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Results of an extensive investigation of probability distribution functions (pdf s) for Rayleigh- 
BCnard convection, in the hard turbulence regime, are presented. It is seen that the pdf s 
exhibit a high degree of internal universality. In certain cases this universality is established 
within two Kolmogorov scales of a boundary. A discussion of the factors leading to 
universality is presented. 

1. INTRODUCTION 

Probability distribution functions (pdf s) long have 
been of importance in discussing turbulent flows (see Pope’ 
for a comprehensive review to 1985). They serve as a valu- 
able tool in presenting data and give valuable insights into 
range of behavior. Recent workZm5 has placed a new empha- 
sis on their study in turbulent flows. Direct numerical simu- 
lationsb9 and improved experimental techniques’@12 have 
permitted more detailed pdfs, and allow us to go well be- 
yond such low-order moments as variances a, skewness s, 
and flatnessA common in the statistical description of turbu- 
lent flows. Part of the recent interest in pdfs is due to the 
experiments of the Chicago group,*“-‘2 and in particular to 
the exponential tails they observed for the pdPs of tempera- 
ture fluctuations. The wide tails of such pdf s underline the 
essential role that intermittency plays in turbulence phenom- 
ena. However, earlier investigations also led to such expo- 
nential distributions. 13-” 

On the theoretical side, Sinai and Yakhot considered 
the pdf of a passive scalar and made remarkabIe progress in 
describing the limiting distribution function. Subsequent to 
this, Yakhot and co-workers3t’6 extended this approach and 
presented arguments leading to exponential pdfs for tem- 
perature fluctuations and vorticity. Kraichnan has also 
made a notable extension to this approach.5 More recently 
Kraichnan”*” has produced a relatively simple closure 
model based on the mechanisms at work in tluid flow that 
lead to wide skirted pdfs. 

In this paper we present the results of an extensive study 
of pdf s as generated in a computational investigation of the 
Rayleigh-B&rard (RB) convection problem. The present 
results are based on a substantially longer simulation than 
was considered in our earlier publications.6.7 For purposes 
of comparison we estimate the turnover time by 

.?- = H/q,,,, 3 (1) -. 
where H is the height of the computational cell and qrms 
represents the rms speed. In such terms our earlier work was 
based on 4.65 turnover times while the present study is based 
on 41.7 turnover times. 

The specification of the problem as well as the details of 
the calculation appear in our earlier work.‘*’ In’brief, we 
simulate turbulent thermal convection as described by the 
Boussinesq equations. ” The vertical coordinate is-denoted 
by z and the horizontal by x and y. The horizontal planform 
is a square and the aspect ratio (width to height) is 2-a. The 

Rayleigh number is 0.98X lo4 times the critical Rayleigh 
number of 27&/4, which places the simulation in the range 
of hard turbulence in the terminology of the Chicago 
group. ‘O-l2 The velocity satisfies slip boundary conditions 
on the impermeable horizontal boundaries and temperature 
is specified on these walls. Periodic boundary conditions are 
imposed in both horizontal directions. 

The calculation uses 96 equal grid spacing inthe vertical 
direction, with a like number in each of the horizontal direc- 
tions. Since the Nusselt number, Nu, is roughly 23 for t-his 
calculation and since 

NuzH/2S, (2) 

where 6 is the thickness of the thermal sublayer, two grid 
spacings lie in the sublayer. (The sublayer thickness is also a 
measure of the Kolmogorov scale.) These few facts are use- 
ful in interpreting the material that follows since. various 
quantities will be specified by their vertical gird spacing loca- 
tions. 

As will be seen the pdf s exhibit a remarkable degree of 
universality. By universality we mean the unanticipated lack 
of dependence on strongly inhomogeneous directions. As 
discussed in Sec. VI the same universality is expected to ex- 
tend to other convection problems if the pdf’s are suitably 
normalized. 

,a . . - 

II. +IELlMlNARY CONSIDERATIONS 

In general if & represents a dependent variable, then we 
will denote by 

P, ‘P 
( 

a-3 
[ (hr2-j l/2 > = pm, (3) 

the pdf which will be plotted in our figures. The bar signifies 
that the-quantity has been averaged in time as well as over a 
horizontal plane. As previously reported for BCnard convec- 
tion6v7 temperature pdf s vary considerably in the vertical 
direction. Figure 1 shows the pdf of temperature fluctuation 
T’ at six different elevations. (See the cited reference for 
more details of the calculation,and notation.) :The tempera- 
ture pdf at the edge of the thermal sublayer (z =‘&) though 
not symmetric, has skewness close to zero.. Above the bot- 
tom sublayer (z = $6, 47, 16 and $$) the pdf s exhibit a peak cor- 
responding to a small negative value and a long positive tail, 
resulting in significant positive skewness. This indicates the 
existence of hot thermal plumes near the bottom boundary 

919 Phys. Fluids A 3 (5), May 1991 0899-8213/91/05091 Q-09$02.00 @ 1991 American Institute of Physics 919 
Downloaded 04 Jun 2008 to 146.203.28.10. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 

FIG. 1. Probability distribution function of normalized temperature fluctu- 
ation “r ’ = ( T’ - T)/ JF”T+ at six different heights from the bot- 
tom boundary. z  = & is at the edge of the bottom thermal sublayer, z  = & is 
in the region of hot thermal plumes, and z = # is roughly at the edge of the 
plume region. z  = I&, and %  are in the turbulent core. The results corre- 
sponding to the top half can be extended from the bottom half based on 
symmetry conditions. 

and at the midplane the pdf is symmetric. Figure 2 shows the 
comparable pdf s for the horizontal velocity u and vertical 
velocity w. The parabolic shape of the u pdf in this log-linear 
plot indicates the Gaussian nature of the distribution. At the 
midplane the pdf of w exhibits a similar Gaussian nature, 
whereas below the midplane the pdf of w is positively skewed 
similar to the temperature pdf s but to a much lesser extent. 

In our earlier papers we confirmed the existence of an 
exponential range to the pdf for fluctuations in temperature 
in the midplane as first exhibited by the Chicago group. This 
result was based on less than three log units range in the pdf. 
W ith the increased database, we now have reliable data for a 
range of almost six log units as exhibited in Fig. 1, While the 
pdf in the midplane is stillfit by an exponential over the first 
two to three log units the overall picture is quite different. 
The reason for the sharp down turn in the tails of the pdf is 
easy to understand. Since the temperature fluctuations are 
bounded below and above by the wall temperatures, the 
skirts of the pdf P( ^T’) must terminate at finite values. This 
tendency is clearly exhibited by the midplane pdf sho?n in 
Fig. 1. A brief summary describing the shape of the P( T’) at 
the midplane is (i) first, analytical considerations dictate 
that the pdf must be rounded at the center; (ii) second, this is 
followed by wide skirts, fit by an exponential, and which 
indicate relatively large fluctuations; (iii) finally, limited 
temperature fluctuations dictated by the wall temperatures 
force a rapid falloff of the skirts. 

In viewing the preceding pdfs and those to be presented 
later it is important to keep in mind the symmetries of the 
problem. This is especially true of the pdf s measured in the 
midplane of the cellz = $$, since some pdf’s become symmet- 
ric only in the midplane. As has been shown, the problem 
under discussion has a 1 h-fold symmetry group.” We  have 
not made use of this to extend the database (and thus shar- 
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FIG. 2. (a) Same as Fig. 1 but for ii. (b) Same as Fig. 1 but for ii. 

pen the pdf curves j but instead have verified these symme- 
tries to support the correctness of data. [For example, P(D), 
not shown, is virtually identical to P( ii), Fig. 2 (a j . ] In con- 
sidering the pdf s it is useful to split these into two classes. 
Those that must have symmetric distributions as a result of 
an inherent symmetry and those for which there is no apriori 
symmetry requirement. In general, if we consider a pdf 
P(h), and if there exists an admissible transformation of the 
group G such that 

Ga = ~- a, (4) 
then this implies that 

P(G) = P( - 6). (5) 
Consider, for example, the horizontal velocity u. Under 

refection in the plane x = 0, u -+ *-- u, and hence P( ii) is 
symmetric for all z values. This is clearly indicated in Fig. 
2 (a). Alternately, both the vertical velocity w and the tem- 
perature fluctuation T’ go into their negatives under reflec- 
tion in the midplane, but nof elsewhere. Thus their midplane 
pdf’s should be symmetric and as seen in Figs. 1 and 2(b), 
this is the case. However no group operation produces (4) at 
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FIG. 3. (a) Same as Fig. 1 but for i&. (b) Same as Fig. 1 but for ?:. 

other z elevations and there is no reason for these pdf s to be 
symmetric for other values of z. This is borne out by Figs. 1 
and 2(b). 

We can carry this line of reasoning somewhat further 
and consider w, and T:, neither of which have a group oper- 
ation leading to (4). Figures 3(a) and 3(b) show the pdf s 
for each of these quantities. As can be seen the correspond- 
ing pdf’s show no symmetry at any z value. This can be given 
a physical interpretation. Away from the two thin sublayers 
near the top and the bottom boundaries the pdf s are negati- 
vely skewed. To see this consider a parcel of fluid located at 
some height z’ traveling up. Since the vertical velocity and 
temperature fluctuations are well correlated, the probability 
that this parcel of fluid has positive temperature fluctuation 
is high. After a small time interval the fluid parcel will be at a 
higher elevation z’ + 6~’ surrounded by relatively colder flu- 
id. Therefore the probability that this parcel will accelerate 
up (w, > 0) and contribute larger temperature fluctuation 
( T: > 0) is high. Similarly if we consider a parcel of fluid 
with negative temperature fluctuation moving down, the 
probability that the parcel will. accelerate down (w, > 0) 
with larger temperature fluctuation (T; >O) is large. 
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FIG. 4. Same as Fig. 1 but for ic,. 

Therefore both w, and T: show a peak in their probability 
distribution at a (small) positive value and this peak is com- 
pensated by a less steeper negative tail, in order to yield zero 
mean values. For the P( ^w, ) this negative tail can be associat- 
ed with the less probable event of rapid deceleration of both 
the up moving cold parcel of fluid and the down moving 
warm parcel of fluid. In other words, mild acceleration up or 
down is more probable than mild deceleration, but rapid 
deceleration (up or down) is more probable than rapid ac- 
celeration. Similar interpretations can be given for the gradi- 
ent of the temperature fluctuations as well, and in general-the 
pdf of a quantity provides us with a view of its range of 
behavior. 

For comparison with the pdf s of Fig. 3, we consider u, 
which has a symmetry leading to (5) for all z. The corre- 
sponding pdf is shown in Fig. 4. This clearly indicates the 
symmetry but in addition shows a remarkable degree of uni- 
versality in the z direction. Such universality will be encoun- 
tered for the majority of the pdfs which will be presented 
below. Further discussion of this unexpected property will 
be presented in the following sections. 

III. PROBABlLlTY DlSTRlBUTlON FUNCTIONS 

As already seen in Fig. 4 the pdf of U, [or equivalently 
u, ) exhibits a surprising universality across the convective 
cell. To explore this property further we present, in Fig. 5, 
the components of vorticity. The pdfs for the horizontal 
components a, and s1, are virtually identical, only Q, is 
shown, and in addition exhibit a high degree of universality. 
Vertical vorticity 0,) on the other hand, shows a significant 
departure from universality. All vorticity components lead 
to pdf s that satisfy (4)) either through reflection in a plane 
of constant x or y. 

Given that mechanisms are at work that force universal- 
ity, we should expect in general that boundaries will produce 
significant departures from universality. To contrast the re- 
sults of the pdf s for the horizontal and vertical components 
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FIG. 5. (a) Same as Fig. 1 but for 8,. (b) Same as Fig. 1 but for 5,. 

we recall that 

fl,=(+g)? 

&=(&*). 
, 

(6) 

(7) 
- \dx dy / 

It follows from the boundary conditions for this particular 
RB convection problem” that 0, ~0 (and.& ~0) at a 
wall, while C& is unrestricted at a wall. As a general principle 
one should expect that all permissible fluctuations will ap- 

-pear in the corresponding pdf with an appropriate probabili- 
ty. This’can be seen in Fig. 5. Thus 0, which is unrestricted 
at the boundary has a wide skirt at z = & while Q,, which is 
restricted at the wall can only develop a slight skirt in the 
neighborhood of t,he wall z =&. As a result universality does 
not appear in P( a3 > until we approach the central region, 
where the pdf is fit by the universal curve&On the othF hand 
universality is quickly achieved for P(& ) and P( C& ). It 
should be noted that in the central region the pdf of all three 
components of vorticity are well fit by the same exponential 
over at least three decades. Further the pdf’s of those veloc- 
ity derivatives that constitute the three components of vorti- 
city (~,,,~,,v,,v,,w,,and w,),coincidewiththeaboveexpo- 
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FIG. 6. Same as Fig. 2 but for ^T : . 

nential distribution (for example, see Fig. 4). 
We have already seen in Figs. 1 and 3 examples of pdf s 

that show a strong departure from universality. For each of 
these pdf s the quantity in question does not satisfy the sym- 
metry property (4) except possibly at the center plane. Both 
u, and v,, are linked to wL through the continuity equation. 
Since neither of these quantities have a transformation lead- 
ing to (5 ), their pdf s lack universality. The pdf s for U, and 
uY closely resemble those shown in Fig. 3 (a) and are not 
presented here. (Only the pdf of w, at z = & is significantly 
different.) [Although U, and vv are identically distributed, 
they are correlated, since the convolution of P( ii, )-with it- 
self does not produce P( Gz ) .] 

The pdf s for w, , with high accuracy lie on those of Q2,, 
Fig. 5 (a). By contrast with the pdf in w, Fig. 2(b), this is 
universal except very near the wall. Thus taking a derivative 
of w, which then leads to a symmetrizing transformation 
(4)) produces a quick transition to universality. In addition, 
the value of w, is pinned to be equal to zero at both the top 
and bottom boundaries. This transition to universality is less 
true. for T:, the pdf of which is shown in Fig. 6. We recall, 
however, that the pdf of ?I itself, Fig. 1, is far less universal 
and significantly more skewed than the pdf of w, Fig. 2 (b) . 

In general it can be observed that temperature statistics 
obey universality over a narrower region near the midplane 
than their velocity counterpart. This reluctancy toward uni- 
versality can be, at least partially, attributed to the highly 
jntermittent nature of temperature and its derivative signals. 
For example, at the midplane while .the pdf s of u and w are 
Gaussian the pdf of T’ is exponential and while the pdf of 
vorticity is exponential the-pdf of T: is flatter than an expo- 
nential. ._ r. 

IV. PDkS FOR HlGHEd DEiVATlVES 

By taking derivatives of flow variables we emphasize the 
smaller scales. It is a widely held view that small scalesforget 
their large scales origins. This concept lies at the heart of the 
- 3 Kolmogorov range” and of the exponential dissipative 

range. 22 Both these energy ranges represent universal be- 
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havior of turbulent flows. Thus, as derivatives of flow quan- 
tities are increased their pdf’s depend more heavily on the 
higher wave numbers and a tendency toward universality 
should be expected. Probability distribution functions of de- 
rivatives say something about distributions in small eddies: 

-0.5 

-7.5 -5.0 -2.5 0.0 2.5 5.0 

-0.0 c (b) 

the higher the derivative the smaller the dominant eddy. 
What must be regarded as remarkable is that even pdfs of 
first derivatives show universality. It would appear that 
more than the above-mentioned universal ranges are at work 
in producing universality, and very probably that dynamics 
is important in establishing at least some of the universal 
features. 

In this section we consider the effect of taking additional 
derivatives of flow quantities on the corresponding pdf s. In 
Figs. 7-9 we exhibit a selection of second derivatives of flow 
quantities. These show a higher degree of universality than 
their first derivative counterparts. Before commenting on 
these in detail, we observe that all the pdf s shown in these 
figures exhibit a flared out skirt and are no longer fit by a 
simple exponential. To account for this effect, we refer to an 
argument given sometime ago by Kraichnanz3 that demon- 
strates that greater intermittency is to be expected as the 
wave number is increased. His argument is largely indepen- 
dent of Reynolds number. Thus in viewing pdfs of higher 
derivatives of flow quantities we should expect increasing 
intermittency and hence wider flaring skirts in the pdf s. 

In Figs. 7(a) and 7(b) we show the pdf s for U, and u,, 
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lation and the covariance (u~T’)/q,, T:,, with respect to the vertical dis- 
tance. 

both of which exhibit strong universality. On the other hand 
pdf s for u, shown in Fig. 7 (c) exhibit some departure from 
universality. Here uyr is identically equal to zero at both 
boundaries, due to the stress-free boundary condition, there- 
fore a strong tendency toward universality can be expected. 
Though the boundary condition is not prescribed, variations 
in U, will be small since it is the vertical gradient of u, that is 
identically equal to zero at boundaries. As seen earlier, func- 
tions that are fixed at the boundaries quickly attain univer- 
sality and within the universal regime the vertical gradients 
as well as the horizontal gradients can be expected to be 
bounded and exhibit strong universality. On the contrary, 
ZL,,~ is neither fixed at the boundary nor does it represent the 
derivative of a quantity that exhibits universality. 

We do not show the three pdf s corresponding to w,, 
W re,andw,, since they virtually lie on the universal curve of 
Fig. 7(b). The pdf s of the first two have no transformation 
under which (5) holds. Symmetry is nevertheless estab- 
lished. This confirms that skewness is primarily a property 
of large-scale structures.’ Both w,, and w, (by continuity) 
are restricted to be zero at the boundary, whereas w,, is the 
vertical derivative of the universal function w,. Therefore all 
three pdf s show universality and to excellent approximation 
fall on the same curve, Fig. 7 (b). In Fig. 8 we show pdf s for 
T:, and Th. The pdfs for the last quantity do not have a 
symmetrizing transformat@ leading to (4). Nevertheless, 
except near the wall for P( T:, ) the pdf s are symmetric and 
exhibit a tendency toward universality. This is even more 
true for Ti, which also does not have a symmetrizing trans- 
formation but has pdf s very well fit by Fig. 8 (a). 

Thus we conclude that whatever the mechanism forcing 
universality, as might be expected, it is more effective on 
higher derivatives. 

V. OTHER MEAN QUANTITIES 

Figure 9 contains plots of T,!,,,,, u,,,, wFms, as well as 
( WT’) (and its covariance) and (d /dz) ( T’). In certain in- 
stances for a range of z, the curves are well fit by power laws 
and this has been indicated. Arguments leading to power- 
law dependence are similar to those leading to the inertial 
sublayer (log layer) for turbulent wall-bounded flows.24 In 
brief, once away from the diffusive layers adjacent to a wall 
the only available length scale is the distance to the bound- 
ary. Prandt125 applied this to the convection problem and 
one tinds24,26 

T;,, az - Iy3, w,,, c~.z’;~, %cz ..- 4i3 
dz 

in this region, where T&,,, and w,,,, are the rms temperature 
and vertical velocity fluctuations ( Kraichnan,27 also using 
mixing length theory, has considered in detail the case in 
which the Pr number is allowed a wide range of values). A 
simple argument that leads to ( 8) is that since in the inviscid 
region the convective heat transport 

wT’ = Ho (9) 
is a constant, this implies that w and T’ scale reciprocally 
with z. Thus, in the vertical momentum equation the lead 
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terms are 

aw T, w--r= 2 (10) 
dZ 

from which the scaling in (8) follows. 
While T ’ rms does show a sensible range for a ( - j) pow- 

er, the same is not true for w,,, . Though the convective heat 
transport (w T’) and the covariance ( ( ~T’)/w,,~ T :,, ) are 
constant across the layer (0.2O<z<O.80) except near the 
boundary, w does not scale reciprocally since the region over 
which T’ a .~i’~ (0.05 <z < 0.2) falls closer to the boundaries. 
We also note that dT’/dz does not follow a - 4 power. 
Townsend2’ and Thomas and Townsend29 observed a - 2 
power, indicated as a dashed line in Fig. 9, a value also given 
by Carrol13’ and in a computation by Eidson et aL31 This 
value was fh-st proposed by Malkus3’ from theoretical argu- 
ments. However, we point out that a - $ power, the contin- 
uous straight line of Fig. 9, is a better fit to the calculation. 

The lack of a consistent universal scaling regime is remi- 
niscent of the situation for boundary-layer flows, where an 
argument similar to that leading to (8) produces the log 
Zayer for the mean velocity. 33 However as has been known 
for some time, not all quantities follow the universal scaling. 
To account for the lack of universality Townsend34 and later 
Bradshaw3’ postulated the notion of active and inactive por- 
tions of the flow. In their explanation they invoke the idea of 
large (integral scale) eddies entering the boundary regions 
at infrequent times and marring the universality of some 
quantities. 

In the present case, the underlying scaling arguments 
assume a semi-infinite domain in the vertical direction.with- 
out horizontal wind,26 and so might be thought to be appli- 
cable outside the dissipative sublayer at a wall. Recent ex- 
periments by the Chicago group indicate a sustained 
symmetry breaking wind. Also for the numerical simula- 
tions already discussed,“77 the roll motions act as a winds 
since their time scale is of relatively long duration although 
they have zero mean. In any event this more general case 
changes the above dimensional reasoning and is treated in 
Monin and YaglomZ4 who find general classes of possible 
functional dependences. We do not pursue this further since 

22 
2 -1.0 

3 

-1.5 

-2.0 
1.28 1.32 1.36 1.40; 

Log,,(rms Fluctuation) 

RG. 10. Log-log plot of rms fluctuation vorticity components a, and 0,. 

0.0 
F - 5 

Log,,(rms fluctuation) 

FIG. 11. Root mean square fluctuation in u,, u,, w,, and w, against vertical 
distance. 

scaling does not appear to be a dominant effect. 
Since all the pdf s considered are given in the normaliza- 

tion (3)) it is of interest to present the remaining variances of 
the quantities considered with respect to their variation in 
the vertical direction z. The rms fluctuation of the two com- 
ponents of vorticity are plotted in’ Fig. 10. Figures 11-13 
show the rms fluctuation for the first and second derivative 
quantities. Since pdf’s of the raw variables follow from these 
plots this completes the single-point probabilistic descrip- 
tion of all the relevant quantities. 

While scaling does not appear to account for the univer- 
sality another feature of the pdfs does help explain the col- 
lapse of pdt’s onto universal curves. We observe that the 
above symmetric pdf s are well approximated by the family 
of curves 

P(a) = Ce - Ial’/k, (11) 
where C = C(p,k) is easily chosen so that there is unit area 
under the curve. p = 2 corresponds to a Gaussian distribu- 
tion, p = 1 corresponds to an exponential distribution, andp 
less than one indicates a flatter intermittent distribution. All 
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the even moments of this distribution depend on p and k, 
while the odd moments are identically equal to zero. Closer 
to the boundaries the distributions are intermittent and the 
pdf s are flared out corresponding top less than 1. As univer- 
sality is approached the value ofp decreases and in the uni- 
versal regime since the level of intermittency can be expected 
to be uniform in the value ofp; i.e., it will be independent of 
the vertical location. Although k, which measures the width 
or the standard deviation of the pdf, can vary in the universal 
regime for the raw variables, once the raw variables are nor- 
malized by the rms fluctuation the value of k is dictated to be 
pxpmcpj p’2 so that the normalized standard deviation 
is unity. Therefore in the universal regime p and k (which 
now depends only on p) are constants. Therefore as long as 
the level of intermittency (or p) reaches an asymptotic val- 
ue, indicating universality, the collapse of the normalized 
pdf s can be explained. As already mentioned the approach 
to universality is rapid in the case of variables that are fixed 
at the boundaries. 

VI. CONCLUDING REMARKS 

An overall survey of the pdf s that have been exhibited 
leads one to believe that there is an active mechanism forcing 
the pdfs toward universal form. Both the degree to which 
this is true and the resulting shape of the pdf depend on the 
dominant relevant eddy size, i.e., on the number of deriva- 
tives being considered. In general the smaller the eddies, the 
more quickly is universality established, and the more inter- 
mittent (llared skirts) the shape of the pdf. As has been 
observed by She et al9 skewness is essentially a large-scale 
property, whileflatness is a small-scale effect. 

As might be expected the presence of boundaries mars 
universality and wide departures from universal behavior 
can be expected in the neighborhood of a boundary. A 
boundary can act in two extremely different ways. It can pin 
down a fluctuation. For example, w, T’,.w,, u =,... are all 
restricted to vanish at a boundary. On the other hand s1,, 
T:, w,, $9 u,,... are all unrestricted in that any fluctuation 
in those quantities is permitted at the boundary. Another 
important ingredient in determining the form of a pdf is sym- 

metry. If a transformation of the form (4) is applicable then 
a symmetric pdf results. In certain instances this is only 
achieved at the midplane, e.g., wand T’. While in other cases 
symmetric pdf s must be obtained (assuming that there ex- 
ists sufficient data) at all elevations, e.g., u, w,, u =,... . 

As a general rule, at a boundary, and in its neighbor- 
hood, if there is no restriction imposed on the quantity, one 
should expect all manner of possible fluctytions to appear. 
This helps to explain why, for example, P(f13 ) has relatively 
wide skirts in the neighborhood of the boundary, and as a 
result shows a slower tendency to universality. By compari- 
son u, must be zero at a boundary and thus does not develop 
wid,e skirts in the neighborhood of a boundary. Unlike 
P( Q, ), P( ii, > tendszery quickly to a universal form, Fig. 4. 

The cases of P( T’) and P( $) are of interest to consider 
from the perspective of the present discussion. In both in- 
stances the quantity in question is forced to vanish at the 
boundary. This; however, has little effect in restricting the 
corresponding pdf. Although each must be symmetric in the 
midplane, this is not true elsewhere and the passage to the 
symmetric pdf is difficult to characterize. 

The mechanism that is responsible for the tendency 
towards universality is not obvious. Kraichnan’~‘* has pro- 
duced a simple heuristic model of intermittency based on a 
closure approximation which exhibits independence of 
Reynolds number. This may be indicative of the processes at 
work and which bring about universality. Further investiga- 
tion of this effect is clearly indicated. 

While our deliberations are based on the computation of 
RB convection, at one value of Ra, it seems clear that they 
should be generalize to other flow geometries and other val- 
ues of the control parameter. The approach to universality 
that we have followed in terms of the vertical distance from a 
wall is doubtless better expressed in terms of a wall normaI- 
ized variable. For channel or boundary-layer flows this 
would be the usual wall normal coordinate, while in the pres- 
ent case z/6 is the suitable variable. When the pdfs are ex- 
pr;essed in such terms we anticipate that universality will also 
hold with varying control parameters. A study of available 
channel flow data strongly indicates universal forms for the 
corresponding pdf ‘s. 
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