkc® (see aiso Kim, Kline,
and Reynolds’). Visual criteria for identifying organized
structures have been followed by more objective criteria,
based mainly on conditional averaging and feature selection.
The VITA technique of Blackwelder and Kaplan® (also
Blackwelder and Haritonidis®) and the Quadrant analysis of
Lu and Willmarth,'® are perhaps the most important of these
methods. More recently Hussain® and Hayakawa and Hus-
sain'’ have suggested that large scale vorticity be used as the
criterion for educing a coherent structure, since in their view
this is the key element of a cocherent structure.

A fundamental impediment to deliberations of this sort
is the complete lack of an agreed on, and crisp definition of, a

" coherent structure. Even a widely accepted point of view as

to the nature of an organized structure does not exist. An
objective, statistically based procedure for the extraction of
coherent structures is the proper orthogonal decomposition
of Lumley.'>* This in turn is based on the method of Kar-
hunen'® and Loéve'® (K-L). However, in no instance has
this procedure produced the type of structures that have ap-
peared in experiment. Another statistical approach, and one
which Hes closer to experimental conditional averaging
methods, has been introduced by Adrian.'”'® Both of these
approaches have been widely applied and the literature is too
vast to review.

It is not our goal to assay, or to compare, the various
methods that have been proposed for the extraction (or
eduction) of coherent structures. Instead we start with the
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premise that a large scale, perhaps ccoherent, structure has
been identified and proceed to analyze this proposed orga-
nized structure. It is our belief that the procedures that are
presented here lead to a fuller and better understanding of
such structures znd in addition lead to efficient data reduc-
tion. Our approach should be regarded as an extension of
that of Lumley,'? but the point of view and techniques differ
significantly. ‘

All our deliberations are directed toward a series of ex-
periments on a turbulent axisymmetric jet,”” in which a siza-
ble database was acquired. A description of this experiment
is furnished in Sec. IL

Typical realizations of concentration fiekds for the seed-
ed jet fiow are shown in Fig. 1. The fiuid is moving from left
to right and the time seguence runs from top to bottom. We
identify the large scale structures with the &lobs that are dis-
cernible to the eye. Since the records refer to digital informa-

FIG. 1. Six sequential real-
izations taken at intervals
of .8 msec.
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tion this identification will be given an objective and precise
basis. In a sense, however, we appeal to historically, the first
and crudest criterion for identifying an organized structure,
viz., the eyeball norm, but with the goal of putting this into a
rational framework. An ensembie of admissible blobs or
structures is then assembled. It is this set that is subjected to
the K~L procedure and decomposed into the eigenfunctions
of the flow. As we will show, this decomposition resulis i a
significant data compression. A point to note is that the K-L
eigenfunctions are not being represented here as the coher-
ent structures but rather as the appropriate functions for
decomposing these structures.

1t is appropriate to also point out certain shortcomings
and inadequacies of our results. The ensemble members, as
typified by the pictures in Fig. 1, represent two-dimensional
slices of the flow. As Sreenivasan® has shown the jet has
significant azimuthal variation, and hence three-dimension-
al effects are being ignored. Also the ensemble members only
represent concentration fields. We do not have any informa-
tion on the associated mechanical motion. (Although this
does not stop us from making some inferences. )

A main reason for focusing on these blemishes is so that
the reader can note that the shortcomings are due to our
present inability to generate more complete records. If three-
dimensional full fiow field records were available, the proce-
dures that we present would be immediately applicable. This
is due to our use of the method of snapshots,”* which in no
essential way is impeded by the potentially large records that
would appear from a full three-dimensional vector resolu-
tion of a flow. Since several laboratories are now in the pro-
cess of generating such complete fiow records this point is of
significance.

Unlike previous treatments of the K-L procedure for
fluid problems, no use of homogeneous directions has been
made here. Thus, we demonstrate, for the first time, the fea-
sibility of the K-L procedure for fully three-dimensional
flows. Another point to note is that the K-L procedure is
being applied to a flow containing a sharp temporal frequen-
cy. It is this that leads to the conditional sampling procedure
discussed in Sec. ITI. The recent work of Glezer et al.?? also
presents an extension of K-L procedure to flows lacking
statistical stationarity.

it EXPERIMENT

Recent developments in high-speed imaging tech-
nigues'® have made it possible to follow the development of
large scale structures in a turbulent jet over a wide range of
Reynolds numbers. The experiment described below allows
the acquisition of a large number of well-resolved flow real-
izations—well beyond what is practical in a comparable nu-
merical simulation.

Instantaneous two-dimensional gas concentration fields
were obtained by seeding an axisymmetric jet with submi-
cron-sized aerosol particles and measuring the amount of
light scattered from a thin sheet of copper vapor laser radi-
ation, having wavelengths at 510 and 578 nm. A schematic
of the apparatus used in the collection of the data is shown in
Fig. 2. A high-speed camerz (monolithic photodiode array-
Reticon MC 9128) captured images of a 14 mm X 3.5 min
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FIG. 2. Experimental apparatus for acquisition of the data.

region of the flow located at 5.25 to 8.75 nozzle diameters
downstream. The camera operated at a framing rate of 1136
Hz while the laser was synchronously pulsed at 35 nsec to
freeze the motion of the flow. The camera was interfaced
(Microtex 7402) to a computer (LSI 11/23 with 1.25
Mbytes of high-speed memory ) where images were captured
in sets of 320, with pixel resolution 128 X 32 (eight bit A/D
conversion at a pixel rate of 8 MHz). Figure 1 shows six
measurements of gas concentration taken 0.9 msec apart.
The flow is from left to right and the time sequence from top
to bottom. A total of three sets of 320 images were collected
for this study, all recorded at equal intervals, under the same
flow conditions as described above. The raw data were cor-
rected for background light and nonuniformities in the re-
sponse of the camera and illumination sheet as detailed in
Ref. 19. .

Sreenivasan®’ has given an account of the characteris-
tics of jet flow, delineating the various zones of interactions
and behavior. The reader is referred to that article for details
and original references. Our comments refer to the details
considered here. The nozzle diameter of the jet was 4 mm,
with an exit flow velccity of 4.3 m/sec, corresponding to a
Reynolds number of 1150. It is known that the flow evolu-
tion is dependent on the exit conditions.”>** For our case the
exit velocity profile was fop hat. In earlier experiments, using
the same nozzle, low turbulence levels at the nozzle were
found. It was assumed that this was still the case, and no
measurement of this type were made. In this same vein, since
we did not record velocity fluctuations, the potential core
was estimated from the concentration data. Using as a crite-
rion that the rms concentration fluctuations not exceed 10%
of the peak value, the tip of the potential core was found to be
at roughly 7 diameters from the exit and hence in our image
frame.

As has been pointed out by Hussain,? the jet in the
image region is most susceptible to the columnar instability,
which gives rise to long wavelength structures at a relatively
well-gefined Strouhal number. In our case the Strouhal
number was 0.23 and hence about 247 structures were shed
per second. At the aforementioned framing rate of 1136 Hz
we see that roughly four realizations of one structure are
captured in the image region. '

The laser pulse duration (35 nsec) is extremely short in
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comparison with the time scales just discussed, and we are
well justified in regarding the realizations as instantaneous.
It also follows from the above discussion that a pixel width
corresponds to 10 * m. A rough estimate of the Kolmo-
gorov scale indicates that it is about & guarter of the pixel
size. However, in view of the proximity of the image frame to
the exit, one might expect that such small scales have not yet
been established. Qur later deliberations also imply this, for
as we will see, modes carrying pixel-sized variations are four
decades less energetic than the principal modes.

The question of particle displacement has been ad-
dressed by Long et al.”® Using estimates given in that paper,
the displacement lag of the aerosol particles is about 0.2 gm
and that due to diffusion less than 0.1 gm (at 10 nozzle
lengths downstream). Since the smallest scale resolved by
our system is 0.1 mm, these are negligible effects. Another
concern is the size distribution of seed particles, since the
scattering cross section in the Lorenz-Mie domain is sensi-
tive to particle diameter and even a small spread can produce
a large change in scattered light. Cur seeding density re-
mained quite uniform as a result of our method of aerosol
generation. Particles were created by atomizing a sugar—wa-
ter solution. As the water evaporates, very small sugar parti-
cles are left behind. Those remaining are subjected to ioniz-
ing radiation, importing a consistent charge to prevent
aggregation. Great care was also given to the density of seed
particles, since high density can produce rescattered light
while low density can produce a shot noise effect. Thus a
delicate balance was maintained.

ill. THE LARGE SCALE STRUCTURE

As mentioned in the Introduction we propose to analyze
the apparent large scale structures, as depicted in Fig. 1. Asa
first step we develop an objective procedure for extracting
these from the database acquired in the experiment. The
large scale structures that appear are not fixed in space, but
are convected downstream at approximately half the jet exit
velocity. In addition, they appear at a roughly periodic rate
given by the Strouhal number. Ideally we would like to col-
lect ensemble members when the large scale structure is in
some relatively fixed phase, perhaps at the same location in
space. However, the acquisition and shedding rates are not
matched, and the resulting deat phenomenon only seldom
furnishes us with an appropriately located realization. For
this reason some post-processing of the data is required.

A flow realization, giving the concentration, will be de-
noted by ¢{x,p), or since we are dealing with discretized
data,

$=¢, =i Ax,jAp); i=1,128 j=132. (1)

A template is chosen from the ensemble, by taking what is
considered to be a representative structure. This preselected
template is shown in Fig. 3. The width of this has been
trimmed from 128 to 70 pixels representing what we judge to
be the appropriate integral scale for the structure. We denote
~ the template by

f=fp =170 j=132. (2)
For any realization, or snapshot ¢, thereis a subportion of ¢
denoted by ’
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FIG. 3.Template used in the conditional sampling procedure.

g=gy; =170 j=132, (33

which is most similar to the template f, in the sense that

é:J(f_g)?’a’xdy (4)

is a minimum, or equivalently that the cross correlation

C:Jfgdxdy (5)

is extremized. This follows procedures common to digital
picture processing.”’

For the moment if is useful to consider the full ensemble
of 3 X 320 realizations as given by

{7} =, (m). (6)

The method then consists of taking for each m, the normal-
ized cross correlation

B®(m) = E,;Lfgéw ieg (711 ,
(2 PVEd )

where / = 1,70 andj = 1,32. Each realization is s/id over the

template by varying k until a maximum is obtained

B(m) = max B®(m). {(8)
1s.k<58

The corresponding subportion of the realization that yields
the maximum will henceforth be denoted now by ¢

Actually, since the framing rate of the camera was set
such that a typical structure was imaged about four times,
we are including snapshots of the same structure in different
stages of development. We therefore choose only those that
correspond to a iocal maximum of B(m), 1.e., best correlated
to the template. In this way we generate an ensemble of
roughly 1 % 3 X320 snapshots. In what follows we regard the
ensemble

¢={¢{"} (9

as containing M = 210 members. The remaining snapshots
have been reserved for later comparison purposes. Thus the
ensemble members (9) correspond to the local maxima of
(8) and further are cropped to 70X 32 pixels reflecting the
integral scale of the siructure.

With the ensemble (9) thus constructed, we can com-
pute the ensemble average,

(7)

_ M
b= =3 & (10)
m=1
(M = 210), which is depicted in Fig. 4. This in turn can be
used as a better template and the process repeated. This re-
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FIG. 4. Ensemble average taken over 210 concentration ficlds.

sults in only minor changes in the decomposition that is pre-
sented next.

The procedure just described for identifying a large
scale structure makes use of a conditional sampling crite-
rion. Mamely, that out of the roughly four snapshots in a
sequence, we choose the snapshot that is closest to some
preselected phase of the structure. This approach was adopt-
ed because the jet phenomenon is statistically unsteady. Asa
result of the Strouhal frequency the power spectrum has a
sharp peak. If many snapshots were available for each peri-
od, instead of just four, we could generate an ensemble for
each of a number of selected phases in a period. We return to
this point again in the next section.

IV. KARHUNEN-LOEVE PROCEDURE

The details of the Karhunen-FLoéve (K-L) procedure
can be found in textbooks.'*** The brief outline given here
follows that given in Ref. 21, in which the snapshot method is
presented. For purposes of exposition, it is useful to regard
the ensemble members as defined over continuous variables

P = ¢V (x,p). (11)

As is customary, it proves efficient to remove mean guanti-
ties. Thus, instead of (11) we consider

qo(”')zqﬁ('”’—t,z, {12)
where ¢ is defined by (9).
The covariance is defined by
Clxyx'y'y = (p(x)p(x',y'))
1 < ) (m) 13
=— I (xy)e Y, (13)
7 > Y@ y

where M is the number of ensemble members (M = 210).

The K-L basis is obtained by solving for the eigenfunc-
tions u in

fC(x,y;x',y’)u(x’,y’)dx'dy’ = Au(x,p), (14)
where the integration is over the domain of interest. It may
be shown that (14) generates a complete set of eigenfunc-
tions. In view of the possible size of the database, it might be
supposed that solution of { 14) would be out of reach of pres-
ently available computers. However, (13) implies that Cisa
degenerate kernel, and as a result we can express the eigen-
functions as an admixture of the snapshots,

M

u(xy) = 3 a,p " (xy).

n=1

(15}
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When this is inserted into (14) this leads to an (M X M)
matrix eigenvector problem, which in the present instance is
relatively simple computational to solve. | This generates all
eigenfunctions of (14) with possible nonzero eigenvalues. |
For a related application in pattern recognition see Refs. 29
and 30.

The K-L basis of orthonormal eigenfunctions will be
denoted by {6 (x,y) } and the correspending eigenvalues
by {4, }. It may be shown that the K-L basis is optimal in
the sense that of all orthonormal bases, the K-L basis gives,
on average,the best approximation to the snapshots {g'™ }
for any specified number of terms. Specifically for any N,
and

N
— (n}
Py = E a,u

n== ]

(16)
with

a, = (u'",@) = j ue, (17}

the error

ey = (llg —oxl
is minimal, if the {#'*’ } in (16) are the K-L eigenfunctions.
{The norm |} || is defined by the inner product {17).]

Any snapshot {(9) may now be represented in terms of
the K~L basis. We term a reconstruction as the fitting of a
member of the ensemble to the basis set, and an approxima-
tion as the projection of a fiow realization onto the basis, with
the understanding that it was not used in computing the
covariance matrix (it being one of the snapshots that were
reserved for this purpose). This distinction will be useful in
assessing the success of the method and actually will provide
both an upper and lower bound on the actual mean-square
error.

A full reconstruction is exact since in this case the meth-
od just corresponds to a linear change of basis and the eigen-
functions of the form {15) are complete for the ensemble
used to construct C. Hence, capturing the features of an en-
semble member is guaranteed, and only the rate of conver-
gence is an issue. However, if we consider an arbitrary flow,
the basis furnished by (15) is not complete. Thus an approx-
imation gives valuable information regarding the extent to
which we have spanned the space of admissibie solutions by
our basis. The mean-square error for the approximations
should be considered an upper bound on the error, which
decreases in general as the size of the ensemble increases.”
We expect the distinction between a reconstruction and ap-
proximation to dintinish as the ensemble size increases. The
true mean-square error for the reconstructions (or approxi-
mations) will be achieved when the ensemble size is large
enough, i.e., when it spans the entire set of admissible snap-
shots.

For any snapshot, ¢, in or cut of the ensemble, we write,

by :;5*“/71»': (18)

where @, is defined by (16). The mean-square error is then
given by

ex = ll¢ — du|*/18l" (19)
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The K~L procedure is now applied to the ensemble of
snapshots that was generated by the selection procedure dis-
cussed in Sec. I1I. Since the ensemble members were condi-
tionally sampled the method that we are describing departs
somewhat from the standard K-L procedure. We are actual-
1y determining the eigenfunctions for a particular phase of
the large scale structure. If, as pointed out in the previous
section, we had ensembiles for each of a number of the phases
in a typical period, then eigenfunctions at each phase could
be determined. In this way a set of time dependent K-L
eigenfunctions could be determined.”’

V. RESULTS

The result of computing the ensemble average, (10),
with M = 210 members, is shown in Fig. 4. We see that the
internal features are smoothed and that the averaged struc-
ture appears to have a rof! feature on the downstream side of
the frame. In Fig. 5 we show two typical snapshots chosen at
random, paired with their mean subtracted realizations. The
first pair, 5{a}) and 5({b), is used in computing the eigenfunc-
tions; the second, 5(c¢) and 5(d), is one of the reserved set
not belonging to the ensemble. We will use these to evaluate
the ability of the methed to reconstruct and approximate
arbitrary flows.

A. Eigenvaiues

The result of determining the eigenvalues, 4., (14),
normalized by the total energy or variance,

M
E={(pg.0) =3 A, (20}
k

is plotted in Fig. 6(a). Since A, /E is being plotted the area
under the curve is unity, i.e., A, /E gives the probability that
the large scale structure fall in the direction of the eigenfunc-
tion u, . The integral of the curve in 6(a), '
N if_

O E

is shown in Fig. 6(b), and measures the average amount of
energy or variance that is captured as a function of the num-
ber of modes. A useful concept is that of intrinsic dimension,
viz., the number of modes on average needed to satisfy some
criterion level of approximation. In the context of fluid prob-
fems, it has been suggested that this be determined by the
requirement that 90% of the variance be captured and that
Ap/Aax <0.01, for k> N.?* This K-L dimension in the
present instance is about 40, part of which can be seen from
Fig. 6(b).

Both curves in Fig. 6 show a breok in slope at about an
eigenvalue index of 30. The same sort of behavior will be
shown later when we approximate realizations from outside
of the ensemble. We might conclude from this that there are
two rates of convergence, each corresponding to a different
leg of the curve. Clearly we capture information, on average,
most rapidly until about 30 terms; after this the rate of con-
vergence for both the reconstruction and approzimation
falls off. As we will see the second leg corresponds to the less
resolved or noisy eigenvalues. This suggests that roughly the

Ey = (21)
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(a)

FIG. 5. (a) Typical coherent structure resulting from the sampling proce-
dure. (b) Fluctuating concentration field for realization (a). (¢) Another
typical realization resulting from the sampling procedure. This snapshot is
not used in computing the cigenfunctions. (¢) Fluctuating concentration
field for realization (c}.

first 30 eigenfunctions are well resolved by our database
while the remaining are not yet fully resolved.

B. Eigenfunctions

The first five eigenfunctions resulting from the solution
of (14) are shown in Fig. 7 and in false color in Fig. 8. Taken
together these five represent 54% of the variance of the en-
semble. The form and structure of these eigenpictures re-
mained essentially unchanged as the ensemble size was var-
ied over 70, 150, and 210 members. This is in keeping with
the observation, in the previous paragraph, that the princi-
pal eigenfunctions are well determined by relatively smalt
populations. It also infers that the template matching and
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FIG. 6. (a) Normalized eigenvalues A, /24, vs k. (b) Fraction of total
variance £, vs N.

conditional sampling procedures lead to a well-defined space
of principal eigenfunctions. In viewing Fig. 7, no signifi-
cance should be attached to the relative magnitude of the
features of the eigenfunction since multiplication by a con-
stant does not alter the eigenfunction property.

The first eigenfunction, representing 20% of the vari-
ance, has three identifiable large scale featurcs. A negative
extremum in the center, flanked by a maximum on either
side, at roughly 75% and 50% the amplitude of the mini-
mum. Clearly they play a role in the description of the struc-
ture of the material interface, i.e., its location, and the nature
of the roll feature. The next eigenfunction, representing 14%
of the variance, has more internal structure but the most
significant feature is the narrow band of iarge amplitude that
outlines the boundary of the structure. There are two identi-
fiable extrema on the interface, roughly on opposite sides of
the flow frame. We note that, in contrast with the first eigen-
function, the extrema are of the same sign. Note also that
there is a roll structure in the upper right corner of the frame
with about 25% the magnitude of the largest extremum. The
first eigenfunction to have significant internal structure is
number three. The number of extrema is up to five by the
fourth eigenfunction and we see that the important features
are both internal and relevant to the boundary. The fifth is
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FIG. 7. Eigenfunctions corresponding to the five largest eigenvalues. Taken
together they account for 54% of the total variance.

clearly important for representing the roll-up type structure
that is observed in the ensemble average.

As the index increases so does the fine structure of the
corresponding eigenfunction. This is illustrated by the sixth
panel of Fig. 8, which displays the 200th eigenfunction. As
can be seen from this illustration the scale is beginning to
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FIG. 8. Eigenfunctions corresponding to the first five largest eigenvalues, in order from left to right and top to bottom. Noisy eigenfunction in bottom right
corner corresponds to 200th largest cigenvalue.

FIG. 9. Reconstruction of snapshot shown in Fig. 5(a) for 10 (upper left corner), 20 (upper right}, and 100 (lower left) terms. The flow begin reconstructed
is in the bottom right corner.
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pick up individual pixels. As Fig. 6 illustrates, the corre-
sponding energy at this index is insignificant, and in fact is
less than 0.01%. This also addresses the question posed ear-
lier as to whether the resolution is adequate for the smallest
structures. Indeed, modes carrying individual pixel varia-
tions account for negligible variations in the mean-square
variation of the concentration.

C. Reconstruction and approximations

We consider two examples in the following: a typical
reconstruction of 2 member of the ensembile, and the approx-
imation of a typical nonensemble flow field. The former is
depicted in Fig. 9. Viewing this we see that ten terms are
sufficient to capture the gross structure of the flow. The er-
ror as measured by (19} is 13%. At 100 terms thisis down to
3%. This accuracy is to be expected in view of the fact that
the full reconstruction is exact. However, even at 20 terms
detailed structure is resolved, e.g., the roll in the right of the
frame is recovered, and by 100 terms most of the small scales
are accurately captured as can be seen in the detail given in
Fig. 10. Perhaps more surprising are the results of the ap-
proximation to the nonensemble member. Although it now
takes more terms to capture all the features, we see from Fig.
11 that 20 terms are sufficient to recreate the large scales,
and up to 150 terms capture much of the small scale features.
The corresponding errors for these figures are 17% and

FIG. 10. Reconstruction of realization shown in Fig. 5(a) for (a} 10, (b)
20, {c¢) 100 terms.
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FIG. 11. Approximation of realization shown in Fig. 5(c) for (a) 20, (b}
40, (¢) 150 terms.

9.9%, respectively. The approximation error €y, averaged
over 11 realizations, and the convergence errors for both
Figs. 10 and 11 are shown in Fig. 12. Note that the conver-
gence errors for Fig. 11 are considerably larger than average.

0.20 1}
2.8 -

0.40

0.00 . P
o 100 180 200

FIG. 12. Dashed curve gives approximation error €, averaged over 11 real-
izations sclected at random. The upper solid curve gives the error €,, for the
flow shown in Fig. 5(c}). The lower solid curve gives the reconstruction
error for Fig. 5(a).
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Vi. DISCUSSION

The approach presented here, for characterizing the
large scale structures, allows us to view the jet flow realiza-
tions in terms of the superposition of a number of eigenfunc-
tions. I it is accepted that the method captures the gross
features of the flow with approximately 30 terms, then this
corresponds to a data compression factor of roughly 70:1.
This is based on the rough estimate that 70 X 32 pixels depict
a large scale structure. We expect that this estimate would
not be altered significantly if the ensemble size increased or
even became unbounded. There are two reasons for this as-
sertion. First it should be noted that the subensembles of 70
and 150 showed no significant alteration of the principal
eigenfunctions. Thus, although an increase in the ensemble
size would sharpen the eigenfunctions in the fail, i.e., as the
index is increased, little alteration of the earlier eigenfunc-
tions should be expected. Second we observed that realiza-
tions cutside the population were well fit by the first 30 to 40
eigenfunctions, i.e., the average percent error was about
10%. Moreover we expect this to show some improvement
with increasing ensemble population.®®

A related point is concerned with the 70 X 32 pixel reso-
fution. Although this was deemed adequate to resolve the
flow at the flow Reynolds number, one can imagine increas-
ing the resclution (perhaps just for cosmetic purposes ). The
above discussion strongly impiies that the number of rel-
evant eigenfunctions will not change to any significant de-
gree. They will only become smoother in appearance.

As we pointed out in the Introduction, a shortcoming of
the current investigation is that we consider a two-dimen-
sional slice of what is truly a three-dimensional flow. It has
been observed that as we proceed along the transition region,
the flow becomes increasingly three-dimensional due to in-
stability of the vortices.”™** From the development present-
ed in this paper it 1s clear that three-dimensional realizations
can be handled without difficulty. Thus, advances in tech-
nology that are now taking place, and that lcad to three-
dimensional fields, can be treated virtually without change
by the methodology of this paper. Another extension of the
methodology would be to factor into the procedure the un-
derlying periodic nature of the flow. This has been discussed
in Secs. LI and IV and further discussion is not deemed
necessary.

Another shortcoming of the above treatment is our lim-
ited ability in interpreting the concentration patterns in
terms of the actual motions. Since several laboratories are
now engaged in developing techniques for simultaneously
generating velocity and concentration data, we briefly com-
ment on the required extension. To treat such a case it is only
necessary to adapt the formalism to vector fields.”"!??
Thus instead of scalar snapshots, (11) or {12), we use vector
snapshots composed of the velocities and concentration. In-
stead of a scalar covariance, (13), we now obtain a4 matrix
covariance. The application of the snapshot method can
then be applied aimost without change. This approach has
been taken with a numerical simulation of the allied problem
of axisymmetric jet flow.* It was found there that concen-
tration fields can be indeed related to the mechanical mo-
tions. ’
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We close by summarizing the major contributions of
this paper: (1) The development of a methodology for ana-
Iyzing and treating large experimental and numerical data-
bases. (2) Demonstration that the K~L procedure can be
appiied with present computer power, to fully inhomogen-
eous three-dimensional turbulence. (3) New ideas to pursue
in order to gain a deeper understanding of coherent struc-
tures. In this context it is interesting to observe that Moin
and Moser™ using admixtures of K-L eigenfunctions create
what they term characieristic eddies, which do bear a resem-
blance to accepted coherent structures. (4) Demonstration
that tracer particles in a fluid provide much more informa-
tion than just gross features such as boundaries.
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