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A two-dimensional flow governed by the incompressible Navier-Stokes equations with a 
steady spatially periodic forcing (known as the Kolmogorov flow) is numerically simulated. 
The behavior of the flow and its transition states as the Reynolds number Re varies is 
investigated in detail, as well as a number of the flow features. A sequence of bifurcations is 
shown to take place in the flow as Re varied. Two main regimes of the flow have been 
observed: small and large scale structure regimes corresponding to different ranges of Re. Each 
of the regimes includes a number of periodic, chaotic, and relaminarization windows. In 
addition, each range contains a chaotic window with nonunique chaotic attractors. Spatially 
disordered, but temporally steady states have been discovered in the large scale structure 
regime. Features of the diverse cases are displayed in terms of the temporal power spectrum, 
Poincark sections and, where possible, Lyapunov exponents and Lyapunov dimension. 

I. INTRODUCTION 

It is now well established that a number of dissipative 
chaotic fluid flows may require relatively few dimensions for 
their long-term dynamical description.‘-4 This has been ex- 
amined perhaps in greatest detail for fluid models such as the 
Ginzburg-Landau (G-L) equation,5-8 an equation which 
results from the study of the critical point in a variety of 
stability problems.9-‘2 For closed fluid systems such as Ray- 
leigh-Benard (R-B) convection and Taylor-Couette flow 
there is abundant evidence that the early stages of chaos are 
low dimensional. For R-B convection there also exists a nu- 
merical simulation that details the variation of dimension 
with Rayleigh number.13 

In this paper we consider a simple fluid flow that exhib- 
its chaotic behavior and that is amenable to detailed exami- 
nation. This flow, governed by the incompressible Navier- 
Stokes equations, is generated and maintained by a spatially 
periodic time-independent forcing of the fluid. It is some- 
times referred to as the Kolmogorov flow (Arnold and Me- 
shalkin14). This flow was originally introduced by Kolmo- 
gorov in a seminar as an example of a simple linear stability 
problem. The stability of the primary flow has been reported 
on by Meshalkin and Sinai” and by Green.16 The flow is 
known to become linearly unstable at a critical Reynolds 
number, Re,, of @ ‘5*‘6 (the Reynolds number is defined in 
the following section), beyond which a stationary cellular 
pattern appears. ” At sufficiently high Re the cellular pat- 
tern itself becomes unstable and the resulting flow is un- 
steady and chaotic. Kraichnan’a and Batchelor” have 
shown that at sufficiently high Re two-dimensional turbu- 
lent flow exhibit an energy cascade toward low wave 
numbers (the infamous reverse cascade) and an entropy cas- 
cade toward high wave numbers. This cascade process ap- 
pears to be in effect in our calculations even though the Re 
number is relatively low. An alternate view of this effect, in 

the present instance, is that the flow is unstable to long wave- 
length disturbances. The general instability of short wave- 
length structures to long wavelength disturbances has been 
investigated by Yakhot and Sivashinsky, and under suffi- 
ciently anisotropic conditions, their study lead to the notion 
of negative viscosity for the long wavelengths,20’21 since the 
growth rate is proportional to the square of the wave num- 
ber. 

Our investigation is, in large part, numerical in nature. 
We examine in some detail the behavior of the flow and its 
transition states for a range of the bifurcation parameter Re. 
We use Poincart sections to examine the chaotic attractor of 
the flow, and apply the Kaplan-Yorke formula22 to calcu- 
late the dimension of the chaotic attractor when it is possible. 
A number of remarkable features of the flow were discov- 
ered. These include windows of relaminarization in the pa- 
rameter space; attractors which are nonunique in the sense 
that only some part of the attractor can be visited; and spa- 
tially disordered but temporally steady states. 

We will be careful throughout this paper to use the term 
chaotic instead of the term turbulent. In particular we are 
referring to flows that when looked at in the time domain 
have broadband energy spectra. These flows also exhibit sen- 
sitive dependence on initial data (they have positive Lya- 
punov exponents). Thus by generally accepted criteria the 
flows are temporally chaotic. However, as will be seen, rela- 
tively few spatial Fourier modes are active and the broad- 
banded spatial spectrum characteristic of the true turbu- 
lence is not seen. Nevertheless, the flow is chaotic in its 
Eulerian description and should not be confused with La- 
grangian turbulence23-25 in which the velocity fields are to a 
high degree laminar. 

Recently we became aware of the investigation of the 
Kolmogorov flow by She. 26*27 While there is some unavoid- 
able overlap, the two investigations are largely complimen- 
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tary. She’s work is also mainly numerical and concentrates 
on the high end of the Re range. (A minor difference is that 
he uses a higher value for the frequency of the forcing func- 
tion.) The mathematical tools used also differ. We will make 
extensive use of the power spectra, Poincare sections, Lya- 
punov spectra, and flow visualizations for the investigation, 
while She relies mainly on time series and phase portraits. 
Several issues are viewed differently by us and we comment 
on these in the text. She’s further work done in collaboration 
with Nicolaenko is concentrated on the symmetry breaking 
homoclinic chaos28*29 occurring beyond the Re range cov- 
ered in this study. 

II. KOLMOGOROV FLOW 

We consider the forced incompressible Navier-Stokes 
equations in two dimensions, 

a;u’ + ay = V*u’ = 0, ( 

-u~+vpI= d 
dt’ p 

&‘u + x sin ky’e,. 

In preparation for the normalization given below, dimen- 
sional quantities are denoted by primes and e, denotes the 
unit vector in the x direction. This system has the solution or 
fixedpoint, 

u’=U’= [Xe,/(k2Y)]sinky’. (3) 
A Reynolds number for the flow may be naturally based on, 
the maximum speed of this field, x/~k 2 and the length scale; 
k-‘, thus 

Re =X/(k3v’). (4) 
(A Reynolds number could also be based on the wavelength 
and maximum speed giving value of 2~7 Re in terms of our, 
parameter. ) 

The linear stability of (3) can be analyzed by writing 
u’ = U’ + Su’(y)exp(iakx + at) (5) 

and investigating the resulting Orr-Sommerfeld equation.30 
It is found that instability first sets in at”,” 

Re=Re,. =$ (6) 
and is due to disturbances of infinitely long wavelength. 
Moreover, it can be shown that disturbances with ak> 1 
never destabilize U’. 

Thus, according to the stability analysis, the domain 
must be large in some sense in order for us to include growing 
modes. For computational purposes we fix the domain size 
and regard the spatial forcing frequency as the bifurcation 
parameter. With this in mind we choose the following nor- 
malization: 

vk 2u’ kx’ 
II=-, x=-, 

x n 
(7) 

where n is an integer that specifies the spatial frequency of 
the forcing. Under this normalization the Navier-Stokes 
equations become 

VW = 0, (8) 

-$- + Vp = $ V’U -/- 2 e, sin i7y 
R 

(9) 

with periodic boundary conditions in two directions 

0(X, y<2n* ( 10) 
Here 

ti=nX/(v2k3)=nRe (11) 
is the bifurcation parameter. In this format the critical value 
ofnis 

C& =nRe, =n&f. (12) 
We will refer to the solutions of these equations as Kolmo- 
gorov flows. 

Equations (8)-( 10) are invariant under groups of 
transformation that we now discuss3’ There are in fact two 
groups one discrete and the other continuous. 

Referring back to the notation of (9)) n refers to the 
number of vertical cycles in the horizontal forcing. If [ u (x, 
y,t),u(x,y,t)] = w is a solution then 

g%=[( - I)%(( - lJkx,y+k:), 

- Qkx,y+ kK >I , k = 0 ,..., 2n - 1, 
n 

(13) 
are also (independent) solutions of the problem, i.e., they 
satisfy the equations and conditions of the problem. The gen- 
erator of this cyclic group, g, is a glide reflections2 of half- 
wavelength. In addition rotation through 7r is another group 
generator, i.e., if u is a Kolmogorov flow then 

RUZ[ -u(-xx,-YY),---v(--x,--YY)l (14) 

is one also+ In all there are 4n elements in the discrete sym- 
metry group for the Kolmogorov flow. Thus we might possi- 
bly obtain 4n distinct solutions to (8)-( 10) from any one 
Kolmogorov flow. However, some of these may be redun- 
dant and the actual number of distinct solutions produced by 
the discrete symmetry group depends upon the number of 
symmetries the original solution trajectory possesses. 

The remaining symmetry group is the group of transla- 
tions in the x directions, i.e., if u is a solution then 

T,u = [u(x + 4vMx -!- 4YY)l (15) 
are also solutions to the problem for all 0<1~2n. 

111. COMPUTATIONAL METHOD 

Based on the normalization given in the previous section 
we consider the computational domain 

04x, y\<2n- (16) 
with periodic boundary conditions in the two directions (so 
the flow lies on the torus). 

The natural method of choice for the investigation of 
(8)-( 10) under the 2r-periodic boundary conditions is the 
pseudospectral method using Fourier expansions.33 All de- 
rivatives are evaluated in the spectral space and updates are 
performed on the expansion coefficients of u(x,t). On the 
other hand, the nonlinear terms are evaluated in the physical 
space and then transformed back to the spectral space. The 
needed transformations are all efficiently done by the means 
of the fast Fourier transforms. 
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In a variation on the usual formulation we have used the fourth-order R-K schemes were implemented and found to 
following vector expansion set for our velocity field: produce similar results. The linear viscous terms were inte- 

B, (xl = [(m,, - ml)/14 lexp(im*x), (17) grated exactly using an integrating factor approach. The 

where m is the integer wave-number pair (m,,m,). Using 
time step size was chosen automatically by the code to keep 

such a basis we can expand u as 
the CFL number within the numerical stability bounds for 
the particular scheme being used.33 

u(x,t) = 2 II,,, (r)B, (xl, (18) 
Test of the code included verifying its ability to predict 

the linear stability of the primary base flow. For value of 0 .- 
where the sum is performed over all the components of the below R, it was found that perturbations died rapidly while 

wave vector m. just beyond R, steady cellular patterns developed that agree 

The basis elements are easily seen to be divergence free, with those of other authors.‘6,*7 

VB, = 0 (19) 
Two types of dealiasing were tried during the course of 

the simulation as were spatial grids of double the resolution 
and complete in the space of square integrable 2n-periodic 
divergence-free vector functions. An advantage of this for- 
mulation is that because gradients of scalar functions (such 
as the pressure term in the Navier-Stokes equations) are 
orthogonal to the space of divergence-free functions,34 these 
terms are eliminated entirely in a Galerkin formulation. A 
computational method of this type was first used by Leonard 
and Wray3’ in their study of the stability of pipe flows. 

Throughout our study the underlying forcing frequency 
was taken to be n = 4 and so that the critical value of the 
bifurcation parameter R is 

C&=4& (20) 
We shall be interested in the long-term, asymptotic behavior 
of the flows developing from the primary flow 

u = U = (sin 4y/R)e,, (21) 
which is a fixed point solution of (8)-( 10). It was found that 
integrations based on initial data having particular symme- 
tries gave rise to long-term solutions having the same sym- 
metries (this serves as a test of the numerical code). Our 
interest was in more general solutions, so we used initial 
conditions that added small perturbations to all wave 
numbers of the primary flow. In particular, we set 

. ‘n-4 
b=$sin (4v)e, +l” 

2fi 

X 2 [(I +i)R,,(x) - (1 -i)B-,(x1]. 
m,>O 
m,>O 

If we write 

u, = (110,uo) 
then, for example, u. has the form 

(22) 

(23) 

- sin(m,x + ms)] 
> 

. (24) 

The computations were performed for the range 
n/n, < 12.5. (25) 
Several time-steppers were implemented in the code. 

For the purpose of computing Lyapunov exponents, which 
is discussed later, it was found that the self-starting Runge- 
Kutta schemes were the most convenient. Both third- and 

(64X 64 as oppose to 32 X 32). These alternations did not 
significantly change the computed results. On the other 
hand, attempts to use 16 x 16 spatial grid gave rise to under- 
resolved flows that were drastically different in nature. The 
results reported here are for 32 X 32 spatial grid (i.e., we 
integrated 1024 ordinary differential equations), which was 
found adequate for the parameter range (25). All runs were 
allowed to settle for a considerable time (5000 + time units) 
before any data were recorded. 

IV. TOOLS OF THE ANALYSIS 

Here we briefly comment on the tools used in the analy- 
sis of the direct numerical simulation of the Kolmogorov 
flow. The tools needed for the investigation can be grouped 
according to their function. 

A. Temporal power spectra 

We need some mathematical tools to distinguish 
between chaotic and quasiperiodic regimes of the flow. The 
temporal power spectra (PS) are indispensable for this pur- 
pose.36 

Let PS (y(t)) denote the temporal PS of the time signal 
r(t). It follows from Eq. ( 18) that there are 32* = 1024 
individual time histories available for the use in the temporal 
PS. For the problem at hand, we define the energy PS box 
averaged per m i wave number in x direction as (modulo a 
multiplicative normalization) 

WU)‘“~’ = z WRe[u,,,,,l, (t)]) 

+ PS(Im[u,,,,,l, (01). (26) 
In other words, we take the temporal PS of all the time his- 
tories resulting from the projections onto basis function ( 17) 
which include m, in the wave-number pair m = (m,,m,) 
and average over them. This is in keeping with the definition 
of the PS of a time stationary signal as being the Fourier 
transform of the autocorrelation. In the calculations we fre- 
quently set m, to zero and use the resulting temporal power 
spectrum to distinguish between chaotic and quasiperiodic 
regimes of the flow. 

For later reference we remark now that since the PS is 
the Fourier transform of the autocorrection it follows that as 
the frequency ] f ] ---+ ~a the PS vanishes faster than any in- 
verse power of 1 f I. This is a simple consequence of the fact 
that in any numerical simulation we are integrating a system 
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of ordinary differential equations with smooth direction It then fohows from (30)-( 32) that our sectioning plane is 
fields and hence the solution is C m in the time variable. invariant under the symmetry group of the Row. 

6. Poincar& sections 

We use Poincare sections to study geometrical structure 
of the attractor and to qualitatively discuss its degree of com- 
plication. Methods for the calculation of these sections have 
been given by Keefes and others. The phase space employed 
in the calculation of the Poincark sections is spanned by the 
spatial Fourier modes of the solution u (xJ), 

u(W) = 2 u, (t)B, (x), 
m 

where u, and B, are complex. 
The choice of the sectioning plane for the Kolmogorov 

flow becomes very important, for it determines which attrac- 
tor features are covered by the study. Here, we are mainly 
concern with the visual structure of the attractor itself. CPU 
expenditures to accumulate a l’arge enough collection of 
points for a highly resolved Poincare section become consid- 
erable. Therefore a need arises for the use of the discrete 
symmetry group of the flow to extend the available data. 
This in turn suggests that some care should be exercised in 
the choice of a sectioning plane. In particular, an acceptable 
choice is a plane that is invariant under the symmetry groups 
(both discrete and continuous). It is also a good practice to 
choose as a section, a plane for which the flow projections 
maximize the energy contained in the basis function B, (x) 
with respect to the L ’ norm. With that in mind, we take the 
forcing function plane 

Im(u,,,, 1 = D, (28) 
Im(f40,4, 1 > 0, (29) 

as our invariant under the action of the symmetry group 
section plane for the Poincare sections used later. The choice 
of the constant D controls apparent positioning of the hyper- 
plane in the phase space and is dependent upon Sz. In actual 
calculations, we consider a series {Em [ uCo,4) ( tj ) ] )y= 1 of 
snapshots of the variable Im [ uC0,4) (t) 1. We then set D to its 
average, i.e., 

D=$ ,$ Im[Uc0,4) (411. I I (30) 

The Poincare sections shown in the later sections plot the 
Re(u,,,,, 1 vs Im(u,,,, 1. 

For further reference, we note here representation of the 
symmetry group ( 13 ), ( 14) in terms of the spectral compo: 
nents of u( XJ). It u( x,tf is represented as in (27) then the 
glide reflection gu(x,t) ( 13) can be written as 

@u(W) = z - u( _ m,,m,l (t)eicm+)7?)m (x) 

=; u&,,- m,) (t)eicm:‘n)%m (x), 

whiIe the rotation Ru (14) is 

(31) 

Ru(x,t) = 2 u-~ (GB, (xl = C - u: (t)B, (xl. 
m m 

(32) 
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From the examination of Eq. (32), it is apparent that 
the rotation corresponds to the reflection around the imagi- 
nary axis for any variable u, (t). On the other hand, glide- 
reflection action (31) of the symmetry group on uto,,) (t) 
gives 

- 21(o,,) (t)e”r’4’, 
This corresponds to P- rotation in the 
Re[uco.,, (r)]-Im[~ Co,,) (t) ] plane. Thus the discrete sym- 
metry group of the flow induces extra symmetries onto the 
u(~,~) (t) plane. They correspond to the reflection around the 
[ f I + 2i)/8]rr, i = 0,1,2,3 axis. These symmetries figure 
prominently in the discussion of the results of our numerical 
simulation. 

0. Lyapunov spectrum 

All of the mathematical tools mentioned above can indi- 
cate the presence of chaos in the dynamical system, but do 
not directly address the level of randomness present, or how 
chaotic a solution is. 

For these purposes, we compute the Lyapunov expo- 
nents for the two-dimensional Navier-Stokes equations 
(8)-( 10) and these in turn allowed us to compute the di- 
mension of the attracting set of the chaotic flow. We write 
the governing system in symbolic form as 

dU 
- = *F(u), 
dt 

(34) 

and denote a reference or fiducial trajectory by u”. If an ini- 
tially nearby trajectory is written as 

U=U”+N (35) 
then in the limit 6-0, Y satisfies the variational equation, 

+ +Y(UO)Y, 

where 

y(uo) - SF(uO) 
Su” 

(37) 

is easily obtained through the linearization. 
The largest Lyapunov exponent is defined as the maxi- 

mum exponential rate at which nearby trajectories diverge 

A, = lim (l/r)ln[]v(?-)]I. (38) r-59 
Thus the idea of a Lyapunov exponent can be regarded as a 
generalization of the stability exponent of an equilibrium 
solution, and finding a positive Lyapunov exponent is an 
unambiguous signature of a chaos. 

It is to be expected that all initial data v(x,O) for the 
linear problem ( 36) will rapidly evolve in the direction of the 
greatest growth. Using this fact, it is relatively easy to com- 
pute/1, by integrating (36) with arbitrary initial data. How- 
ever, it is not quite so trivial to obtain other members of the 
Lyapunov spectrum. Algorithms for calculating these have 
been given by Bennetin et al.,37 Shimeda and Nagashima,3R 
and Wolf et aLs9 and are further explained by Fitzmaur- 
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ice.40 The essence of the trick lies in computing volumes of 
infinitesimal ellipsoids. In fact if E, (7) denotes the volume 
of an n ellipsoid in phase space it then follows that 

A, + A, + . . . + A2, = lim (l/r)ln E, (7). (39) ?--co 
Thus after (38) one calculates R, + R,, then R, + il, + ;1,, 
etc., and thereby the spectrum ;I& ,... . 

Since the system in question is dissipative we know that 
the sum (39) will become negative for n large enough. And 
since it is chaotic it must be positive for n = 1. Therefore this 
sum must cross zero at some point as one increases n. One 
may then use the formula of Kaplan and Yorke,22 

dL = N - Z,A,/A,, 1, (J.0) 
to estimate the dimension, dL, of the attractor where N is the 
largest integer for which the sum is positive. Constantin et 
aZ.41 have shown that the Kaplan-Yorke formula gives an 
upper bound for the Hausdorf dimension. 

The original nonlinear code for computing the fiducial 
trajectory (34) was adapted to simultaneously compute the 
linearized system (36). For each Lyapunov exponent calcu- 
lated one essentially computes a trajectory (36) from a fresh 
initial conditions. We note that while (36) is linear, it has 
nonconstant coefficients, and, from a computational point of 
view, is as costly as the original system (34). Thus, Lya- 
punov spectrum calculations are very expensive. 

One test of the code was easily carried out, namely by 
choosing u” to be primary base flow (2 1). We could compute 
a L, that should, indeed, agree with the most unstable eigen- 
value computed from the Orr-Sommerfeld equations using 
the same base flow. 

In the chaotic regime we tested Lyapunov code by vary- 
ing the order of the time-stepping scheme (R-K 3 and R-K 
4)) by varying the spatial resolution (32 X 32 and 64 X 64)) 
and by trying many different initial conditions for the linear- 
ized systems. None of these changes altered the Lyapunov 
dimension value in the first decimal digit. So we report val- 
ues here to that accuracy. 

V. RESULTS 

In this section we present the results of our direct nu- 
merical simulation of the Kolmogorov flow. We have found 
that there are two main regimes of the flow corresponding to 
different ranges of the bifurcation parameter R. Tentatively 
these are termed as being the regimes of small and large scale 
structures. Explanation for this terminology will be evident 
from the streamline plots to be discussed. 

A. Small scale structures 

1. o<f2m,< 7 

In this range the asymptotic solution of the N-S equa- 
tions (8) -( 10) is the fixed point (2 1). Streamlines and vor- 
ticity plots for the parallel shear flow in horizontal direction 
are shown in Fig. 1. Computations using arbitrary initial 
conditions rapidly decayed into this pattern and all comput- 
ed Lyapunov exponents were negative, indicating the linear 
stability of this state. 

(a) 

FIG. 1. Parallel shear layer flow corresponding to the fixed point solution at 
fk = 0.511,: (a) streamlines, (b) vorticity. 

2. 1 <am, < 1.97 

As we increase a, the horizontal shear flow becomes 
unstable and the flow pattern changes. At R/R, = 1, the 
parallel shear flow bifurcates to a new solution. In this range 
the motion is steady and purely cellular and illustrations of 
this are shown in Figs. 2 and 3. It is interesting to note that at 
the lower range of the parameter fi the flow is almost hori- 
zontal [Fig. 2(a) ] while at higher values of n in this range 
the motion is mainly in the vertical direction [Fig. 3(a)] 
with well defined cells. In the first instance the saddle points 
of the separatrices of the streamlines are formed horizontally 
while in the latter case they are joined vertically. This is in an 
agreement with the experiments of Bondarenko et ai.42 for a 
magnetohydrodynamic problem under similar forcing. Lya- 
punov exponents in this range were found to be negative but 
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FIG. 2. Steady cellular flow found at 0 = 1. I2& with the motion mainly in 
the horizontal direction: (a) streamlines, (b) vorticity. 

FIG. 3. Steady cellular flow found at R = 1.551, with the motion mainly in 
thevertical direction and the fastest growing perturbation has wave number 
1 in the horizontal direction: (a) streamlines, fb) vorticity. 

of small absolute magnitude indicating that the cellular pat- 
tern is only weakly linearly stable, 

3. 1.97,<WJ-2, ,<2.2 

In this range the flows still have the steady cellular 
structure but the number of cells in the horizontal direction 
had suddenly doubled. The new flow patterns are depicted in 
Fig. 4, One can explain this phenomena by noting that in this 
range the horizontal wave number of the fastest growing 
mode changes from 1 to 2 (first observed by Greeni6), A 
very important feature of the flow in this and previous ranges 
is that it is invariant under the discrete symmetry group 
transformations. By invariance we mean that for any trans- 
formation g in the discrete symmetry group of the flow there 
is 0&2a such that 

T,grr = u, (41) 
where T, is a translation by I in x direction and u is a solution 
of N-S equations (8)-( 10). In other words, we say that the 
flow is invariant under the discrete symmetry group if, after 
application of any transformation from the discrete symme- 
try group to the flow, we can translate the transformed flow 
in the horizontal direction in such a way that it coincides 
with the original Bow. 

We conducted a search for hysteresis effects in this 
range of the parameter space. The search for the reverse hys- 
teresis in this range of the parameter space ft to the previous 
range was unsuccessful, while the search for the forward 
hysteresis in the range 1 < RA& < 1.97, reveals that the in- 
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is a gradual breakdown in the symmetry of the tlow that 
becomes more pronounced as the bifurcation parameter fi 
reaches the upper end of the range. Unlike the first two bifur- 
cations, linear stability theory as applied to the primary base 
flow (2 1) offers no clues for the forms that are obtained. The 
new flow patterns are depicted in Fig. 5, the features to note 
here are that the cells are no longer aligned on vertical lines 
and are of different size. It is perhaps remarkable that these 
cellular structures are still steady. 

At WC& = 3.53 the asymptotic flow is no longer 
steady, but is statistically stationary, Now, the tlow spends 
most of the time in the steady cellular state shown in Fig. 5. 
But from time to time, the flow is intermittently disturbed by 

(b) 
FIG. 4. Steady cellular flow found at Cl = 2Ck, with the motion mainly in 
the vertical direction and the fastest growing perturbation has wave number 
2 in the horizontal direction: (a) streamlines, (b) vorticity. 

variant flow under the discrete symmetry group transforma- 
tions persists until the parameter R reaches 2.2Q. For 
n > 2.2C&, it gives way to a flow similar to one discussed in 
the next range of the parameter space fi with the following 
exceptions: number of cells in the streamline plot is halved in 
the x direction; and there is a steady horizontal drift develop- 
ing in the flow. The speed of the drift approaches to zero at 
a = 2.2R,. 

4.2.2<L2&2, <3.53 

As n increases, small amplitude perturbations at the 
saddle points of the streamlines will grow and lead to the 
eventual breakdown of the steady cellular pattern depicted 
in Figs. 2-4. At WQ, = 2.2 another bifurcation in param- 
eter space takes place. For the range under discussion there 

torti- 
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slow drift in the horizontal direction, but without a net trans- 
port off mass. The drift may be regarded as the wave motion. 
It also follows from symmetry that the drift wave can move 
in either direction. We conclude from Fig, 7, which shows 
the temporal power spectrum, that there is a principal fre- 
quency, the large peak, and subharmonic frequencies of it 
present in the fiow. These correspond to the oscillations of 
the pattern around larger vortices and inner oscillations of 
the vortices themselves. It is interesting to note that we have 
found no regime of the ff ow when only the principal frequen- 
cy is present. -0.050 - 

4.101 I 
0.0 t.OE4 z.oFA 3.oE4 4.oEA 

FIG. 6. Time series of Re(u,,,, ) (t) at R = 3.6X2,.. Plateaus correspond 
to a steady cellular flow. 

random horizontal shifts occurring on a very rapid time 
scale. the time between bursts is very long and is a decreasing 
function as the parameter Sl reaches the upper end of the 
range. Figure 6 shows the time series of Re ( u Co,, ) ) . Here, the 
plateaus correspond to a steady cellular state. After the hori- 
zontal shift, the cells oscillate with a small amplitude for a 
short while, and then settle down very rapidly to a steady 
pattern before undergoing the next horizonta1 shift. This 
state is chaotic but only over a very long time scale, i.e., the 
Lyapunov spectrum has some very small positive exponent. 
This may be related to the heteroclinic connections of Arm- 1 
bruster et at.43 and Aubry et ~1.4~ 

6.3.6<&VD, <4.47 
In this range the nature of the flow changes once again. 

We now find periodic oscillations occurring in the cellular 
structures as depicted in Fig. 5. Also, the solution develops a 

-6.0 1 
0.0 0.050 0.10 0.150 0.20 a 

Fr.?quency I Hz 

FIG. 7. Power spectrum of the veracity u at Ck = 4Ci,. The principal fre- 
quency and its subharmonic dominates the spectrum. 

1.25( 

z 4.47@/ti, <4.56 

Now, the flow enters its second chaotic regime. Figure 8 
depicts a typical time series of the signal Re( uCO,,) ) in this 
range, from which we conclude that the chaos is intermit- 
tent. Examining the power spectrum shown in Fig. 9, we see 
that the principal and subharmonic frequencies are promi- 
nently present in what is a broadband spectrum. We did not 
attempt to calculate the Lyapunov dimension for the dy- 

0.070 

0.060 

0.050 

0.040 

0.030 1 t.5oE‘l 
(ai 

I 
1.7sFA 2.0&i 2.2sE.4 2.5oE4 

iww 
LOSE4 1.wE4 1.95E4 2.oE4 

(bi 

FIG. 8. (a) Time series of Re( ueg,tL )(t) at Cl = 4.48&, (b) blowup of 
(a). The flow is intermittent chaotic with long time intervals between the 
bursts of activity. 
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FIG. 9. Power spectrum of the velocity II at 0. = 4.48& The flow is chao- 
tic, but the principal frequency and its subharmonics still dominate the 
spectrum. 

namical system in this range of R because of the very long 
time interval between the bursts of activity in the flow. A 
most remarkable feature of the flow in this range is that the 
chaotic attractor is not unique! The dynamical system has 
several chaotic attractors each with its own basin of attrac- 
tion lying quite close to the fixed point (2 1). On the basis of 
extremely long calculations we conclude that these attrac- 
tors are not connected. Figure 10 shows the PoincarC section 
depicting cuts of the chaotic attractors. Two darker points in 
the blown up section [Fig. 10(b) ] correspond to the punc- 
tures produced by the solution in the laminar phase of the 
intermittency. In actual calculations we obtain only one of 
the attractors (depending on the chosen initial data), and 
the rest are obtained by using the discrete symmetry group. 
Alternatively, we can apply the symmetry group to the ini- 
tial data and thus generate each of the attractors. This was in 
fact done to further verify our computational scheme. An- 
other peculiarity of the flow is that there are only eight sym- 
metric attractors instead of 16 as predicted by the discrete 
symmetry group. This happens because the action of five 
glide reflections followed by the rotation by 7r applied to the 
solution maps the attractor onto itself. This induces an extra 
symmetry into the attractor corresponding to the reflection 
around the axis denoted by the dashed line in Fig. lO( b), as 
was discussed in the earlier part of this paper dealing with 
the PoincarC sections. 

8.4.58<fM2, (4.65 
As fi increases, different symmetric attractors start in- 

tersecting each other and now the flow is intermittently 
chaotic with one ergodic attractor consisting of eight con- 
nected symmetric components. This is similar to crisis-in- 
duced intermittency discussed by Greboggi et ai.45 when a 
number of chaotic attractors in a system with symmetries 
merge to form a single attractor. This manifests itself by 
intermittent switching between behaviors characteristic of 
each of the attractors before merging. Figure 11 shows the 
time series of Re(u,,,,, ). The evidence of the intermittent 
bursts is clearly present and sudden jumps correspond to the 

I I t 

(a) 

I  
.O., I  .“. -0.05 0 -y- 0.0s 

(b) 

I  I  

FIG. 10. (a) Poincark sectionof the chaotic attractors at R = 4.48R,. (b) 
One of the attractors. Attractors are not ergodic. A dashed line in (b) shows 
the axis of symmetry of the attractor. 

solution jumping to a different component of the attractor. 
We present the temporal power spectrum in Fig. 12. This 
new state is more chaotic than the previous case, but still 
there is evidence of the principal frequency from the lower 
parameter values. The PoincarC section is shown in Fig. 13 
(“butterflies” section). Darker regions in the blown up sec- 
tion of the attractor in Fig. 13(b) correspond to the points 
where the solution spends most ofthe time between intermit- 
tent bursts. Moreover, comparing Figs. 13 and 10, we notice 
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FIG. 11. (a) Time series of Re(u,,,,)(t) at R  = 4.63St,, (b) blowup of 
(a). The flow is intermittent chaotic. The sudden jumps correspond to the 
sohttion jumping from one component of the chaotic attractor to another. 
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FIG. 12. Power spectrum of the velocity II at R  = 4.63&. 
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FIG. 13. (a) Poincare section of the chaotic attractor at R = 4.6312,.. (b) 
Oneofthecomponentsoftheattractor. Flow intermittentlyjumpsfromone 
component of the attractor to another. 

that the main features of the nonunique attractor are still 
present. 

Another remarkable feature of the Kolmogorov flow is, 
that counter to intuition, the parameter space $2 contains 
windows of reIaminarization between different chaotic 
ranges of the flow. This range is an example of one of such 
windows. Here, the flow returns to a periodic regime with a 
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principal and subharmonic frequencies in the power spec- 
trum. Again, there is no regime with just the principal fre- 
quency is present without subharmonics. This flow is similar 
to the range 3.6 < R/R, < 4.47. It also, develops a slow 
steady drift in the horizontal direction. We also note that this 
drift appears to vanish in the chaotic windows of the flow. 

At R = 4.72& we see the formation of large scale struc- 
tures. 

B. Large scale structures 

Although we are mainly interested in the asymptotic 
behavior of the Kolmogorov flow, it is of interest to examine 
how the large scale structures are formed. The process is 
basically the same for all values CI>4.72&. 

We start with a small perturbation of the fixed point 

flow (2 1) . This state persists for roughly the time scale pre- 
dicted by the linear stability analysis. Then on a very rapid 
time scale the flow changes to the unsteady cellular pattern 
of the sort illustrated in Fig. 5. This state with many small 
cells persists for a very short time and then the flow plunges 
into chaos. The new state is vigorously chaotic, character- 
ized by the rapid movements of a small vertical structures, a 
snapshot of which is shown in Fig. 14. By a rough count it is 
seen that the same number of vertical structures appears in 
Figs. 5 and 14. We refer to this state as metastable or tran- 
sient chaos following the terminology of Grebogi et a1.46 As 
seen by Basdevant et aL4’ and Benzi et aL4* in studies of two- 
dimensional turbulence, vertical structures persist and inter- 
mittency is marked. Of all the chaotic states observed in our 
numerical experiments, this is the only state that can be 
called chaotic both spatially and temporally and hence is 
turbulent according to common convention. At the lower 

FIG. 14. Instantaneous flow pattern found in the metastable chaotic regime 
at fl = lOa,: (a) streamlines, (b) vorticity. The flow is both spatially and 
temporally chaotic, and thus may be called turbulent. 

(b) 
FIG. 15. Steady spatially chaotic flow found at Cl = 5.9fi2,: (a) streamlines, 
(b) vorticity. Also, this is an example of large scale structures. 
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range of fl this metastable chaos holds for a relatively long 
time, while at a higher values of the bifurcation parameter fi 
it can be extremely short. 

In any case the phase point finds an escape hole in the 
metastable attractor and we eventually see the formation of 
large scale structures such as those depicted in the Fig. 15, 
The new attractor is stable. Considerable vortex merging has 
taken place in passing from Fig. 14 to Fig. 15. The two large 
structures shown in the streamline plot of Fig. 15(a) are 
somewhat misleading. On a closer examination of the vorti- 
city plot, we see that we have roughly the same number of 
distinct vortices as before and that the large structures in the 
streamline plot consist of a number of a counter-rotating 
vortices. These new large scale structures are completely dif- 
ferent from the small scale structures that we dealt with in 
the previous subsection. Examining the vorticity plot shown 
in Fig. 5 (b), we notice that at the small scales the vortices are 
arranged in a lattice. Thus, the unsteady small scale struc- 
tures flow can be considered as oscillations or “breathing” of 
the lattice structure. In the metastabie regime this lattice 
structure is broken, and we have a soup of vortices moving 
randomly around. Later the vortices merge together and ar- 
range themselves on a curved line with two vortices contain- 
ing most of the circulation. These vortices correspond to the 
eyes of the large scale structures depicted in the streamline 
plot of Fig. 15(a). It is of interest to note here that the verti- 
cal position of the eyes of the large scale structures are at 
hyperbolic points of the forcing functions when the flow is 
not chaotic. 

A search for the hysteresis in the range of the large scale 
structures regime to the sma’tl scale structures regime was 
performed by making runs in reverse in the parameter space 
a, starting on the previously converged attractor. It was 
observed that the large scale structures flow connects to the 
small scale structures tlow at R = 2.2R,. This small scale 
structures flow is invariant under the discrete symmetry 
group transformations, and it is the same as the flow in 
1 < &NI,, < 1.97 range. While in the reverse hysteresis loop 
in the range of the large scale structures to the small scale 
structures regime all chaotic and periodic regimes of the 
small scale structures flow have been bypassed. The flow in 
the hysteresis is somewhat similar to the flow in the 
2.2 < fin/Q, < 3.53 range except that the number of cells in 
the x direction of the streamline plot is halved, and there is a 
steady horizontal drift present in the flow. 

We will now describe in detail the bifurcations occur- 
ring in the large scale structure regime of the flow. 

f. d7i?<R/& c5.9 
In this range the flow is periodic with one frequency, In 

addition, there is a horizontal drift present in the solution as 
also noted by She.26 As sL/fi, approaches 5.9 both the fre- 
quency of oscillations and drift speed approach zero simulta- 
neously. Figure 16 shows the temporal power spectrum. 

I 
0.0 0.050 0.10 0.154 0.20 0.250 

Frequency/ Hz 

At Cn = 5.9fi,, the flow reaches the steady, spatially dis- FIG. 17. Power spectrum of the velocity u at f1 = 9.45812,. Two period 
organized state depicted in Fig, 15, This was the only value doublings have taken place. 

tt.0. 

g 0.0 - 
3 

-1.0 _ 

-2.01 t 
0.0 o.o5!l 0.10 0.150 0.20 0.2SU 

Fn?quencY 

FIG. 16. Power spectrum of the velocity u at R = S&. Only one frequency 
is present in the problem. 

of the parameter 0 found by us where both the frequency of 
the oscillations and the drift speed are zero. The flow is chao- 
tic only in the spatial domain! 

3* 5.9<N& <9.47 
As we start increasing Sz further, the flow develops both 

periodic oscillations and a slow drift in the horizontal direc- 
tion. The direction of the drift changes according to the par- 
ticular attractor the flow settles on. Moreover, as .Q in- 
creases, so does the drift speed and frequency of the 
oscillations. The periodic osciilations can be described as the 
“breathing” in the inner shells of the large scale structures, 
At fi = 9.042& a period doubling bifurcation takes place in 
the oscillations of the inner structures. Now the principal 
and subharmonic frequencies correspond to the breathing of 
the large scale structure itselfand the oscillations ofthe inner 
shells. This regime persists up to fi = 9.45Q., where another 
period doubling bifurcation in the oscillations takes place. 
We can see clearly the principal and subharmonic frequen- 
cies in Fig. 17 showing the temporal power spectrum of the 
flow. 
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FIG. 18. Power spectrum of the velocity u at R = 9.47&. The flow is chao- 
tic, but the principal frequency and its subharmonics are still dominant in 
the spectrum. 

4.9.47<J2/J;1, (9.66 

At n = 9.47& the flow enters another chaotic regime 
which continues until fl reaches 9.66C&. We again find the 
remarkable feature in this window that there is chaos but 
that the attractors are nonunique! Here, the chaos is present 
in the irregular breathing-like oscillations of the inner struc- 
tures that induces random oscillations of large scale struc- 
tures. We observe in Fig. 18, which shows the temporal pow- 
er spectrum, that the principal frequency and its 
subharmonics still dominate the motion. Horizontal drift 
diminishes to a trickle and sometimes changes directions. 
On average, there is no drift at ah. Figure 19 depicts the 
Poincare section of the attractor showing eight symmetric 
disconnected attractors. The slopes of the lines in Fig. 20 
correspond to the values of Lyapunov exponents and the 
calculated Lyapunov dimension is 7.9. 

5.9.66<LW& < 10.805 

At CI = 9.66& the flow enters another laminar window 
in the parameter space C!. Here, the solution slowly drifts in 
the horizontal direction and has the principal and subhar- 
monic frequencies. At CVR, = 10.4 a period doubling bifur- 
cation takes place. Figure 21 shows the temporal power 
spectrum at 0 = 10.7Q. 

6. 10.805<Wf2, ( 12.5 

As we increase CI even further, the flow enters another 
chaotic regime at R = 10.80%&. This flow now appears to 
be governed by an ergodic attractor which consists of eight 
symmetrical components and the solution intermittently 
jumps from one component to another. There is a very long 
time delay between successive jumps at CI slightly greater 
than the 10.805, but it rapidly decreases as n increases. The 
principal frequency and its subharmonics dominate the pow- 

ib - 

7% -8 

I I I 
.z .I- 0.1 -0.1 -II- 0.2 

(a) 

(b) 

FIG. 19. (a) Poincart sections of the chaotic attractor at n = 9.47Q,. (b) 
One of the chaotic attractors. Again, attractors are not ergodic. 

er spectrum shown in Fig. 22. An examination of Fig. 23 
showing the Poincare section of the chaotic attractor, indi- 
cates that the components of the attractor have a fractal 
structure. The calculated Lyapunov dimension is 8.9. An- 
other interesting point is that the direction of the drift 
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FIG. 20. Typical curves for the Lyapunov exponents calculations. Here 
R = 9.47&. and d, = 7.9. 

changes with each successive jump to a different component 
of the attractor. 

As we continue to increase R, the different components 
of the chaotic attractor merge together and become indistin- 
guishable. Nevertheless, the principal and subharmonic fre- 
quencies still dominate the temporal power spectrum shown 
in Fig. 24 for Cl= 12.5&. Now, the Lyapunov dimension 
increases to 10.8. Thus we might hope to describe the system 
in terms of a dynamical system having many fewer than 
roughly 1000 degrees of freedom that we have been allowing 
in our spectral simulations. 

As in the case of the small scale structures, the average 
drift speed diminishes to zero for the chaotic regimes and the 
drift is not present at all for Cl> 12.5&. 

.7sot I 
0.0 0.050 0.10 0.150 0.20 0.254 

Freguewy , Hz 

FIG. 21. Power spectrum of the velocity u at CZ = 10.7&. One period dou- 
bling has taken place in the range 9.65<W&s_10.7. 

-8.0 
0.0 0.050 0.10 0.150 0.20 0230 
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FIG. 22. Power spectrum of the velocity u at fl = 10.805fi3,. The flow is 
chaotic, but the principal frequency and its subharmonics are dominant in 
the spectrum. 

This concludes our detailed description of the behavior 
of the fixed point (2 1) of the Kolmogorov l-low as a function 
of the bifurcation parameter s1, 

VI. &BilMARY 

In this paper we investigated in some detail a simple 
fluid governed by the incompressible two-dimensional Na- 
vier-Stokes equations with a spatially periodic time-inde- 
pendent forcing. Two main regimes of the flow have been 
observed: small and large scale structure regimes corre- 
sponding to different ranges of Reynolds number Re. A se- 
quence of bifurcations takes place in each of the regimes of 
the flow. 

The first three bifurcations taking place in the small 
scale structure regime are steady: the first corresponds to the 
appearance of the cellular structures, the second doubles the 
horizontal wave number of the cellular structures, while the 
third breaks the symmetry of the flow. In addition, three 
chaotic windows are discovered in the small scale structures 
regime. The first window is chaotic over a very long time 
scale. Thesecond window is an intermittency with a remark- 
able feature that the chaotic flow has nonunique attractors. 
Finally, the last chaotic window shows intermittency with 
one connected chaotic attractor consisting of eight symmet- 
ric components (“butterflies”). There are laminar windows 
between the first and the second chaotic regimes, and after 
the last chaotic regime. 

The large scale structure regime contains a number of 
periodic and chaotic windows. Before the formation of the 
large scale structures, the Bow spends considerable time in 
metustable chaos that approaches true turbulent flow for the 
range of Re under the discussion. A spatially disordered, but 
temporally steady state was observed between the first two 
laminar windows. Two period doubiings take place in the 
second laminar window. The chaotic regime that follows has 
the same remarkable property of chaotic but nonunique at- 
tractors as is the case with the small scale structure regime. 
In addition, there is a window of relaminarization with a 
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FIG. 23. (a) Poincartsectionofthechaoticattractorat a= 10.805&; (b) 
and (c) are blowups of one of the components of the attractor. The fractal 
structure of the attractor is evident from blowups. 
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FIG. 24. Power spectrum of the velocity u at R = 12.5&. The principal 
frequency and its subharmonics are still dominant in the spectrum. 

periodic flow between the two chaotic regimes. 
In the future, we plan to use the proper-orthogonal de- 

composition49 to extract the coherent structures of the flow 
and study the resulting low-order dynamical systems.” 
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